Dalton Transactions

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/dalton

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Two Rh^{III}-substituted polyoxoniobates and their base-induced transformation: $[H_2RhNb_9O_{28}]^{6-}$ and $[Rh_2(OH)_4Nb_{10}O_{30}]^{8-}$

Jung-Ho Son,*^{*a*} and Willam H. Casey^{*a,b*}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

Two new rhodium-substituted polyoxoniobates, [H₂RhNb₉O₂₈]⁶⁻ (RhNb₉) and [Rh₂(OH)₄Nb₁₀O₃₀]⁸⁻ (Rh₂Nb₁₀) are reported. The two distinct Rh^{III}-substituted niobate clusters behave differently when the pH is raised with 10 TMAOH: the Rh₂Nb₁₀ is stable until pH~12.7, but RhNb₉ dissociates to form RhNb5 and RhNb10, similar to some of our other metal-substituted niobates, such as the MNb₉ ions (M=Cr or Mn), which transform to MNb₁₀ when the solution pH is raised.

- 15 Transition-metal (TM) substituted polyoxometalates are an important class of materials. The TM-substitution can add catalytic function to the cluster and the polyoxometalate framework adds great redox properties, especially for polyoxomolybdates and -tungstates.¹ In the polyoxoniobate system, a
- 20 series of TM-substituted decaniobate-type [MNb₉O₂₈]^{x-} (MNb₉, M=Cr-Ni) have been synthesized recently² and add to the Ti-, Vand Cu-substituted polyoxoniobates that were previously known.³ In these studies, the substitution is limited to the early transition metals. For the heavier transition metals, there have been
- 25 structures reported for Re(CO)3-, CpRh- or Pt-coordinated (capped) hexaniobates (Nb₆).⁴ However, substitution of 2nd- or 3rd-row transition metals in the polyoxoniobates as atoms internal to the structure, rather than as capping atoms, has not yet been reported to our knowledge, although among the group V ³⁰ polyoxometalates, $[H_2Pt^{IV}V_9O_{28}]^{5-}$ is known in the
- polyoxovanadate system.5

Here we report the synthesis, structure, characterization and photocatalytic H₂ evolution study of two Rh^{III}-substituted The two compounds reported here have the niobates. 35 stoichiometry: $[H_2RhNb_9O_{28}]^{6-}$ (RhNb₉) and $[Rh_2(OH)_4Nb_{10}O_{30}]^{8-}$

(Rh₂Nb₁₀) as tetramethylammonium (TMA) salts. The structures of these clusters resemble those of two Cr^{III}-substituted niobates, $[H_2CrNb_9O_{28}]^{6-}$ (CrNb₉) and $[Cr_2(OH)_4Nb_{12}O_{30}]^{8-}$ (Cr₂Nb₁₀) that we previously described.^{2, 6}

- ⁴⁰ Substitution of Rh^{III} in the polyoxoniobate structure was challenging. Our previous methods employed for MNb₉ (M=Cr-Ni) generally showed low yield for rhodium substitution (less than 1 %).² The low yield might be a result from the notoriously slow reaction rate of ligand substitutions at the Rh^{III} center.⁷
- 45 When we attempted to circumvent the slow kinetics with temperature, we found that some Rh^{III} was reduced to Rh⁰ as a gray or black powder mixed with the crude product at the

hydrothermal reaction conditions when the temperature was higher than 120°C. In order to solve this problem, we added 50 hydrogen peroxide in the reaction mixture to prevent reduction of Rh^{III}. Correspondingly the yields were improved when H₂O₂ was added (40 % and 7 % for Rh₂Nb₁₀ and RhNb₉, respectively). Hydrogen peroxide also might have helped to dissociate the rather stable Nb6 or Nb10 ions and facilitate the formation of 55 Rh^{III}-substituted structures.8

Fig. 1 Ball-and-stick model of RhNb₉ (left) and Rh₂Nb₁₀ (right) (Nb:gray, Rh:gold, O:red). Intramolecular hydrogen bonds are shown with dashed line in Rh₂Nb₁₀

