Dalton Transactions

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/dalton

Dalton Transactions

Dynamic Article Links >

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

PAPER

Chirality at metal and helical ligand folding in optical isomers of chiral *bis*(napthaldiminato)nickel(II) complexes[†]

Mohammed Enamullah^{a,*}, Mohammed Abdul Quddus^a, Mohammad Rezabul Hasan^a, Gennaro Pescitelli^{b,*}, Roberto Berardozzi^b, Gamall Makhloufi^c, Vera Vasylyeva^c, and Christoph Janiak^{c,*}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Enantiopure *bis*[{(R or S)-N-1-(Ar)ethyl-2-oxo-1-naphthaldiminato- c^2N ,O}]nickel(II) complexes {Ar = C₆H₅ (**1***R* or **1***S*), *p*-OMeC₆H₄ (**2***R* or **2***S*), and *p*-BrC₆H₄ (**3***R* or **3***S*)} are synthesized from the reactions ¹⁰ between (R or S)-N-1-(Ar)ethyl-2-oxo-1-naphthaldimine and nickel(II) acetate. Circular-dichroism spectra and their density-fuctional theoretical simulation reveal the expected mirror image relationship for the enantiomeric pairs **1***R*/**1***S* and **3***R*/**3***S* in solution. CD spectra are dominated by the metal-centered Λ - and Δ -chirality of non-planar four-coordinated nickel, this latter being in turn dictated by the ligand chirality. Single crystal structure determinations for **1***R* and **1***S* show that there are two symmetry-independent ¹⁵ molecules (**A** and **B**) in each asymmetric unit to give a Z' = 2 structure. Two asymmetric and chiral bidentate N^{Λ} O-chelate Schiff base ligands coordinate to the nickel atom in a distorted square planar N_2O_2 coordination sphere. The conformational difference between the symmetry-independent molecules arises from "up-or-down" folding of the naphthaldiminato ligand with respect to the coordination plane, which creates right- (P) or left-handed (M) helical conformations. Overall, the combination of ligand chirality, ²⁰ chirality at metal and ligand folding gives rise to discrete metal helicates of preferred helicity in a selective way. Cyclic voltammograms (CV) show an oxidation wave at *ca*.1.30 V for [Ni(L)₂]/[Ni(L)₂]⁺ couple, while a reduction wave at *ca*. -0.35 V for [Ni(L)₂]/[Ni(L)₂]⁻ couple in acetonitrile.

Introduction

Chiral metal coordination complexes are the ²⁵ subject of continuous study due to their fascinating structures, and enormous potential applications such as molecular recognition, nonlinear optical materials, asymmetric catalysis and enantiomeric separation, and so on.^{1,2} One of the ³⁰ possible ways of generating enantiopure chiralat-metal complexes is the employment of chiral chelating ligands, which may then transfer their chirality to the metal centre(s) generating right-(Δ) or left-handed (Λ) helical structures in a

stereocontrolled way.³ Use of achiral chelating ligands usually results in a racemic mixture of left- and right-handed Δ/Λ -optical isomers.⁴ Of special interests in the context of supramolecular s chemistry are metal helicates, that is, metal complexes where one or more ligand "strands" wrap around one or more metal centre in a helical fashion.⁵ In tetrahedral or distorted square-planar complexes the metal-centered ¹⁰ chirality (Λ vs. Δ) can be induced with a C₂symmetric structure by the use of an asymmetric ligand A^B to give $M(A^B)_2$ complexes (cf. Scheme 1).^{6,7} An enantiomerically pure chelate ligand (R or S-A^AB) often leads to the 15 preferential formation of one diastereomer with absolute configurations of $\Lambda(R,R)$ or $\Delta(S,S)$, while racemic ligand gives both diastereomers {e.g. $\Lambda(R,R)$ and $\Delta(S,S)$ }.^{6,7,8,9}

Scheme 1. Definition of (a) Λ/Δ chirality at the metal centre and (b) dihedral angle θ quantifying the deviation from tetrahedral or square planar geometry.

20

25 We have recently given attention to the phenomenon of helicity (P vs. M) and induced metal-centered chirality (Λ vs. Δ) in the complexes formed by the enantiopure amino acids and Schiff base ligands with Rh(I),^{10,11} and ³⁰ Cu/Ni/Zn(II), respectively.^{12,13,14,15} The most noteworthy finding in our studies is that the achiral N-phenylglycinate ligand coordinates to the $[Rh(\eta^4-cod)(acetate)]_2$ and gives a racemic chiral [Rh(η^4 -cod)(*N*-phenylglycinate)] complex ³⁵ with the nitrogen atom becoming the stereogenic center upon metal coordination.^{10,11} The crystal structures reveal a case of two-fold spontaneous resolution of a racemic mixture into two homochiral helical enantiomers (helicates), $_{40}$ namely the right-(P) and left-handed (M) helical chain structure with the Sand *R-N*phenylglycinate, respectively. Later, we have reported some examples of induced chirality atmetal-center with preferential formation of Λ or $_{45}\Delta$ -M configuration in distorted square planar $M(N,O-chelate)_2$ (N,O-chelate = enantiopure Schiff base ligands; M = Cu, Ni, and Zn), which can be efficiently controlled by R- or S-chirality of the ligand.¹²⁻¹⁴ Similarly, induced chirality at-⁵⁰ metal-center in distorted square planar Cu/Zn(II) complexes with enantiopure or racemic amino alcohol based Schiff base ligands were reported.¹⁵ In particular, we have reported for the first time an example of induced chirality atss nickel-centre (Δ vs. Λ) in distorted octahedral, dinuclear μ -aqua-*tetrakis* {(*R* S)-N-1or

Dalton Transactions

(Ar)ethyl-salicylaldiminato}-di- Λ - or Δ -nickel(II).¹³

The present paper reports the results of syntheses, spectroscopy, excited-state s calculations and structural analyses of Z' = 2helical structures of $bis \{(R \text{ or } S)-N-1-(Ar)ethyl-$ 2-oxo-1-naphthaldiminato- $\kappa^2 N.O$ }nickel(II) {Ar = C_6H_5 , p-OMeC₆H₄, and p-BrC₆H₄}. The present complexes are structurally simpler than ¹⁰ the related octahedral dinuclear analogs¹³, however. the specific folding of naphthaldiminato ligands around the metal centre gives rise to structurally intriguing discrete metal helicates.

15 Results and discussion

The enantiopure Schiff base ligands, (R or S)-N-1-(Ar)ethyl-2-oxo-1-naphthaldimine (R or S-HL), react with nickel(II)acetate to provide the S)-N-1-(Ar)ethyl-2-oxo-1*bis*[{(*R* or ²⁰ naphthaldiminato- $\kappa^2 N, O$]nickel(II) complexes {Ar = C_6H_5 (Ni-*R*-L1; **1***R* or Ni-*S*-L1; **1***S*), *p*-OMeC₆H₄ (Ni-R-L2; **2**R or Ni-S-L2; **2**S), and p- BrC_6H_4 (Ni-*R*-L3; **3***R* or Ni-S-L3; **3***S*) (Scheme Vibrational spectra show the main 2). ²⁵ characteristic band at 1617-1604 cm⁻¹ for the ⁵⁰

vC=N stretching.^{12-16,17} ESI-MS show the parent ion peak at m/z 607 (1R or 1S) and 667 (2R or **2S**) for $[M+H]^+$ species, while EI-MS show this peak at m/z 764 (**3**R or **3**S) for $[M]^+$. The spectra ³⁰ further show several ions peaks for the $[M-HL]^+$, [HL or HL+H]⁺ and different fragmented ligand species (Table S1). ¹H NMR spectra (Figure S1) in CDCl₃ show a series of peaks expected for the C₂-symmetric diamagnetic four coordinated ³⁵ Ni(II)-complexes with square planar geometry Supporting (Experimental Section and Information).^{11,13,18,19,20} Notably. the imine (CHN) protons display large coordination shifts and appear as broad resonances above 11 ppm. ⁴⁰ The signal broadening, also seen at a smaller extent for other resonances, is probably due to solution paramagnetism. This is a well-known phenomenon for Ni(II) salicylideneaminatocomplexes with bulky N-substituents and has ⁴⁵ been explained with a fast equilibrium between a dominant singlet species and a minor triplet species triggered by geometrical distortion (toward a tetrahedral geometry) and/or molecular association.²¹

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

Scheme 2. Syntheses of the *bis*[{(*R* or *S*)-N-1-(Ar)ethyl-2-oxo-1-naphthaldiminato- $\kappa^2 N, O$ }]nickel(II).

Figure 1. UV-vis. and CD spectra of **1***R* (0.76 mM), **1***S* (0.79 mM) (left), and **3***R* (1.95 mM), **3***S* (1.96 mM) (right) in cyclohexane; cell path-length: 0.1 mm, 200–500 nm; 5 mm, 425–600 nm; 10 mm, 400–900 nm.

