Dalton Transactions

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/dalton

Journal Name

Luminescent europium(III)-platinum(II) heterometallic complex as the ranostic agent: a proof-of-concept study^{\dagger}

Received 00th January 20xx, Accepted 00th January 20xx

Anirban Chandra,^{a, ‡} Khushbu Singh,^{a, ‡} Swati Singh,^b Sri Sivakumar^b and Ashis K. Patra^{*a}

DOI: 10.1039/x0xx00000x

www.rsc.org/

A luminescent heterometallic multifunctional theranostic Eu-Pt₂ complex, [{*cis*-PtCl₂(DMSO)}₂Eu(L)(H₂O)] has been synthesized, possessing two therapeutic Pt-centers as covalent DNA binders and one emissive Eu³⁺-center which is sensitized by platinum-based metal-to-ligand charge-transfer excited states.

Multifunctional cancer theranostic agents having multiple therapeutic and diagnostic centers in a single platform gains popularity in recent years.¹⁻³ Recently, there are few reports on heterometallic hairpin-shaped lanthanide-Pt₂ complexes for DNA recognition and magnetic resonance imaging (MRI) based theranostic agents or selectively delivering gadolinium to tumor cell nuclei.⁴ In this regard, theranostic Gd³⁺-based platinum complexes reported^{4c} in which Gd³⁺ and conjugated *cis*-[Pt(NH₃)₂Cl]⁺-moieties act as MRI contrast and therapeutic centers, respectively. These complexes showed therapeutic efficiency along with improved MR imaging capability. However, their DNA-binding ability is limited because of only two available DNA-cross linking sites. In addition, the clinical use of platinum drugs is severely affected by drug resistance mediated by inadequate levels of platinum reaching to critical target DNA.⁵ Notwithstanding with this progress, it is highly desirable to increase the DNA binding sites that significantly enhances platinum content at target site along with tagging of bright luminescent center as diagnostic probe. To this end, we report the design of multimodal targeted theranostic Eu-Pt₂ conjugate possessing four DNA binding sites which can effectively target nuclear DNA along with highly luminescent Eu³⁺ center to enable interference-free live-tracking of the drug through fluorescence microscopy. Luminescent lanthanide complexes were widely exploited in various

‡A.C. and K.S. contributed equally in this work.

This journal is © The Royal Society of Chemistry 20xx

bioassays since they offer

Scheme 1 Molecular structure of Eu-Pt₂ complex **1** showing Pt \rightarrow Eu energy transfer pathway upon MLCT photo-excitation leading to *f*-*f* emission from Eu³⁺ and dissociable Pt-Cl bonds as DNA-cross linking sites.

unique photophysical properties like narrow emission bands, large Stokes' shift and long-lived excited state lifetimes.^{6,7} Since direct excitation of the Ln^{3+} *f-f* transition is very inefficient, chemists have designed a variety of chelating agents conjugated to a sensitizing organic chromophore called *antenna* which can transfer its excited state energy efficiently to the emissive Ln^{3+} ion leading to bright luminescence compared to the direct excitation of Ln^{3+} ions.^{8,9} Our approach exploit the advantages of transition metal complexes as they exhibit many desirable properties as sensitizer than organic chromophores such as tunable absorption bands, long-lived excited states to maximize the ET to Ln^{3+} , excellent photochemical stability and kinetic inertness.^{10,11}

Herein, we demonstrate a multifunctional Eu-Pt₂ complex, [$\{cis$ -PtCl₂(DMSO) $\}_2$ Eu(L)(H₂O)] (1) (Scheme 1) which has cytotoxic *cis*-[PtCl₂(DMSO)] moieties enabling the DNA binding whereas, EuL unit acts as luminescent reporter. Thus, a combination of a luminescent imaging probe and a conjugated therapeutic agent in a single hybrid 5*d*-4*f* complex can provide real-time feedback on drug delivery, distribution and target site localization in a non-invasive manner through fluorescence microscopy. Other key design feature of this complex is having

^{a.} Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India. E-mail: akpatra@iitk.ac.in

^{b.} Department of Chemical Engineering and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur-208016, U.P., India.