60 The solution after hydrothermal reaction was typically a mixture of Nb₁₀, Nb₆, RhNb₉ and Rh₂Nb₁₀ ions, as found by electrosprayionization mass spectra (ESI-MS). We took advantage of the slightly different solubility of each compound to facilitate separation and purification of the Rh-substituted molecules. After 65 washing with isopropanol, the product was extracted with ethanol. The ethanol extract was a mixture of Rh₂Nb₁₀ and Nb₆ ions, and the precipitate that remained after ethanol extraction was a mixture of Nb₁₀ and RhNb₉. The RhNb₉ was separated from Nb₁₀ by extraction with ethanol/methanol mixture. Mild 70 heating of the ethanol extract for a few hours caused condensation of more soluble Nb6 into less soluble Nb10 precipitate. The ethanolic orange solution that remained after this heating step consisted of mostly Rh₂Nb₁₀. The crystalline products of Rh₂Nb₁₀ and RhNb₉ were obtained after solvent 75 evaporation.

In the crystal structure of RhNb₉, Rh^{III} is substituted at the central metal site so that it does not possess a terminal oxo group, as we also observed in the MNb₉O₂₈ (M=Cr-Ni) series.²² above The Rh^{III} metal is disordered among the two central sites due to the centrosymmetry, and the sum of Rh^{III} occupancy in those two sites is 1.12, which agrees with stoichiometry of RhNb₉. Bond valence sum (BVS) calculation of the Rh site is (3.03), indicating the oxidation state of Rh^{III}. The BVS values of two Rh- μ_2 -O-Nb ⁵ (1.37 and 1.38) are much lower than other bridging oxygen atoms, which suggest that those are protonated, similarly to the substituted MNb₉ (M=Cr-Ni).² The structure of Rh₂Nb₁₀ is similar to Cr₂Nb₁₀, and it can be described as two RhNb₅

- Lindqvist-type clusters fused by two μ_4 -O atoms linking two Rh^{III} and two μ_3 -O atoms linking Rh^{III} and Nb^V. The oxidation state of rhodium in Rh₂Nb₁₀ is also Rh^{III}, as determined by BVS calculation (2.95). The Rh-O bond lengths in Rh₂Nb₁₀ are longer and more regular (2.0245(16)-2.0605(16) Å) than Cr-O bonds in Cr₂Nb₁₀ (1.9428(13)-2.0131(12) Å). In the structure of Rh₂Nb₁₀, 15 four protons are found on the four Rh- μ_2 -O-Nb, like in the
- structure of Cr_2Nb_{10} .⁶ Those protons form intramolecular hydrogen bonds to the neighbouring Nb=O (H…O distances of 2.309 and 2.386 Å). The ESI-MS spectra of the RhNb₉ and Rh₂Nb₁₀ agree with their assigned stoichiometries (Fig. S1).

Fig. 2 Change of ESI-MS spectra of RhNb₉ when the solution pH was adjusted to 12.9.

20

The pH-dependent stability of the Rh^{III}-substituted niobate clusters were studied by using ESI-MS. When titrated with ²⁵ TMAOH, the golden yellow color of Rh₂Nb₁₀ solution did not change until highly basic conditions (pH~12.9, Fig. S2), and most of the Rh₂Nb₁₀ clusters remained intact for months at this strongly basic condition, as checked by ESI-MS (Fig. S3). When the solution of RhNb₉ was titrated with TMAOH to this ³⁰ condition, the solution color slowly changed from orange to faint yellow overnight (Fig. S2). The ESI-MS spectra of the solution after one day (Fig. 2) indicated dissociation of RhNb₉ to RhNb₅ and Nb₆. Also, formation of a new RhNb₁₀ was detectable via ESI-MS, which could have formed by self-assembly of ³⁵ dissociated fragments (Fig. 2). It is most likely that this RhNb₁₀ would have a similar structure of previously reported

- [H₂Mn^{IV}Nb₁₀O₃₂]⁸⁻ (MnNb₁₀), in view of their similar ESI-MS pattern.⁹ This observation spurred us to further investigate other TM-substituted polyoxoniobate clusters. We added 50 mg of ⁴⁰ TMAOH·5H₂O to each aqueous solution containing 30 mg of
- MNb_9 (M=Ti, Cr-Ni) and Cr_2Nb_{10} clusters to make pH~12.6 and