Electronic Spectra

⁵ UV-vis absorption and CD spectra of the complexes 1 and 3 measured in cyclohexane are shown in Figure 1 and summarized in Table 1. All absorption spectra show consistent similarities over the whole measured range of 10 200-900 nm. In the visible region, there is a weak broad band around 600 nm followed by three bands of increasing intensity between 380-480, 330-380 and around 310 nm, respectively. They are followed by two more intense bands at 15 250-300 and below 250 nm. The band around 600 nm is due to the superposition of several metal-centred transitions typical of the Ni²⁺ core. The next bands in the UV region (<480 nm) involve a complex combination of several 20 transitions, centred on both the metal and the ligands, as will be discussed below.

Electronic CD spectra of the enantiomeric couples 1R/1S and 3R/3S show the expected mirror-image relationship (Figure 1 and Table 1)

²⁵ in cyclohexane. CD spectra display a larger variation between the two compounds than the absorption spectra and also in comparison with the analogue Cu(II)-complexes.¹² In particular, in the visible range there is no distinctive feature
³⁰ immediately related to the ligand configuration for both 1 and 3. The only consistent signals are in the UV region, and they are (for *R*

configuration, Figure 1 and Table 1) the weak positive band between 400-450 nm, the stronger ³⁵ negative band at 300-330 nm, and the strong positive band below 220 nm.

We also measured solid-state CD spectra on crystalline samples of compound **1**, but found them not fully reproducible. Moreover, in the ⁴⁰ case of the analogous Cu complexes,¹² we demonstrated that solid-state CD spectra are dominated by inter-crystalline couplings and do not reflect in a simple way the molecular conformation.

45 Simulating the solution CD spectra of Ni complexes 1-3 by means of CD calculations is a laborious task because of the inherent complexity of the system²² and the uncertainty of the solution structures. Therefore. the work ⁵⁰ described in the following aimed mainly at establishing the relationship between the observed CD spectra and the chirality at both carbon centres and metal ion (if any), in analogy with our previous work on Cu analogues.¹² 55 Although the solid-state structures of 1R and 1S show only a faint chirality at the Ni atoms (see below), the situation in solution may in principle be different. The chirality at the metal centre is defined as shown in Scheme 1a, and the 60 distortion from an ideal tetrahedral or square-

planar geometry can be quantified by the dihedral angle θ between the two planes formed by the donor atoms with the metal atom, that is, N1–M–O1 and N2–M–O2 (Scheme 1b). Starting s from the X-ray structure of 1R, we investigated the solution conformation of this complex by means of a conformational search with molecular mechanics and DFT geometry optimizations at B3LYP/6-31G(d) level (see Computational ¹⁰ Section). The resulting most stable structure showed a small but detectable angle $\theta = -10.8^{\circ}$ corresponding to Λ -Ni-1R chirality. and resembled strongly molecule A found in the Xray (inset in Figure 2A); other conformations had 15 much higher energies and were neglected. Starting from the same complex, the chirality at the metal centre was inverted and the same conformational search/geometry optimization procedure was applied. The set of structures with $_{20}$ **\Delta-Ni-1***R* chirality thus obtained showed two lowenergy conformations, one (more stable) with θ = 15.0° and the second (less stable by 0.16) kcal/mol) with $\theta = 9.0^{\circ}$ (see Supporting Information). Interestingly, the lowest-energy Λ -25 Ni-1R structure was more stable by about 1.7 kcal/mol than the Δ -Ni-1*R* one. Thus, a small but non-negligible diastereomeric preference in favour of the Λ -Ni-1R isomer is predicted, similarly to what observed for the Cu ³⁰ analogues.¹² To confirm such finding, CD calculations were run with the TDDFT method²³ at B3LYP/TZVP level on the above described

(Figure 2). The most striking structures observation from Figure 2 is that the CD spectra $_{35}$ calculated for A-Ni-1R and A-Ni-1R are almost the mirror image of each other on a wide wavelength range. This demonstrates that the CD spectrum in solution is dominated by the metal chirality, this latter being in turn dictated by the 40 ligand chirality. Second, the CD spectrum calculated for Λ -Ni-1R is in reasonable agreement with the experimental one for compound 1R. As said above, a perfect agreement cannot be expected because of the ⁴⁵ system complexity and the very large number of transitions concurring to the spectrum (80 excited states were included in the TDDFT calculations, which are intrinsically poorly accurate for high-lying transitions).²⁴ The ⁵⁰ comparison between experimental and calculated CD spectra allows us to confirm that the complex obtained ligand *R*-L1 assumes а from predominant Λ -Ni-1R configuration in solution, and the same is inferred for the remaining 55 ligands.

We have already stressed^{12,13} that for d-metal complexes containing chromophoric ligands rich of transitions, such as compounds **1-3**, a straight forward assignment of electronic spectra in terms ⁶⁰ of purely metal- or ligand-centred transitions is not possible. On the basis of orbital and population analysis on compound **1***R* at B3LYP/TZVP level, the simplified assignment shown in Table 2 was reached, concerning only ⁶⁵ the transitions most contributing to the CD spectrum above 300 nm. It is important to notice, however, that every transition derives from many single excitations, and there is no clear separation between metal-centred and ligand⁵ centred transitions, because several metalcentred transitions occur deeply in the UV region of the spectrum.

¹⁰ **Table 1**. UV-vis. and CD spectral data of 1R/1S and 3R/3S in cyclohexane; cell path-length: 0.1 mm (200-500 nm); 5-10 mm (400-900 nm) at 20 °C.

Compounds	Spectra	Bands ^a
1 <i>R</i> /1 <i>S</i>	UV-vis.	588 (vw), 427 (m), 345 (s), 312 (s), 276 (vs), and 212 (vs) nm
3 <i>R</i> /3 <i>S</i>	UV-vis.	595 (vw), 425 (m), 348 (s), 312 (s), 277 (vs), and 220 (vs) nm
1 <i>R</i> /1 <i>S</i>	CD	590 (+/-, w), 505 (-/+, vw), 460 (+/-, vw), 410 (+/-, w), 317 (-/+, s), 276 (-/+, s), 240 (+/-, s), and 210 (+/-, vs) nm
3R/3S	CD	660 (-/+, vw), 534 (+/-, w), 425 (+/-, s), 313 (-/+, s), 278 (+/-, vs), 256 (-/+, vs), 237 (+/-, m), and 213 (+/-, vs) nm

^avw = very weak, w = weak, m = medium, s = strong, vs = very strong.

¹⁵ Figure 2. CD spectra calculated at the B3LYP/TZVP//B3LYP/6-31G(d) level for the two diastereomers **Λ-Ni-1***R* (left, conformation shown in the inset) and **Δ-Ni-1***R* (right, two conformations shown in Figure S3). Gaussian band shape with exponential bandwidth $\sigma = 0.2$ eV.

Exc. state	Calculated transition wavelength (nm)	Observed CD band (maximum wavelength, nm, and sign)	Assignment ^(a)
1	660	590 (+)	M-M
3	514		M-M, L-M, CT
4	498	505 (-)	CT, M-M
5	428		M-M
6	414	460 (+)	M-M
7+8	359		M-M
9	344	410 (+)	M-M, L-M
10	336		M-M, L-M
13	322	217()	M-M
15	309	317(-)	M-L

Table 2. Main transitions calculated for the Λ -Ni-1R complex with B3LYP/TZVP//B3LYP/6-31G(d), contribution to the first observed CD bands, and simplified assignment.

^(a) Legend: M-M, metal d-d; L-M, ligand-to-metal; M-L, metal-to-ligand; CT, charge transfer; in order of importance.

s Solid state structural studies

Single crystal X-ray structure determinations for Ni-R-L1 (1R) and Ni-S-L1 (1S) show that there are two symmetry-independent molecules in each asymmetric unit, that is, molecule A with ¹⁰ Ni1 and molecule **B** with Ni2 centre in each unit. In each structure, two bidentate $N^{\wedge}O$ -chelate Schiff base ligands coordinate to the nickel atom with a square planar N_2O_2 -coordination sphere around the metal atom (Figure 3). The two 15 nitrogen atoms (and subsequently the two oxygen atoms) are *trans* positioned. The Ni–O/N bond lengths and O-Ni-N bond angles are listed in Table 3 and are as expected from analogous Ni(II)-Schiff base complexes.^{8,13} Despite the ²⁰ presence of aromatic rings in the complexes Ni-R-L1 (1R) and Ni-S-L1 (1S), there are no detectable π - π interactions²⁵ but intermolecular

C-H··· π contacts²⁶ are evident in the packings; a detailed analysis is reported in the Supporting ²⁵ Information.