[†]Electronic Supplementary Information (ESI) available: Experimental details; synthesis and characterization of compounds; ESI-MS analysis; DNA and BSA binding experiments; cytotoxicity and cellular internalization studies. See DOI: 10.1039/c000000x

titration plot

COMMUNICATION

four potential DNA cross-linking sites through labile Pt-Cl bonds, thus higher level of activated platinum reaching DNA, a possible way to lower the drug resistance. Eu-Pt₂ complex 1 was prepared in a sequential manner (Scheme S1, ESI⁺) starting with a multidentate DTPA-bisamide ligand, $H_3L = N_1N''$ -Bis(3-amidoquinolyl)diethylenetriamine-N,N',N"-triacetic acid derived from acylation of 3-aminoquinoline by DTPAbis(anhydride). $[Eu(L)(H_2O)]$ was synthesized by reacting 1:1 molar ratio of deprotonated ligand and $Eu(NO_3)_3 \cdot 6H_2O$ in water. The [{cis-PtCl₂(DMSO)}₂Eu(L)(H₂O)] (1) was isolated on reaction of EuL with freshly prepared cis-[Pt(DMSO)₂Cl₂] in 1:2 molar ratio. Detailed ESI-MS studies of Eu-Pt₂ complex reveal m/z 714.52 corresponding to {M-2Cl}²⁺ with matching isotopic distribution profile unequivocally allows attribution of Eu-Pt₂ formulation alongwith other physicochemical data (Fig. S1, ESI⁺). We observed dissociable chloride ligands in aqueous solution which is crucial towards forming cross-link with base pairs in nuclear DNA.

The UV-vis spectra of 1 exhibits high energy band at 273 nm are due to ligand centered $\pi \rightarrow \pi^*$ transitions and a broad band ranging from 332-350 nm corresponding to $\pi \rightarrow \pi^*$ MLCT transitions of quinoline bound Pt²⁺ moiety (Fig. 1a). Here we have judiciously utilized this ³MLCT excited state as means to populate ${}^{5}D_{0}$ emissive states of europium through efficient energy transfer. The ${}^{3}MLCT \rightarrow f$ energy transfer through such photosensitization is shown in few Eu-Pt complexes.¹² Addition of cis-[Pt(DMSO)₂Cl₂] to EuL resulted in appearance of new band at 350 nm with isobestic point at ~270 nm indicative of formation of Eu-Pt₂ complex 1 during titration (Fig. S2 in ESI⁺). Upon excitation at MLCT band, the Eu-Pt₂ complex under timegated mode displayed narrow emission bands spanning from 575-700 nm characteristic of the ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ (J = 0-4) f-f transitions of Eu³⁺ (Fig. 1b). The luminescence spectra demonstrates efficient photosensitized energy transfer from MLCT excited state of quinoline bound Pt²⁺ moiety to emissive ${}^{5}D_{0}$ excited state of Eu³⁺ with a overall quantum yield ($\phi_{overall}$) of 0.04. Spectrophotometric titration of *cis*-[Pt(DMSO)₂Cl₂] with [Eu(L)(H₂O)] at λ_{ex} = 330 nm showed the formation of $[{cis-PtCl_2(DMSO)}_2Eu(L)(H_2O)]$ (1) with gradual increase in europium centered emission until it reached a plateau at Eu/Pt =0.5 (Fig. 1c). The decay rate of emissive ${}^{5}D_{0}$ excited state was measured at 616 nm results in monoexponential decay curve with a lifetime (τ_{obs}) of 0.65(±10%) ms in aqueous buffer medium, indicating the presence of single chemical environment. The enhancement of $\tau_{\rm obs}$ in presence of DNA ($\tau_{\rm obs}$ = 0.89 (±10%) ms) indicate minimization of nonradiative relaxation pathways in DNA bound form for Eu-Pt₂ complex (Fig. 1d).