2 | Journal Name, [year], [vol], 00-00

monitored the solution by using ESI-MS (Fig. S4-S10). The Cr₂Nb₁₀ clusters were stable at this pH for a long period of time, like Rh₂Nb₁₀ (Fig. S4). The TiNb₉, CrNb₉ and MnNb₉ clusters 45 changed in a few days at this high-pH condition. Some Ti₂Nb₈ clusters^{3a,c,d} formed after a week when the pH of TiNb₉ was increased (Fig. S5). Considerable amount of CrNb₁₀ formed after a few days from the CrNb₉ solution at high pH (Fig. S6). This result shows that CrIII- and RhIII-substituted polyoxoniobates are 50 not only structurally similar, but also transform via similar pathways at high pH. The color of MnNb₉ solution changed from purple to brown with time, suggesting oxidation of Mn^{III}, and ESI-MS spectra after 19 days showed formation of small amount of Mn^{IV}Nb₁₀ (Fig. S7). However, species such as MnNb₅ or 55 CrNb₅ was not detectable, which suggests that they are unstable. Other MNb₉ clusters (M=Fe-Ni) were relatively stable at the high pH, but small amount of Nb₆ as a decomposition product was detected (Fig. S8-S10). Thus M_2Nb_{10} (M=Rh^{III} or Cr^{III}) seems to be more stable than MNb₉ at high pH. This higher stability of 60 M₂Nb₁₀ is partly attributable to the existence of intramolecular

- hydrogen bonds, which hold the structure together, perhaps making it less susceptible to base hydrolysis.When titrated with acid, Rh₂Nb₁₀ was evident in the ESI-MS
- spectra until pH 4.0, and RhNb₉ was stable until pH 4.5, although ⁶⁵ we recognize that the kinetics of dissociation may be suppressed by inclusion of the Rh^{III}. Both solutions formed hydrous niobiumoxide precipitate below those pH values, which could form without dissociating the structures. On the other hand, we note that the stability window of Rh₂Nb₁₀ (4<pH<13) is similar to ⁷⁰ Cr₂Nb₁₀.⁶ The RhNb₉ exhibited a wider stability range (4.5<pH<12) than other MNb₉ clusters (M=Cr-Ni) in general.

Scheme 1 Base-induced transformation of MNb9 and M2Nb10 (M=Rh, Cr)

The UV-Vis spectra of RhNb₉ and Rh₂Nb₁₀ are shown in Fig 3. ⁷⁵ The Rh₂Nb₁₀ shows about twice the absorption of visible light relative to the RhNb₉ ion, as expected from the stoichiometry of the clusters. The absorption band of Rh₂Nb₁₀ (440 nm) is more blue shifted compared to that of RhNb₉ (475 nm), which is responsible for the slightly different colors of the solutions of Rh₂Nb₁₀ (golden yellow) and RhNb₉ (orange-red). These absorption bands correspond to ¹A_{1g} to ¹T_{1g} or ¹T_{2g} transition of 5 Rh^{III}.¹⁰ The RhNb₉ and Rh₂Nb₁₀ clusters were also characterized by using FT-IR (Fig. S11). The FT-IR spectrum of Rh₂Nb₁₀ show similar feature to that of Cr₂Nb₁₀ and that of RhNb₉ is similar to those of MNb₉, which reflect their structural similarity.

 $_{10}$ $\,$ Fig. 3 UV-Vis spectra of 2 mM solution of Rh_2Nb_{10} and $RhNb_9$ without background electrolyte

Fig. 4 Comparison of H₂-evolution activity from the methanol/water solutions (20% v/v) of RhNb₉, Rh₂Nb₁₀ and Nb₁₀, with and without H_2PtCl_6

15

TM-substituted polyoxometalates, including polyoxoniobates, have recently been actively studied for use in the water-splitting reaction to generate H₂ and/or O₂ for energy applications.¹¹ We studied H₂ evolution from RhNb₉ and Rh₂Nb₁₀ ions as a ²⁰ continuation of our previous H₂-evolution study of the MNb₉ ions (M=Cr-Ni). When irradiated with visible light, similarly to the MNb₉ ions, neither RhNb₉ nor Rh₂Nb₁₀ solutions (20% v/v methanol/water) evolved H₂. Methanol was used as a sacrificial oxidant. The solution did not evolve H₂ without methanol. When ²⁵ a full spectrum from Xe lamp (without UV filter) was employed, however, H₂ evolution was observed (50 µmolg⁻¹ h⁻¹ and 43 µmolg⁻¹ h⁻¹, for RhNb₉ and Rh₂Nb₁₀, Fig. 4). After irradiation, the originally orange-red or yellow solution of RhNb₉ and Rh₂Nb₁₀