Two symmetry-independent Ni-Schiff base molecules or, more correctly, two identical chemical formula units were found here in the structural asymmetric unit²⁷ to give a Z' = 2³⁰ structure. The definition of Z' is that it refers to the number of formula units in the unit cell (here 4) divided by the number of independent general positions (here 2).²⁸ Different reasons can lead to such Z' > 1 structures²⁹ : a structure stuck en-³⁵ route to a more stable form,²⁸ that is, a crystal "on the way", 27,30,31,32 or strong and special supramolecular hydrogen bonding) (e.g. interactions between the two (or more) symmetry-independent units.^{33, 34,35,36,37,38} A high $_{40}$ Z' is also obtained when the molecule has different equi-energetic conformations, with

these conformations co-existing in the $_{5}$ difficult crystal.^{39,40} The chance for Z' > 1 is higher in centrosy non-centrosymmetric space groups with (enantiopure) chiral molecules which have

⁵ difficulties to pack efficiently in the absence of centrosymmetry.⁴¹

Figure 3. Structures of the two symmetry-independent molecules of the enantiomeric couple Ni-*R*-L1 (1*R*) (above) and Ni-*S*-L1 (1*S*) (below). Thermal ellipsoids are at the 70% level. See Table 3 for bond lengths and angles.

Ni- <i>R</i> -L1 (1 <i>R</i>)		Ni-S-L1 (1S) 1S (A)					
1 <i>R</i> (A)							
Ni(1)-O(1)	1.848(2)	O(1)-Ni(1)-O(2)	172.73(10)	Ni(1)-O(1)	1.840(3)	O(1)-Ni(1)-O(2)	172.94(8)
Ni(1)-O(2)	1.850(2)	O(1)-Ni(1)-N(1)	92.16(11)	Ni(1)-O(2)	1.835(2)	O(1)-Ni(1)-N(1)	91.94(10)
Ni(1)-N(1)	1.908(3)	O(2)-Ni(1)-N(1)	88.35(11)	Ni(1)-N(1)	1.909(3)	O(2)-Ni(1)-N(1)	88.44(10)
Ni(1)-N(2)	1.914(3)	O(1)-Ni(1)-N(2)	88.39(11)	Ni(1)-N(2)	1.901(3)	O(1)-Ni(1)-N(2)	88.43(10)
		O(2)-Ni(1)-N(2)	92.01(11)			O(2)-Ni(1)-N(2)	92.08(10)
		N(1)-Ni(1)-N(2)	172.85(11)			N(1)-Ni(1)-N(2)	172.72(12)
	1	1 <i>R</i> (B)	1			1 <i>S</i> (B)	
Ni(2)-O(3)	1.818(2)	O(3)-Ni(2)-O(4)	179.39(12)	Ni(2)-O(3)	1.817(3)	O(3)-Ni(2)-O(4)	179.33(10)
Ni(2)-O(4)	1.828(2)	O(3)-Ni(2)-N(3)	92.08(11)	Ni(2)-O(4)	1.823(3)	O(3)-Ni(2)-N(3)	92.01(10)
Ni(2)-N(3)	1.946(3)	O(4)-Ni(2)-N(3)	88.52(11)	Ni(2)-N(3)	1.935(3)	O(4)-Ni(2)-N(3)	88.6(1)
Ni(2)-N(4)	1.963(3)	O(3)-Ni(2)-N(4)	88.74(11)	Ni(2)-N(4)	1.953(3)	O(3)-Ni(2)-N(4)	88.8(1)
		O(4)-Ni(2)-N(4)	90.66(11)			O(4)-Ni(2)-N(4)	90.6(1)
		N(3)-Ni(2)-N(4)	178.02(12)			N(3)-Ni(2)-N(4)	178.11(11)

^s **Table 3**. Selected bond lengths (Å) and angles (°) in the compounds.^a

^a **A** and **B** refer to the two symmetry independent molecules in each of the structure.

Scheme 3. Schematic illustration of the non-planar, skewed *bis*(naphthaldiminato) N_2O_2 ligand arrangement around the nearly square-planar coordinated Ni atom in 1*R* (left) and 1*S* (right) and definition of the folding angle ϕ . The thick black line depicts the *P*- or *M*-helical arrangement from the ^s envelope conformation in the NiNOC₃ chelate ring together with the curvature in the naphthaldiminato ligand. The round brackets indicated a faint chirality at Ni.

Figure 4. Overlay of the two symmetry independent molecules in Ni-*R*-L1 (1*R*) (left) and Ni-*S*-L1 (1*S*) (right). The Ni1 molecule **A** is shown in green, the Ni2 molecule **B** in red. The five atoms NiN₂O₂ ¹⁰ were pairwise specified to orient the overlay which was managed with the "Structure overlay" option in Mercury 3.5.1 (copyright CCDC 2001-2014, http://www.ccdc.cam.ac.uk/mercury/).

Figure 5. Sketch of the interconversion process between Λ -Ni-1*R* (*M*-helical) and Δ -Ni-1*R* (*P*-helical) structures in solution, passing through a planar intermediate (devoid of metal chirality and helicity). ⁵ Geometry optimizations and energies calculated at B3LYP/ 6-31G(d) level; the middle structure was optimized by constraining the Ni(bis-naphthaldiminato) moiety into a planar conformation. Hydrogen atoms are omitted for clarity.

Table 4. Dihedral ^a and folding angles	² for the two symmetry independent molecules (A, B) in Ni- <i>R</i> -
¹ L1 (1 <i>R</i>) and Ni- <i>S</i> -L1 (1 <i>S</i>), respectively.	

Complexes (molecule)	chirality at Ni ^{<i>a</i>}	$\theta(^{\circ})^{b}$ exp.	$\theta(^{\circ})^{b}$ calc. ^c	φ(ex	$^{o})^{d}$ xp.	ϕ (°) ^d calc. ^c
1 <i>R</i> (A, Ni1)	Λ	10.0(1)	10.8	20.6(1)	21.8(10)	25.3
1 <i>R</i> (B, Ni2)	(Λ)	1.80(9)	Λ	5.1(1)	16.1(1)	Λ
1 <i>S</i> (A , Ni1)	Δ	9.98(9)	10.8	20.8(1)	21.8(1)	25.3
1 <i>S</i> (B, Ni2)	(Δ)	1.73(9)	Δ	5.28(8)	16.4(1)	Δ

^{*a*} The round brackets indicated a faint chirality at Ni.

^{*b*} Dihedral angle θ between the two planes formed by the donor atoms with the metal atom (cf. Scheme 1), that is, N1–Ni–O1 and N2–Ni–O2 (molecule **A**) and respective numbering in molecule **B**.

^{*c*} By DFT geometry optimizations at B3LYP/6-31G(d) level; the calculated chirality at Ni is also given.

¹⁵ ^{*d*} Folding angle defined as the angle between O-Ni-N and O-C-C-C-N (cf. Scheme 3) with all these atoms forming the six-membered NiNOC₃ chelate ring. Each chelate ring has a folding angle, hence, there are two independent folding angles in a molecule.

Different from our previous studies on four-²⁰ coordinated Cu(II) with asymmetric (A^B) and chiral Schiff base ligands^{12,42} the distortion from square-planar, as assessed by the dihedral angle θ (cf. Scheme 1b) at the Ni atoms in **1***R* and **1***S*

has become very small. The dihedral angle θ is only 10° for molecules **A** and less than 2° for molecules **B**. The experimental angle of about 10° agrees well with the angle of 10.8° from a ³ DFT geometry optimizations at B3LYP/6-31G(d) level for Λ -Ni-*R*-L1 (1*R*) (see above). This difference in dihedral angle θ could explain the formation of the two independent molecules **A** and **B**. The two molecules **A** and **B**, after relaxation of the hydrogen atoms at B3LYP/6-31G(d) level, have different DFT energies, molecule **A** being more stable by 1.8 kcal/mol. This is similar to the difference found between fully optimized Λ - and Λ -Ni-1*R* structures ¹⁵ described above.

Yet, the conformational difference between the two symmetry independent molecules A and B is better explained with the help of Scheme 3. Each Ni-naphthaldiminato half does not assume a ²⁰ planar arrangement. Instead, each six-membered NiNOC₃ chelate ring is folded "up-or-down" hinging on the N---O vector to assume an envelope conformation.43 In each molecule A and **B**, the folding of the two chelate rings occurs $_{25}$ to the same side of the Ni N_2O_2 plane. The folding angles ϕ , that is, the angles defined by NiN_2O_2 and each the plane of the naphthaldiminato planes (Scheme 3), are listed in Table 4. The folding in molecule A with Ni1 is ³⁰ more pronounced with very similar folding angles of $\phi \sim 21^\circ$ than in molecule **B** with Ni2 which has smaller and two different folding angles of 5° and 16°. An overlay of both molecules in each structure illustrates the ³⁵ different folding direction (Figure 4). The folding angles measured for DFT-optimized structures are also listed in Table 4, and they agree well with the values measured for molecule **A** in the crystals.