Since DNA is the most important target for therapeutic platinum drugs, we attempted detailed binding studies of ${\bf 1}$ with DNA. The hairpin-shaped complex 1 gets activated by aquation through substitution of chlorides by water generating potent cation, $[Eu(L)(H_2O)\{cis-Pt(OH_2)_{n/2}(DMSO)\}_2]^{n+}$ (n = 1-4), which can readily cross-link with nucleobases of ds-DNA (Scheme S2, ESI⁺). The binding interaction of Eu-Pt₂ complex with calf-thymus DNA (CT-DNA) were studied using UV-vis titration, competitive displacement of ethidium bromide by

fluorescence ($K_{app} = 4.9 \times 10^5 \text{ M}^{-1}$), circular dichroism (CD) and isothermal titration calorimetry (ITC) (Fig. S6-S8, ESI+). ITC

Fig. 1 (a) UV-vis and (b) emission spectrum (λ_{ex} = 330 nm) of Eu-Pt₂ complex 1 in Tris-HCl buffer. (c) Evolution of emission spectra with increasing [EuL] to a solution of $[PtCl_2(DMSO)_2]$ in DMF (λ_{ex} = 330 nm), Inset: the plot of relative emission intensity at 615 nm vs. [Eu]/[Pt] ratio. (d) Luminescence decay profile from 5D_0 state of ${\rm Eu}^{3+}$ in complex 1 at $\lambda_{\rm em}$ = 616 nm ($\lambda_{\rm ex}$ = 330 nm) (black) and in presence of CT-DNA (blue) in Tris-HCl buffer (pH=7.2). [1] = 90 μ M, [DNA] = 450 μ M, delay time and gate time = 0.1 ms. The solid lines are the best fits considering single-exponential behaviour of the decay.

suggests a biphasic sequential binding interaction¹³ of Eu-Pt₂ with CT-DNA with an initial favorable exothermic binding event $(K_1 = 1.7 \times 10^5 \text{ M}^{-1}, \Delta H_1 = -26.0 \text{ kcalmol}^{-1})$, followed by a second exothermic event ($K_2 = 9.1 \times 10^5 \text{ M}^{-1}$, $\Delta H_2 = -77.6 \text{ kcalmol}^{-1}$) presumably due to successive sequential covalent cross-link formation with base pairs of duplex-DNA (Fig. 2a). The intrinsic binding constant ($K_{\rm b}$ =1.5(±0.3) x 10⁵ M⁻¹) along with a hypochromism and bathochromic shift of the electronic spectral bands suggests favorable binding interaction of the complex 1 with DNA due to EuPt2-DNA adduct formation, strong electrostatic interaction with activated ${Eu-Pt_2}^{n+}$ and favorable stacking interactions of the two planar -Pt(L) chromophores with planar base pairs of ds-DNA as observed in similar hairpin shaped Eu-Pt₂ complexes.^{4a,4b} Formation of such bis(bifunctional) platinum-DNA cross-links should induce major unrepairable structural distortion of DNA double-helix. The significant decrease in ellipticity in CD spectra of CT-DNA in the presence of 1 (Fig. 2b) also suggests unwinding of DNA helix and major structural deformation of DNA induced by Pt-DNA cross-links.¹⁴ This structural distortion of DNA could be beyond cellular DNA repair machinery and thereby inhibit transcription and replication, triggering cell-death pathways.⁵ The decrease in DNA migration rate in presence of Eu-Pt₂ compared to EuL in gel electrophoretic mobility assay using SC pUC19 DNA also suggest unwinding of supercoiled DNA helix by 1 (Fig. 2 c).¹⁵ We have observed significant enhancement of Eu-based luminescence intensity originating from ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ transitions of Eu³⁺ upon addition of DNA due to efficient energy transfer to Eu³⁺ and enhanced excited state lifetime in a hydrophobic environment created due to binding of Eu-Pt₂ complex with