⁴⁰ The combination of the folding in the NiNOC₃ intrinsic ring, the curvature in the naphthaldiminato ligand, and the concurrence of these two phenomena for the two ligands, creates an overall complex conformation around the ⁴⁵ nickel atom which has a helical appearance. The helicity can be differentiated into right-handed (P) or left-handed (M) as shown in Scheme 3. With their different "up-or-down" folding the two symmetry-independent molecules A and B ⁵⁰ found in the crystal assume a different helicity. For example, in Ni-R-L1 (1R) the molecule with Ni1 is *M*-helical, the molecule with Ni2 is *P*helical, and vice versa in Ni-S-L1 (1S) (Scheme 3). This P- or M-conformational helicity is in ss addition to the Λ - or Δ -metal-centred chirality. Noteworthy, the left-handed *M*-conformation with the large folding angle ϕ of about 21° goes together with the more distinct dihedral angle θ of 10° for the clearly A-chiral molecule A in **1***R* $_{60}$ (and conversely right-handed P with the clearly Δ -chiral molecule **A** in **1**S). Whereas the righthanded P-conformation with the smaller and uneven folding angles ϕ of 5° and 16° combine with the barely recognizable Λ -chiral molecule **B**

in **1***R* which has only a very small dihedral angle $\theta < 2^{\circ}$, that is, essentially square planar (and the other way around M with the barely recognizable Δ -chiral molecule **B** in **1***S*) (see Scheme 3). The s two angles θ and ϕ , describing together the deviation from an ideal square planar metal geometry with all-planar naphthaldiminato ligands, appear to be correlated with each other. The essentially square-planar Ni configuration in ¹⁰ the **B** molecules in **1***R* and **1***S* may be seen as an effort of the P- (in 1R) and M-configuration (in **1S**) to invert the Ni configuration. Evidently P prefers to have Δ at Ni and M to have Λ . This is confirmed by DFT results and by CD 15 spectroscopy. Our DFT structures (see Electronic Spectra section and Table 4) show a strong prevalence for the $\Delta(Ni)/P$ (or $\Lambda(Ni)/M$) combination. The DFT lowest energy structure has large dihedral θ and folding ϕ angles, with ²⁰ absolute values very similar to those measured for molecule A. In turn, solution CD spectra and CD calculations give clear evidence that the Λ -(in 1*R*) and Δ -configuration (in 1*S*) is mostly retained (although it could partly invert upon rearrangement).^{14,41} Further 25 conformational studies are necessary to detect and quantify any inversion phenomenon occurring in solution. Possibly, the P- and M-conformational helicities may invert dynamically in solution akin to a ³⁰ bird's flap with its wings, as sketched in Figure 5. The structure with an all-planar Ni(bisnaphthaldiminato) moiety (in the middle of

Figure 5), though not necessarily coinciding with the real transition state, offers an estimate of the ³⁵ conversion barrier (around 3.5 kcal/mol) between *P*- and *M*-conformational isomers of compound *IR*, allowing for a very fast process. Very likely, the unfavorable *P* (in **1***R*) and *M*-configuration (in **1***S*) in the crystals inverts upon dissolution. It ⁴⁰ should be noted that the chelate-ring folding, when idealized, keeps the C_2 -symmetry of the molecule.

Figure 6. DSC analyzes curves of heating and cooling for the compounds.

Thermally induced structural phase transformation

Thermally induced phase structural transformation has been reported for transition 50 metal-chiral *N*.*O*-chelates complexes. accompanying a change from distorted square planar/tetrahedral at the solid state to regular square planar/tetrahedral geometry at isotropic phase.^{8a-d,12,13,15,21,44,45,46} liquid Differential 55 Scanning Calorimetry (DSC) has successfully been used to study the phenomenon. Thus DSC heating curves of the present compounds show an exothermic peak at *ca*. 190 °C for **1***S*, **3***R*, **3***S* and 141 °C for **2***R* (Figure 6 and Table 5), while cooling curves show no corresponding peak on the reverse direction. The results demonstrate a thermally induced irreversible phase transformation as reported for the analogous Ni(II)-*N*,*O*-chelate complexes.^{8c-d,13}

Table 5. Thermally induced structural phasetransformation data for the compounds.

Compunds (physical appearence)	Peaks (T/°C)	$\Delta H (kJ mol^{-1})$
1 <i>S</i> (dark brown block shaped crystal)	190.1 ^a	-33.01
2 <i>R</i> (greenish microcrystals)	140.8	-28.03
3 <i>R</i> (greenish microcrystals)	190.2	-36.34
3S (greenish microcrystals)	190.7	-42.62

 ¹⁰ ^a Reported value is 183°C for the analogous [(*R*)-N-1-(phenyl)ethyl-X-salicylaldiminato]Ni(II).
 Error! Bookmark ot defined.d

Cyclic voltammetry

Cyclic voltammograms (CV) of the free Schiff ¹⁵ base (S-HL1) and compounds **1S** and **3R** were recorded at the range of -0.50 to 1.50 V *versus* Ag/AgCl in acetonitrile using different switching potentials at varying scan rates, respectively (Figure 7 and Supporting Information). The free ²⁰ Schiff base solution shows three anodic waves at *ca.* $E_{a1} = 0.73$, $E_{a2} = 1.00$ and $E_{a3} = 1.20$ V (Figure 7a). Among them the former two waves are also common in the electrolyte (TBAP) solution (Figure 7a, dashed line), which shows ²⁵ corresponding reduction waves at *ca.* $E_{c1} = 0.70$

due to the oxidation of the free Schiff base ligand. Voltammograms of 1S, 2R and 3R (Figure 7b and Supporting Information) are 30 identical and show an additional anodic wave at ca.1.30 V (E_{a4}), which becomes more significant at higher scan rate, and is associated with the oxidation wave for the $[Ni(L)_2]/[Ni(L)_2]^+$ couple.^{47,48} However, the corresponding cathodic ³⁵ wave is not detected even at higher scan rates, because of the instability of the cationic species $([Ni(L)_2]^+)$ which undergo a rapid irreversible reaction to produce an electrode-inactive species.^{47a} The voltammograms in the cathodic $_{40}$ region (i.e., 0 to -0.50 V) show a reduction wave at ca. -0.35 V (E_c) for $[Ni(L)_2]/[Ni(L)_2]^-$ couple (Figure 7b and Supporting Information), which overlaps with the decomposition peak of the electrolyte (TBAP) at higher scan rates.^{48a} In fact, 45 a corresponding poor oxidation wave is seen in the reverse scan, which undergoes rapid chemical transformation due to instability of the $[Ni(L)_2]^-$ species. Analysis of voltammograms at varying scan rates (0.02 to 0.40 V/s)⁵⁰ demonstrates a linear relationship between the anodic peak current (I_a) at ca.1.30 V and the square root of the scan rate ($v^{1/2}$, Figure 8), indicating a diffusion-controlled electrochemical process.

and $E_{c2} = 0.90$ V. Hence, the latter wave (E_{a3}) is

Figure 8. Change of anodic current (I_a) at *ca*.1.30 V *vs*. square root of the scan rate, ($v^{1/2}$).

10 Conclusions

We have reported the synthesis, characterization, X-ray structure, and molecular modeling study of a series of chiral *bis*(naphthaldiminato)Ni(II) complexes 1-3 with distorted square planar ¹⁵ geometry around the metal ion. These complexes show a remarkable stereochemistry because the ligand configuration is selectively and concurrently transferred to the metal chirality and to the conformational helicity of the ligands. $_{20}$ Thus, a ligand with R configuration favors the formation of a complex with Λ chirality at Ni and M ligand helicity. The stereochemical behavior of our series of complexes may be of interest in different fields based on the multiplication and 25 amplification of chirality. First, the chiral folding of the naphthaldiminato moieties imparts the complexes a discrete helicity which may be the starting point to obtain supramolecular helicates in a very selective and efficient way.⁵ Second, the

complexes are possibly expected to induce high twisting powers when used as dopants for cholesteric liquid crystals.⁴⁹

Experimental section

s IR-spectra were recorded on a Nicolet iS10 spectrometer as KBr disc at ambient temperature. UV-Vis. spectra were obtained with Shimadzu UV 1800 spectrophotometer in cyclohexane at 25 °C. Elemental analyses were done on a Vario EL ¹⁰ instrument from Elementaranalysensysteme. An EpsilonTM Instruments (BASi) electrochemical analyzer was used for cyclic voltammetry (CV) experiment containing tetra-N-butyl-ammoniumhexaflorophosphate (TBAP) as supporting 15 electrolyte in acetonitrile at 25 °C. The threeelectrode measurement was carried out with a platinum disc working electrode, a platinum wire auxiliary electrode and Ag/AgCl reference electrode. The solution containing the compounds ²⁰ and TBAP was deoxygenated for 10 minutes by passing nitrogen gas prior to run the experiments. CD spectra were obtained with JASCO Spectropolarimeter (J715) in cyclohexane on 2-2.5 mM samples. For each solution sample, three 25 distinct spectra were recorded using cells with different path-length (0.1 mm, 5 mm and 10 mm) to cover the whole spectral range from 190-200 to 900 nm by keeping the absorbance below 1.5 AU. direction and by flipping the disc with respect to ³⁰ the vertical, to check the presence of artifacts. H-NMR spectra were run on a Bruker Avance DPX 400 Spectrometer (operating at 400 MHz, ¹H)in

CDCl₃ (δ 7.25 ppm) at 20 °C. EI-MS: Thermo-Finnigan TSQ 700. Isotopic distribution patterns ³⁵ for ^{58/60}Ni (in **1***R*/*S* and **2***R*/*S*) or combined ^{63/65}Ni+^{79/81}Br (in **3***R*/*S*) containing ions are clearly visible in the mass spectra.

General procedure to synthesise the complexes

⁴⁰ Two equivalents of enantiopure (R or S)-N-1- (C_6H_5) ethyl-2-oxo-1-naphthaldimine (R or S-HL1) (341mg, 1.24mmol) dissolved in 5mL methanol was added into 5mL hot methanolic solution $Ni(O_2CCH_3)_2 \cdot 4H_2O$ of (154mg. 45 0.62mmol) and stirred the solution for 6-8h at room temperature. Color changes from light green to greenish brown in clear solution. Reduced the volume of solvent to ca.50%, and left standing this clear solution for crystallization 50 via slow solvent evaporation of solvent at room temperature. Dark brown blocked shape crystals of Ni-R-L1 (1R) or Ni-S-L1 (1S), suitable for Xray measurement, were obtained within 5-6d. The crystals were separated, washed with methanol 55 (2x2mL), and dried in air for 3-4 d.The same procedure was followed for syntheses of Ni-R-L2 (2R) or Ni-S-L2(2S) using the Schiff bases of (R S)-N-1-(p-OMeC₆H₄)ethyl-2-oxo-1or naphthaldimine (R or S-HL2), and obtained ⁶⁰ greenish microcrystals after 5-6 d, not suitable for X-ray measurement. For syntheses of Ni-R-L3 (3R) or Ni-S-L3 (3S) using (R or S)-N-1-(p- BrC_6H_4)ethyl-2-oxo-1-naphthaldimine (R or S-HL3), green precipitate was formed within 30 65 min. of stirring the solution. Continued to stirring

55

for 6-8 h, and left standing this solution for 8-10h until complete precipitation. Filtered off, and washed the precipitate with methanol (2x2mL). Green microcrystals of Ni-*R*-L3 (**3***R*) or Ni-*S*-L3 ⁵ (**3***S*) were obtained after drying the sample in air for 3-4 d.

 $Bis\{(R)-N-1-(C_6H_5)ethyl-2-oxo-1-$

naphthaldiminato- $\kappa^2 N, O$ }nickel(II) (Ni-*R*-L1; **10** 1*R*). Dark brown blocked shaped crystals. Yield 275mg (73%). – IR (KBr, cm⁻¹): ν = 3057, 3027, 2971w (H-C), 1617, 1605vs (C=N), and1541s (C=C). – ¹H NMR (400 MHz, CDCl₃): δ = 1.97 (d, *J* = 6.5Hz, 6H, C*H*₃), 6.64 (d, *J* = 9.2Hz, 2H), **1**5 6.78 (t, *J* = 7.4Hz, 2H), 7.05 (d, *J* = 8.4Hz, 2H), 7.34 (d, *J* = 8.4Hz, 4H), 7.42 (t, *J* = 7.4Hz, 4H), 7.60 (m, 6H), 7.74 (d, *J* = 8.8Hz, 2H), and 11.05 (s, 2H, C*H*N). – ESI-MS: 607 (30) [*M*+H]⁺, 331 (58) [*M*-HL1]⁺, 228 (100) [C₁₀H₆(CHNH)(O)Ni] ²⁰ and 105 (33) [CH(C₆H₅)(CH₃)]⁺. – C₃₈H₃₂N₂O₂Ni (607.40): calcd. C 75.14, H 5.31, N 4.61; found C 75.35, H 5.04, N 4.36.

 $Bis\{(S)-N-1-(C_6H_5)ethyl-2-oxo-1-$

²⁵ naphthaldiminato- $\kappa^2 N,O$ } nickel(II) (Ni-*S*-L1; 1*S*). Dark brown blocked shaped crystals. Yield 260 mg (67%). – IR (KBr, cm⁻¹): v = 3055, 3032, 2970w (H-C), 1616, 1605vs (C=N), and 1540s (C=C). – ¹H NMR (400 MHz, CDCl₃): δ = 1.97 ³⁰ (d, *J* = 6.5Hz, 6H, C*H*₃), 6.62 (d, *J* = 9.2Hz, 2H), 6.76 (t, *J* = 7.4Hz, 2H), 7.05 (d, *J* = 8.4Hz, 2H), 7.32 (d, *J* = 8.4Hz, 4H), 7.41 (t, *J* = 7.4Hz, 4H),

7.59 (m, 6H), 7.72 (d, J = 8.8Hz, 2H), and 11.02 (br, 2H). – ESI-MS: 607 (20) $[M+H]^+$, 331 (45) ³⁵ $[M-HL1]^+$, 228 (100) $[C_{10}H_6(CHNH)(O)Ni]$ and 105 (25) $[CH(C_6H_5)(CH_3)]^+$. – $C_{38}H_{32}N_2O_2Ni \cdot H_2O$ (625.41): calcd. C 72.98, H 5.48, N 4.48; found C 71.46, H 4.86, N 4.34.

 $_{40}$ Bis {(R)-N-1-(p-OMeC₆H₄)ethyl-2-oxo-1naphthaldiminato- $\kappa^2 N, O$ nickel(II) (Ni-*R*-L2; 2R). Greenish microcrystals. Yield 300mg (72%). - IR (KBr, cm⁻¹): v = 3052, 3043w (H-Ar), 1624, 1605vs (C=N), and 1541s (C=C). - ¹H NMR (400 ⁴⁵ MHz, CDCl₃): $\delta = 2.01$ (d, J = 6.5Hz, 6H, CH₃), 3.83 (s, 6H, OC H_3), 6.56 (d, J = 7.2Hz, 2H), 6.96 (m, 6H), 7.09 (d, J = 8.4Hz, 2H), 7.36 (d, J =8.4Hz, 2H), 7.56 (d, J = 7.4Hz, 4H), 7.61 (d, J =8.4Hz, 2H), 7.88 (d, J = 8.8Hz, 2H), and 12.81 $_{50}$ (br, 2H). – ESI-MS: 667 (15) $[M+H]^+$, 306 (10) $[HL2+H]^+$, 135 (100) $[CH(CH_3)(C_6H_4OCH_3)]^+$ and 105 (15) [CH(C₆H₅)(CH₃)]⁺. - C₄₀H₃₆N₂O₄Ni (667.45): calcd. C 71.98, H 5.44, N 4.20; found C 71.32, H 5.29, N 4.12.

 $Bis\{(S)-N-1-(p-OMeC_6H_4)ethyl-2-oxo-1-$

naphthaldiminato- $\kappa^2 N, O$ } nickel(II) (Ni-S-L2; 2S). Greenish microcrystals: Yield 280 mg (68%). – IR (KBr, cm⁻¹): v = 3050, 3025w (H-⁶⁰ Ar), 1642, 1611vs (C=N), and 1541s (C=C). – ESI-MS: 667 (5) [*M*+H]⁺, 306 (10) [HL2+H]⁺, 135 (100) [CH(CH₃)(C₆H₄OCH₃)]⁺ and 105 (20) [CH(C₆H₅)(CH₃)]⁺. – C₄₀H₃₆N₂O₄Ni (667.45): calcd. C 71.98, H 5.44, N 4.20; found C 71.43, H 5.30, N 4.09.

 $Bis\{(R)-N-1-(p-BrC_6H_4)ethyl-2-oxo-1-$

s naphthaldiminato- $\kappa^2 N_{,O}$ nickel(II) (Ni-*R*-L3; **3***R***):** Greenish microcrystal. Yield 360mg (72%). - IR (KBr, cm⁻¹): v = 3051, 3027, 2973w (H-C), NMR (400 MHz, CDCl₃): $\delta = 1.94$ (d, J = 6.0Hz. $_{10}$ 6H, CH₃), 6.63 (d, J = 8.8Hz, 2H), 6.88 (d, J = 7.2Hz, 2H), 7.12 (t, J = 6.8Hz, 2H), 7.37 (d, J =7.4Hz, 4H), 7.55 (d, J = 8.4Hz, 6H), 7.67 (d, J =7.0Hz, 2H), 7.82 (d, J = 8.4Hz, 2H), and 11.27 (br, 2H). $- C_{38}H_{30}N_2O_2Br_2Ni\cdot 2H_2O$ (801.24): 15 calcd. C 56.96, H 4.28, N 3.50; found C 56.24, H 3.86, N 3.40.