2 | J. Name., 2012, 00, 1-3

Journal Name

Journal Name

COMMUNICATION

DNA (Fig. 2d). Serum albumin proteins constitutes a major component in blood plasma proteins and plays important roles in drug transport and metabolism. The interaction of the Eu-Pt₂

Fig. 2 (a) ITC plot profile for the interaction of Eu-Pt₂ (0.1 mM) with CT-DNA (0.01 mM) in 5 mM Tris-HCl/NaCl buffer (pH 8.5) at 30 °C. The top panel represents the raw data for 20 injections of 2 μ L each. The bottom panel shows the amounts of heat evolved on interaction of the Eu-Pt₂ complex with CT-DNA against molar ratio of Eu-Pt₂ complex to CT-DNA. Data were fitted by sequential binding site model. (b) CD spectra of CT-DNA in the presence of EuL and Eu-Pt₂ in Tris-HCl buffer medium. (c) Agarose gel electrophoresis of SC pUC19 DNA after incubation with EuL and Eu-Pt₂ in 50 mM Tris-HCl buffer at 37 °C for 16 h. Lane 1: DNA control, lanes 2-8 (10, 15, 20, 40, 60, 80, 100 μ M complexes respectively) (d) Luminescence spectra of Eu-Pt₂ (λ_{ex} = 330 nm) with addition of CT-DNA in 5 mM Tris-HCl buffer. Inset: the relative emission intensity (I/I₀) of **1** at 615 nm vs. [DNA]/[Eu-Pt₂ ratio. (e) Cell viability plots showing the cytotoxicity of Eu-Pt₂ complex with HeLa and H460 cells on 16 h incubation by MTT assay.

complex with bovine serum albumin (BSA) studied from tryptophan emission quenching experiment showing high

binding propensity ($K_{BSA} = 1.50\pm0.03 \times 10^5 \text{ M}^{-1}$) desirable for efficient transport to the pathological site (Fig. S9, ESI⁺).

To test our original 'theranostic' design, we performed in vitro cytotoxicity assay by MTT on a human cervical carcinoma HeLa and lung carcinoma H460 cell lines. The IC₅₀ values for Eu-Pt₂ complex **1** are 51.0±1.05 μ M in HeLa cells and 30.0±1.27 μ M in H460 cells (Fig. 2d). It exerts anticancer activity via extensive DNA-adduct formation through conjugated cis-[PtCl₂(DMSO)] moieties in a similar mechanism to cisplatin.

The cellular internalization of the Eu-Pt₂ complex was investigated to probe diagnostic aspect of [Eu(L)(H₂O)] utilizing long luminescence lifetime and intrinsic luminescence from Eu^{3+} by confocal fluorescence microscopy (panel A, Fig. 3). Theranostic Eu-Pt₂ complex showed significant cellular uptake within 4 h of incubation with HeLa cells. Staining with nuclear staining dye Hoechst 33258 demonstrate both nucleus and cytosolic distribution of the complex (panel C, Fig. 3). The red spots observed in some nuclei originate from luminescence from the Eu³⁺ reporter tag in Eu-Pt₂ theranostic conjugate (Fig. S11, ESI⁺).

In conclusion, we have developed a luminescent multimodal heterometallic Eu-Pt₂ theranostic system using sensitization and energy transfer from a conjugated Pt^{2+} based chromophore to Eu^{3+} . The complex shows strong binding propensity to DNA via formation of Pt-DNA cross-links through four potential DNA binding sites. The complex exhibit cytotoxicity through DNA damage and nuclear localization observed due to Eu-based *f-f* transition by fluorescence imaging. Thus, such systems will have great potential towards designing theranostic agents and delivery vehicles for cancer chemotherapy. Further studies are on towards designing potent lanthanide based theranostic agents as efficient drug delivery platform and understanding mechanism of their action.