 $Bis\{(S)-N-1-(p-BrC_6H_4)ethyl-2-oxo-1-$

naphthaldiminato- $\kappa^2 N, O$ }nickel(II) (Ni-S-L3; ²⁰ **3***S*). Greenish microcrystals. Yield 350 mg (70%). – IR (KBr. cm⁻¹): v = 3057, 3030, 2972w (H-C), 1616, 1605vs (C=N), and 1541s (C=C). -EI-MS (70 eV): m/z (%) = 764 (10) $[M]^+$, 411 (100) [*M*-HL3]⁺, 353 (30) [HL3]⁺, 229 (20) $_{25}$ [C₁₀H₆(O)(CHNH)Ni+H]⁺, 183 (35) $[C_6H_4(Br)(CHCH_3)]^+$, 170 (60) $[C_{10}H_6(O)(CHNH)]^+$, and 104 (60) $[CH_3CHC_6H_5-$ H]⁺ (isotopic distribution pattern resulting from combination of ^{58/60}Ni+^{79/81}Br containing ions are ³⁰ clearly visible following the peaks at 764. 411. 229 while for ^{79/81}Br containing ions at 353, and 183). $-C_{38}H_{30}N_2O_2Br_2Ni\cdot 2H_2O$ (801.24): calcd.

C 56.96, H 4.28, N 3.50; found C 56.04, H 3.66, N 3.42).

35

X-ray crystallography

Single-crystals of enantiomeric pair Ni-R-L1 (1R) and Ni-S-L1 (1S) were carefully selected under a polarizing microscope and mounted on a 1616, 1607vs (C=N), and 1541s (C=C). - ¹H 40 loop. Data collection: Bruker APEX II CCD diffractometer with graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å) at 203(2) K; ω -scans (see Table 6). Data collection and cell refinement with APEX2,⁵⁰ data reduction with ⁴⁵ SAINT (Bruker).⁵¹ Structure analysis and refinement: The structures were solved by direct methods (SHELXS-97),⁵² refinement was done by full-matrix least squares on F^2 using the SHELXL-97 program suite,⁵¹ empirical (multi-⁵⁰ scan) absorption correction with SADABS (Bruker).⁵³ All non-hydrogen positions were refined with anisotropic temperature factors. Hydrogen atoms for aromatic CH, aliphatic or olefinic CH, CH₂ and OH groups were ss positioned geometrically (C–H = 0.94 Å for aromatic CH, C-H = 0.94 Å for olefinic CH, 0.99 for aliphatic CH and 0.97 Å for CH₃,) and refined using a riding model (AFIX 43 for aromatic CH, AFIX 13 for aliphatic CH, AFIX $_{60}$ 137 for CH₃), with U_{iso}(H) = 1.2U_{eq}(CH, CH₂) and $U_{iso}(H) = 1.5U_{eq}(CH_3)$. Details of the X-ray structure determinations and refinements are provided in Table 6. Graphics were drawn with DIAMOND (Version 3.2).³⁸ Computations on the

supramolecular interactions were carried out with PLATON for Windows.⁴¹ The structural data for this paper has been deposited with the Cambridge Crystallographic Data Center 5 (CCDC-numbers 1405162-1405163). These data can be obtained free of charge via www.ccdc.cam.ac.uk/data request/cif.

Computational section

searches Conformational and geometry ¹⁰ optimizations were run with Spartan'14 (Wave function, Inc. Irvine, CA). Excited-state CD calculations were run with Gaussian09.50 Initial structures were generated starting from the available X-ray structure of Λ -Ni-1*R* complex. 15 An initial structure with opposite configuration at the metal, Δ -Ni-1*R*, was obtained by mirror inversion of the whole complex, followed by manual inversion of the carbon chirality centers only. Conformational searches were run with ²⁰ molecular mechanics, using the Molecular Merck force field (MMFF). The geometry around the metal was kept fixed by constraining the O-Ni and N-Ni bond lengths and the O-Ni-O and N-Ni-N bond angles at their respective X-ray

²⁵ values. All the remaining rotatable bonds were included in the conformational search (i.e., varied systematically) and optimized with MMFF. All structures thus obtained were fully re-optimized with DFT using B3LYP functional and 6-31G(d) ³⁰ basis set on all atoms.⁵¹ Excited state calculations were run with the TDDFT method. A preliminary set of calculations was run to test the performance of various DFT functionals and basis sets, including a limited number of excited 35 states (roots). The following functionals were tested: B3LYP, CAM-B3LYP, M06, PBE1PBE, wB97X-D and the two basis sets SVP and TZVP.⁵⁰ Final calculations including 80 roots were run with the B3LYP/TZVP combination. ⁴⁰ The spectra were generated using the program SpecDis⁵² by applying a Gaussian band shape with 0.2 eV exponential half-width. Rotational strengths calculated with the dipole-length gauge were employed, the differences with dipole-45 velocity values being negligible for most transitions.

Table 6. Crystal data and structure refinement for the compounds.

·	Ni- <i>R</i> -L1 (1 <i>R</i>)	Ni-S-L1 (1S)
Empirical formula	C ₃₈ H ₃₂ N ₂ O ₂ Ni	C ₃₈ H ₃₂ N ₂ O ₂ Ni
$M / \operatorname{g} \operatorname{mol}^{-1}$	607.37	607.37
Crystal size / mm ³	0.072 x 0.072 x 0.067	0.56 × 0.36 × 0.11
Temperature / K	95	100
θ range / °(completeness)	1.97-27.50 (99.8%)	1.66-25.23 (99.1%)
h; k; l range	-8,12; -15, 19; ±26	±11; ±18; ±24
Crystal system	monoclinic	monoclinic
Space group	<i>P</i> 2 ₁ (no. 4)	P 2 ₁ (no. 4)
<i>a</i> /Å	9.5282(16)	9.5328(9)
b /Å	15.355(3)	15.2970(16)
c /Å	20.655(4)	20.560(2)
eta /°	90.146(7)	90.192(6)
$V/\text{\AA}^3$	3021.93(10)	2998.1(5)
$Z/D_{\text{calc}}(\text{g cm}^{-3})$	4/1.335	4/1.346
μ (Mo K α) / mm ⁻¹	0.679	0.685
F(000)	1272	1272
Max./min. transmission	0.956/0.953	0.700/0.928
Reflections collected	28227	25081
Independent reflect. (R_{int})	12217 (0.0617)	10664 (0.0573)
Data / restraints / parameters	12217 / 13 / 779	10664/1/779
Max. / min. $\Delta \rho$ / e.Å ^{-3 a}	0.688/-0.948	0.394/-0.661
$R1/wR2 [I > 2\sigma(I)]^{b}$	0.0494/ 0.0944	0.0384/0.0922
R1/wR2 (all data) ^b	0.0678/ 0.1016	0.0438/0.0945
Goodness-of-fit on F^{2c}	0.991	1.006
Flack parameter ^d	0.008(10)	0.040(8)

^a Largest difference peak and hole. ${}^{b}R_{1} = [\Sigma(||F_{o}| - |F_{c}||)/\Sigma |F_{o}|]; wR_{2} = [\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}]/\Sigma [w(F_{o}^{2})^{2}]]^{1/2}.$ c Goodness-of-fit = $[\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}]/(n-p)]^{1/2}.$ d Absolute structure parameter.²⁵

Acknowledgements

We acknowledge the financial support from the ⁵ Ministry of Science and Technology (MOST) under the project 2012/13, Dhaka, Bangladesh. We acknowledge the "Wazed Miah Science Research Centre" at Jahangirnagar University, Dhaka, Bangladesh for obtaining CV and ¹⁰ elemental data. G.P. thanks Prof. Fabio Marchetti and Dr. Francesco Zinna for useful discussions.

Notes and references

^a Department of Chemistry, Jahangirnagar University,
 ¹⁵ Dhaka-1342, Bangladesh. Email: enamullah@juniv.edu
 ^b Department of Chemistry, University of Pisa, via Moruzzi
 13, 56124 Pisa Italy. Email: gennaro.pescitelli@unipi.it
 ^c Institut für Anorganische Chemie und Strukturchemie,
 Universität Düsseldorf, Universitätsstr. 1, D-40225
 ²⁰ Düsseldorf, Email: janiak@uni-duesseldorf.de

[†] Electronic Supplementary Information (ESI[†]) available:
 ESI-MS data, ¹H-NMR spectra and data, Cyclic voltammograms, Analysis of supramolecular interactions, and CIF files reported in this paper. This material is
 ²⁵ available free of charge *via* the Internet at http://pubs.acs.org.