A.K.P. acknowledges SERB, Govt. of India and IIT Kanpur for funding. A.C. and K.S. acknowledge UGC and CSIR their research fellowships.

Fig. 3 Confocal laser scanning fluorescence microscopic images of the HeLa cells treated with $Eu-Pt_2$ complex (25 μ M) on 4 h incubation and Hoechst 33258 dye (5 μ g mL⁻¹): (A) cells incubated with the Eu-Pt_2 complex; (B) incubated with the Hoechst 33258 dye for staining nucleus showing blue emission; (C) merged images showing nuclear and cytosolic localization of the complex; (D) DIC images. Scale bar = 20 μ m.

Notes and references

 (a) H. Koo, M. S. Huh, I.-C. Sun, S. H. Yuk, K. Choi, K. Kim and I. C. Kwon, *Acc. Chem. Res.*, 2011, 44, 1018-1028; (b) T. Lammers, S. Aime, W. E. Hennink, G. Storm and F. Kiessling, *Acc. Chem. Res.*, 2011, 44, 1029-1038.

- 2 (a) M. K. Yu, J. Park and S. Jon, *Theranostics*, 2012, 2, 3-44;
 (b) J. D. Rocca, D. Liu and W. Lin, *Acc. Chem. Res.*, 2011, 44, 957-968;
 (c) M. Liong, J. Lu, M. Kovochich, T. Xia, S. G. Ruehm, A. E. Nel, F. Tamanoi and J. I. Zink, *ACS Nano*, 2008, 2, 889-896.
- 3 A. S. Paraskar, S. Soni, K. T. Chin, P. Chaudhuri, K. W. Muto, J. Berkowitz, M. W. Handlogten, N. J. Alves, B. Bilgicer, D. M. Dinulescu, R. A. Mashelkar and S. Sengupta, *Proc. Natl. Acad. Sci. USA*, 2010, 107, 12335-12340.
- 4 (a) P. B. Glover, P. R. Ashton, L. J. Childs, A. Rodger, M. Kercher, R. M. Williams, L. D. Cola and Z. Pikramenou, J. Am. Chem. Soc., 2003, 125, 9918-9919; (b) E. L. Crossley, J. B. Aitken, S. Vogt, H. H. Harris and L. M. Rendina, Angew. Chem. Int. Ed., 2010, 49, 1231-1233; (c) Z. Zhu, X. Wang, T. Li, S. Aime, P. J. Sadler and Z. Guo, Angew. Chem. Int. Ed., 2014, 53, 13225-13228; (d) H. Li, R. Lan, C.-F. Chan, L. Jiang, L. Dai, D. W. J. Kwong, M. H.-W. Lam and K.-L. Wong, Chem. Commun., 2015, 51, 14022-14025.
- 5 (a) D. Wang and S. J. Lippard, Nat. Rev. Drug Discovery, 2005,
 4, 307-320; (b) L. Kelland, Nat. Rev. Cancer, 2007, 7, 573-584.
- 6 S. Cotton, *Lanthanides and actinides*, McMillan Physical Science Series, McMillan Education, London, 1991.
- 7 (a) J.-C. G. Bünzli, *Chem. Rev.*, 2010, **110**, 2729-2755; (b) J.-C. G. Bünzli, and S. V. Eliseeva, *Chem. Sci.*, 2013, **4**, 1939-1949; (c) E. J. New, A. Congreve and D. Parker, *Chem. Sci.*, 2010, **1**, 111–118; (d) E. J New, D. Parker, D. G. Smith and J. W. Walton, *Curr. Opin. Chem. Biol.*, 2010, **14**, 238-246.