- 1 (a) J. D. Watson and F. H. C. Crick, Nature, 1953, 171, 737; (b) T. Nakano and Y. Okamoto, Chem. Rev., 2001, 101, 4013; (c) L. Pauling, R. B. Corey and H. R. Branson, Proc.Natl. Acad. Sci. U. S. A., 1951, 37, 205; (d) N. Chen, M-X. Li, P. Yang, X. He, M. Shao and S-R. Zhu, Cryst. Growth Des., 2013, 13, 2650; (e) Z. Chen, S. Qin, D. Liu, Y. Shen and F. Liang, Cryst. Growth Des., 2013, 13, 3389; (f) W-W. He, J. Yang, Y. Yang, Y-Y. Liu and J-F. Ma, Dalton Trans., 2012, 41, 9737; (g) K. Kano and H. Hasegawa, J. Am. Chem. Soc., 2001, 123, 10616; (h) W-G. Lu, J-Z. Gu, L. Jiang, M-Y. Tan and T-B. Lu, Cryst. Growth Des., 2008, 8, 192; (i) L-L. Wen, D-B. Dang, C-Y. Duan, Y-Z. Li, Z-F. Tian and Q-J. Meng, Inorg. Chem., 2005, 44, 7161; (j) D-R. Xiao, E-B. Wang, H-Y. An, Y-G. Li, Z-M. Su and C-Y. Sun, Chem. Eur. J., 2006, 12, 6528; (k) Y. Cui, O. R. Evans, H. L. Ngo, P. S. White and W. Lin, Angew. Chem. Int. Ed., 2002, 41, 1159.
- 2 (a) H. Hou, X. Meng, Y. Song, Y. Fan, Y. Zhu,
 H. Lu, C. Du and W. Shao, *Inorg. Chem.*,
 2002, 41, 4068; (b) A. C. Kathalikkattil, K.
 K. Bisht, N. Aliaga-Alcalde and E. Suresh, *Cryst. Growth Des.*, 2011, 11, 1631; (c) S.
 Kitagawa, R. Kitaura and S-I. Noro, *Angew. Chem. Int. Ed.*, 2004, 43, 2334; (d) S. J. Lee,
 A. Hu and W. Lin, *J. Am. Chem. Soc.*, 2002,

- 124, 12948; (e) W. Lin, Z. Wang and L. Ma, *J. Am. Chem. Soc.*, 1999, 121, 11249; (f) X. Meng, Y. Song, H. Hou, Y. Fan, G. Li and Y. Zhu, *Inorg. Chem.*, 2003, 42, 1306; (g) J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon and K. Kim, *Nature*, 2000, 404, 982; (h) P. J. Deuss, R. den Heeten, W.Laan and P. C. J. Kamer, *Chem. Eur. J.*, 2011, 17, 4680; (i) J. Crassous, *Chem. Soc. Rev.* 2009, 38, 830.
- 3 (a) E. V. Anokhina and A. J. Jacobson, J. Am. Chem. Soc., 2004, 126, 3044; (b) S. P. Anthony and T. P. Radhakrishnan, Chem. Commun., 2004, 1058; (c) J. Heo, Y.-M. Jeon and C. A. Mirkin, J. Am. Chem. Soc., 2007, 129, 7712; (d) L. Jiang, X.-L. Feng, C.-Y. Su, X.-M. Chen and T.-B Lu, Inorg. Chem., 2007, 46, 2637; L. Jiang, T.-B. Lu and X.-L. Feng Inorg. Chem., 2005, 44, 7056; (e) L. Ohrstrom, K. Larsson, S. Borg and S. T. Norberg, Chem. Eur. J., 2001, 7, 4805; (f) A. Roth, D. Koth, M. Gottschaldt and W. Plass, Cryst. Growth Des., 2006, 6, 2655.
- 4 (a) C. S. Isfort, T. Kreickmann, T. Pape, R. Froehlich and F. E. Hahn, *Chem. Eur., J.* 2007, 13, 2344; (b) H-J. Kim, E. Lee, H-S. Park and M. Lee, *J. Am. Chem. Soc.*, 2007, 129, 10994; (c) R. Wang, Y. Zhou, Y. Sun, D. Yuan, L. Han, B. Lou, B. Wu and M. Hong, *Cryst. Growth Des.*, 2005, 5, 25; (d) S-T. Wu, Y-R. Wu, Q-Q. Kang, H. Zhang, L-S.

Long, Z. Zheng, R-B. Huang and L-S. Zheng, *Angew. Chem. Int. Ed.*, 2007, **46**, 8475; (e) Y. Zhang, J. Li, J. Chen, Q. Su, W. Deng, M. Nishiura, T. Imamoto, X. Wu and Q. Wang, *Inorg. Chem.*, 2000, **39**, 2330.

- 5 (a) J.-M. Lehn, A. Rigault, J. Siegel, J. Harrowfield, B. Chevrier and D. Moras, *Proc. Natl. Acad. Sci. U.S.A.*, 1987, 84, 2565; (b) M. Albrecht, *Chem. Soc. Rev.*, 2001, 101, 3457; (c) C. Biswas, M. G. B. Drew, M. Estrader and A. Ghosh, *Dalton Trans.*, 2009, 5015; (d) F. Lin, H-Y. Peng, J-X. Chen, D. T. W. Chik, Z. Cai, K. M. C. Wong, V. W. W. Yam and H. N. C. Wong, *J. Am.Chem. Soc.*, 2010, 132, 16383.
- 6 (a) U. Knof and A. von Zelewsky, Angew. Chem. Int. Ed. 1999, 38, 302-322; (b) A. von Zelewsky and O. Mamula, J. Chem. Soc., Dalton Trans., 2000, 219–231; (c) P. J. Steel, J. Org. Chem., 1991, 408, 395-402; (d) P. Hayoz, А von Zelewsky. Tetrahedron Lett., 1992, 33:36, 5165-5168; (e) R. Vadavi, E. D. Conrad, D. I. Arbuckle, T. S. Cameron, E. Essoun and M. A. S. Inorg. Chem., 2011. **50**. Aquino, 11862-11864; (f) B. R. Groves, D. I. Arbuckle, E. Essoun, T. L. Lundrigan, R. Wang and M. A. S. Aquino, Inorg. Chem., 2013, **52**, 11563–11572; (g) L. J. Boudreau, T. L. Clarke, A. H. Murray, K. N. Robertson, T. S. Cameron, M. A. S. Aquino,

Inorg. Chim. Acta 2013, 394, 152–158; (h)
E. C. Constable, G. Zhang, C. E. Housecroft,
M. Neuburger and J. A. Zampese, Chem.
Commun., 2010, 3077-3079; (i) E. C.
Constable, C. E. Housecroft, T. Kulke, C.
Lazzarini, E. R. Schofield and Y.
Zimmermann, J. Chem. Soc., Dalton Trans.,
2001, 2864–2871.

- 7 (a) K. Warnmark, J. A. Thomas, O. Heyke and J-M. Lehn, Chem. Commun., 1996, 701-702; (b) F. M. MacDonnell and S. Bodige, Inorg. Chem., 1996, 35, 5758-5759; (c) S. Bodige, A. S. Torres, D. J. Maloney, D. Tale, G. R. Kinsel, A. K. Walker and F. M. MacDonnell, J. Am. Chem. Soc., 1997, 119, 10364–10369; (d) K. Wärnmark, О. Heyke, J. A. Thomas and J-M Lehn, Chem. Commun., 1996, 2603-2604; (e) T. J. Rutherford, M. G. Quagliotto and F. R. Keene, Inorg. Chem., 1995, 34, 3857-3858; (f) D. Tzalis and Y. Tor, J. Am. Chem. Soc., 1997, **119**, 852–853.
- 8 (a) T. Akitsu and Y. Einaga, *Polyhedron*, 2005, 24, 2933–2943; (b) G-P. Li, Q-C. Yang, Y-Q. Tang, Y-D. Guan and Z-H. Shang, *Acta Chim. Sinica* 1987, 45, 421–425; (c) T. Akitsu, *Polyhedron* 2007, 26, 2527–2535; (d) T. Akitsu and Y. Einaga, *Polyhedron*, 2005, 24, 1869–1877; (e) T. Akitsu, and Y. Einaga, *Acta Crystallogr.* C, 2004, 60, m640–m642; (f) H. Sakiyama, H.

Okawa, N. Matsumoto and S. Kida, J. Chem. Soc., Dalton Trans., 1990, 2935–2939; (g) C.
Evans and D. Luneau, J. Chem. Soc., Dalton Trans., 2002, 83–86; (h) H. Sakiyama, H.
Okawa, N. Matsumoto and S. Kida, Bull. Chem. Soc. Jpn., 1991, 64, 2644–2647.

- 9 (a) F. Wang, H. Zhang, L. Li, H-Q. Hao, X-Y. Wang and J-G. Chen, *Tetrahedron Asymm.*, 2006, 17, 2059–2063;(b) H. S. Chow, E. C. Constable, R. Frantz, C. E. Housecroft, J. Lacour, M. Neuburger, D. Rappoport and S. Schaffner, *New J. Chem.*, 2009, 33, 376–385;
 (c) G. Brewer, C. Brewer, R. J. Butcher, G. T. Robichaux and C. Viragh, *Inorg. Chim. Acta* 2014, 410, 171–177; (d) E. C. Constable, C. E. Housecroft, V. Jullien, M. Neuburger, I. Poleschak, S. Reymann, S. Saxer and S. Schaffner, *Polyhedron* 2007, 26, 5519–5526; (e) E. C. Constable, *Chem. Soc. Rev.*, 2013, 42, 1637-1651.
- 10 M. Enamullah, A. Sharmin, M. Hasegawa, T. Hoshi, A-C. Chamayou and C. Janiak, *Eur. J. Inorg. Chem.*, 2006, 2146–2154.
- 11 C. Janiak, A-C. Chamayou, A.K.M. Royhan Uddin, M. Uddin, K.S. Hagen and M. Enamullah. *Dalton Trans.*, 2009, 3698-3709.
- M. Enamullah, A. K. M Royhan Uddin, G. Pescitelli, R. Berardozzi, G. Makhloufi, V.Vasylyeva, A-C. Chamayou and C. Janiak, *Dalton Trans.*, 2014, 43, 3313–3329.