- 8 (a) M. C. Hefferin, L. M. Matosziuk and T. J. Meade, *Chem. Rev.*, 2014, **114**, 4496; (b) A. J. Amoroso and S. J. A. Pope, *Chem. Soc. Rev.*, 2015, **44**, 4723-4772; (c) S. J. Butler, M. Delbianco, L. Lamarque, B. K. McMahon, E. R. Neil, R. Pal, D. Parker, J. W. Walto and J. M. Zwier, *Dalton Trans.*, 2015, **44**, 4791-4803.
- 9 X. Wang, H. Chang, J. Xie, B. Zhaoa, B. Liu, S. Xu, W. Pei, Na Ren, L. Huang and W. Huang, *Coord. Chem. Rev.*, 2014, 273/274, 201-212.
- 10 (a) S. Faulkner, L. S. Natarajan, W. S. Perry and D. Sykes, *Dalton Trans.*, 2009, 3890-3899; (b) M. D. Ward, *Coord. Chem. Rev.* 2010, **254**, 2634-2642; (c) F.-F Chen, Z.-Q. Chen, Z.-Q. Bian and C.-H. Huang, *Coord. Chem. Rev.*, 2010, **254**, 972-990.
- (a) S. I. Klink, H. Keizer and F. C. J. M. van Veggel, Angew. Chem., Int. Ed. 2000, **39**, 4319-4321; (b) S. J. A. Pope, B. J. Coe, S. Faulkner, E. V. Bichenkova, X. Yu, and K. D. Douglas, J. Am. Chem. Soc., 2004, **126**, 9490-9491; (c) E. Baggaley, D.-K. Cao, D. Sykes, S. W. Botchway, J. A. Weinstein and M. D. Ward, Chem. Eur. J. 2014, **20**, 8898-8903.
- (a) P. Kadjane, C. P.-Iglesias, R. Ziessel and L. J. Charbonnière, Dalton Trans., 2009, 5688-5700; (b) R. Ziessel, S. Diring, P. Kadjane, L. Charbonnière, P. Retailleau and C. Philouze, Chem.–Asian J., 2007, 2, 975-982; (c) T. K. Ronson, T. Lazarides, H. Adams, S. J. A. Pope, D. Sykes, S. Faulkner, S. J. Coles, M. B. Hursthouse, W. Clegg, R. W. Harrington and M. J. Ward, Chem. Eur. J., 2006, 12, 9299-9313.
- 13 (a) N. Inukai, T. Kawai and J. Yuasa, *Chem.-Eur. J.* 2013, 19, 5938-5947; (b) N. Inukai, T. Kawai and J. Yuasa, *Chem. Commun.* 2011, 47, 9128–9130; (c) J. Yuasa, T. Ohno, H. Tsumatori, R. Shiba, H. Kamikubo, M. Kataoka, Y. Hasegawa, and T. Kawai, *Chem. Commun.*, 2013, 49, 4604–4606; (d) C. P. Montgomery, E. J. New, D. Parker and R. D. Peacock, *Chem. Commun.*, 2008, 4261–4263.
- 14 W. C. Johnson, Circular Dichroism: Principles and Applications, Eds. K. Nakanishi, N. Berova, R. W. Woody, VCH, New York, 1994, pp. 523-540.
- 15 M. V. Keck and S. J. Lippard, J. Am. Chem. Soc., 1992, 114, 3386-3390.

Page 4 of 5

4 | J. Name., 2012, **00**, 1-3

- Dalton Transactions

Journal Name

COMMUNICATION

TOC Graphics

Synopsis: In this communication, we present a luminescent heterometallic multifunctional theranostic $Eu-Pt_2$ complex, [{*cis*-PtCl₂(DMSO)}₂ $Eu(L)(H_2O)$], possessing two cytotoxic Pt-centers having four DNA-binding sites showing intracellular Eu-based red luminescence sensitized by platinum based MLCT excited states.

This journal is © The Royal Society of Chemistry 20xx

J. Name., 2013, 00, 1-3 | 5