- M. Enamullah, M. A. Quddus, M. R. Hasan,
 G. Pescitelli, R. Berardozzi, G. J. Reiß and
 C. Janiak, *Eur. J. Inorg. Chem.*, 2015, 2758–2768.
- 14 A-C. Chamayou, S. Lüdeke, V. Brecht, T. B. Freedman, L. A. Nafie and C. Janiak, *Inorg. Chem.*, 2011, **50**, 11363-11374.
- 15 (a) M. Enamullah, V. Vasylyeva and C. Janiak, *Inorg. Chim. Acta* 2013, 408, 109–119; (b) M. Enamullah and M. K. Islam, *J. Coord. Chem.*, 2013, 66, 4107–4118.
- 16 (a) M. Enamullah, W. Linert, V. Gutmann and R. F Jameson, *Monatsh. für Chemie* 1994, **125**, 1301-1309; (b) M. Enamullah, W. Linert and V. Gutmann, *Vib. Spectros.*, 1995, **9**, 265-271; (c) M. Enamullah, F. Renz, U. El-Ayaan, G. Wiesinger and W. Linert, *Vib. Spectros.*, 1997, **14**, 95-104; (d) M. Enamullah and W Linert, *J. Coord. Chem.*, 1996, **40**, 193-201.
- 17 (a) M. Enamullah, J. Coord. Chem., 2011, 64, 1608-1616; (b) M. Enamullah, J. Coord.
 Chem., 2012, 65, 911-922; (c) M.
 Enamullah, A. K. M. Royhan Uddin and G.
 Hogart, J. Coord. Chem., 2012, 65, 4263-4276.
- 18 M. Enamullah, A-C. Chamayou and C. Janiak, Z. Naturforsch., 2007, 62b, 807-817.
- 19 M. Enamullah, A. K. M. Royhan Uddin, G. Hogarth and C. Janiak, *Inorg. Chim. Acta* 2012, **38**7, 173-180.

- 20 M. Enamullah, Rifat Ahmed, G. Makhloufi and C. Janiak (unpublished results).
- 21 S. Yamada, Coord. Chem. Rev., 1999, 190-192, 537–555.
- 22 A. Ipatov, F. Cordova, L. J. Doriol and M. E. Casida, *J. Mol. Struct. (THEOCHEM)*, 2009, **914**, 60–73.
- 23 (a) J. Autschbach, in Comprehensive Chiroptical Spectroscopy, ed. N. Berova, R. W. Woody, P. Polavarapu and K. Nakanishi, Wiley, New York, 2012, vol. 1, pp. 593–642;
 (b) H. Cox and A. J. Stace, *Int. Rev. Phys. Chem.*, 2010, **29**, 555–588.
- 24 M. E. Casida, C. Jamorski, K. C. Casida and
 D. R. Salahub, J. Chem. Phys., 1998, 108, 4439–4449.
- 25 C. Janiak, J. Chem. Soc., Dalton Trans., 2000, 3885.
- 26 (a) M. Nishio, *CrystEngComm*, 2004, 6, 130;
 (b) M. Nishio, M. Hirota and Y. Umezawa, *The CH/π interaction* (Evidence, Nature and consequences), Wiley-VCH, 1998; (c) Y. Umezawa, S. Tsuboyama, K. Honda, J. Uzawa and M. Nishio, *Bull. Chem. Soc. Jpn.*, 1998, 71, 1207; (d) C. Janiak, S. Temizdemir, S. Dechert, W. Deck, F. Girgsdies, J. Heinze, M. J. Kolm, T. G. Scharmann and O. M. Zipffel, *Eur. J. Inorg. Chem.*, 2000, 1229.
- 27 G. S. Nichol and W. Clegg, *CrystEngComm.*, 2007, **9**, 959-960.

- 28 J. W. Steed, *CrystEngComm.*, 2003, **5**, 169-179.
- 29 A. Gavezotti, *CrystEngComm.*, 2008, **10**, 389-398.
- 30 G. R. Desiraju, *CrystEngComm.*, 2007, **9**, 91-92.
- 31 J. Ruiz, V. Rodríguez, N. Cutillas, A. Hoffmann, A-C. Chamayou, K. Kazmierczak and C. Janiak, *CrystEngComm.*, 2008, 10, 1928-1938.
- 32 V. Vasylyeva, T. Kedziorski, N. Metzler-Nolte, C. Schauerte and K. Merz, *Cryst. Growth Des*, 2010, **10**, 4224-4226.
- 33 G. Althoff, J. Ruiz, V. Rodríguez, G. López,
 J. Pérez and C. Janiak, *CrystEngComm.*,
 2006, 8, 662-665.
- 34 X. Hao, S. Parkin and C. P. Brock, Acta Crystallogr., Sect. B: Struct. Sci., 2005, 61, 689-699.
- 35 N. J. Babu and A. Nangia, *CrystEngComm.*, 2007, **9**, 980-983.
- 36 A-C. Chamayou, C. Biswas, A. Ghosh and C. Janiak, *Acta Cryst.*, 2009, C65, m311-m313.
- 37 G. Makhloufi, K. Schütte and C. Janiak, Z. *Kristallogr.* NCS 2014, **229**, 429-430.
- 38 M. T. Kirchner, D. Bläser, R. Boese, G. R. Desiraju, *CrystEngComm*, 2009, **11**, 229–231.
- 39 S. Roy, R. Banerjee, A. Nangia and G. J. Kruger, *Chem. Eur. J.*, 2006, **12**, 3777-3788.
- 40 (a) J. O. Hernandez, J. Portilla, J. Cobo and C. Glidewell, *Acta Cryst.*, 2015, **C71**, 363–368;

(b) B. K. Sarojini, H. S. Yathirajan, E. C.Hosten, R. Betz and C. Glidewell, *Acta Cryst.*, 2015, C71, 59–64.

- 41 K. M. Anderson, K. Afarinkia, H.-W. Yu, A.
 E. Goeta and J. W. Steed, *Cryst. Growth Des*, 2006, 6, 2109-2113.
- 42 A-C. Chamayou, G. Makhloufi, L. A. Nafie,
 C. Janiak and S. Lüdeke, *Inorg. Chem*, 2015,
 54, 2193–2203
- 43 For examples of metal-chelate ring folding see: B. M. Barry, B. W. Stein, C. A. Larsen, M. N. Wirtz, W. E. Geiber, R. Wateman and R. E. Kemp, *Inorg. Chem.*, 2013, 52, 9875–9884.
- 44 M. Enamullah, M. A. Quddus, M. A. Halim,M. K. Islam, V. Vasylyeva and C. Janiak,*Inorg. Chim. Acta* 2015, 427, 103-111.
- 45 (a) N. Arai, M. Sorai and S. Seki, *Bull. Chem. Soc. Jpn.*, 1972, 45, 2398; (b) T. Ashida, S. Iwata, T. Yamane, M. Kakudo, A. Takeuchi and S. Yamada, *Bull. Chem. Soc. Jpn.*, 1976, 49, 3502.
- 46 M. Enamullah, M. K. Islam, M. A. Halim, C. Janiak, *J. Mol. Struct.*, 2015, 1099, 154-162.
- 47 (a) S. Dilli, A. M. Maitra and E. Patsalides, *Inorg. Chem.*, 1982, 21, 2832-2838; (b) M.
 S. El-Shahawi and W. E. Smith, *Analyst*, 1994, 119, 327-331.
- 48 (a) M. Tumer, D. Ekinci, F. Tumer and A. Bulut, Spectrochimica Acta Part A, 2007,

67, 916–929; (b) N. Mondala, S. Mitra, V. Gramilich, S. O. Ghodsi and K. M. Abdul Malik, *Polyhedron* 2001, **20**, 135–141.

- 49 (a) H. Sato, A. Yamagishi, J. Yoshida, H.
 Nakano, N. Hoshino, *Japanese J. Appl. Phys.*,
 2005, 44, 4067-4072; (b) S. Zahn, G. Proni,
 G. P. Spada and J.W. Canary, *Chem. Eur. J.*2001, 7, 88-93.
- 50 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas; Foresman, J. B.; Ortiz, J. V.;

Cioslowski, J.; Fox, D. J. Gaussian 09, Revision C.01, Wallingford CT, 2009.

- 51 All references about DFT functionals and basis sets can be found in the on-line documentation for Gaussian'09 at www.gaussian.com/g_tech/g_ur/g09help.ht m.
- 52 T. Bruhn, A. Schaumlöffel, Y. Hemberger and G. Bringmann, *Chirality* 2013, 25, 243-249.