- ³⁰ probably indicate partial reduction of Rh^{III} to Rh⁰. We have found such colloids in our previous work and are not suprised by them.² The Rh^{II} is known to exhibit a green color.¹⁰ We do not know the amount of Rh^{III} that has been reduced, but comparison of the peak intensities in ESI-MS spectra of the solution before and after ³⁵ irradiation indicated that most of the clusters remained intact (Fig S12 and S13). The UV-Vis spectra of Rh₂Nb₁₀ before and after
- the irradiation also did not change considerably, but absorption of RhNb₉ solution increased after irradiation, undoubtedly due to the presence of the colloids mentioned above (Fig S14 and S15). In
- ⁴⁰ the previous H₂ evolution study of the MNb₉ ions (M=Cr-Ni),² we found that a significant amount of MNb₉ decomposed into Nb₆ and Nb₁₀, with corresponding changes in the UV-Vis spectrum due to the colloid formation. Among them, formation of colloids from NiNb₉ and CoNb₉ positively affected H₂ evolution,
- ⁴⁵ while colloid formation from other MNb₉ (M=Cr-Fe) did not increase the amount of H₂ evolution. In our previous work we have found that the colloids were mixed TM-niobium oxide and they were amorphous, as determined by XRD, TEM and EDX. The relative lack of Nb₆ and Nb₁₀ decomposition products s after
- ⁵⁰ irradiation in the present RhNb₉ and Rh₂Nb₁₀ suggests that these rhodium RhNb₉ and Rh₂Nb₁₀ clusters are more stable, perhaps only kinetically so, under the irradiation of intense light when compared to MNb₉ (M=Cr-Ni). We also compared H₂-evolution activity of the clusters when H₂PtCl₆ was added as a cocatalyst.
- ⁵⁵ In the existence of Pt, Nb₁₀ solution showed ~20 fold increase in the H₂ evolution (1385 μ molg⁻¹ h⁻¹) and amount of precipitate was negligible, but H₂ evolution from RhNb₉ and Rh₂Nb₁₀ after adding H₂PtCl₆ showed only about 3 fold increases (167 and 152 μ molg⁻¹ h⁻¹, respectively) and conspicuous gray-black precipitate
- ⁶⁰ formed in the solution (Fig. 4). This presumed Pt-Rh-NbOx precipitate must be responsible for the slight increase of the H₂ evolution, but we did not attempt to characterize it further. The different precipitation behavior of Nb₁₀ and RhNb₉/Rh₂Nb₁₀ after photocatalytic reaction might be due to their different stabilities ⁶⁵ upon addition of acidic H₂PtCl₆. And the lower H₂ evolution
- activity of $RhNb_9/Rh_2Nb_{10}$ compared to Nb_{10} is likely due to the reduced amount of dissolved clusters in solution caused by precipitation, as seen in ESI-MS (Fig S12 and S13).

Conclusions

- ⁷⁰ Two types of new rhodium-substituted polyoxoniobates were synthesized and isolated. The evidences of base-promoted transformation of RhNb₉ to RhNb₅ and RhNb₁₀ suggest a new synthetic strategy for new polyoxoniobates. Such a reaction can be a useful post-synthetic pathway for new polyoxoniobates,
 ⁷⁵ instead of commonly employed hydrothermal reaction in the polyoxoniobate chemistry. The transformation of MnNb₉ and CrNb₉ at high pH shows that the stabilities of each TM-substituted decaniobate are different, even if they form similar dissociation products at high pH. The Rh^{III}-substituted
 ⁸⁰ polyoxoniobates, such as RhNb₅ which might have terminal Rh-OH groups.
- ⁸⁵ We thank Jiarui Wang and Prof. Frank E. Osterloh for H₂ evolution measurement. This work was supported by an NSF CCI

turned greenish brown with small amount of colloids, which

grant through the Center for Sustainable Materials Chemistry, number CHE-1102637.

Notes and references

- ^a Dr. J.-H. Son, Department of Chemistry, University of California, Davis
 ⁵ One Shields Ave. Davis, CA 95616, USA. E-mail: junghoson@gmail.com
 ^b Prof. W. H. Casey; Department of Chemistry, Department of Earth and Planetary Sciences, University of California, Davis, One Shields Ave. Davis, CA 95616, USA.
- † Electronic Supplementary Information (ESI) available: Experimental ¹⁰ detalis, ESI-MS, FT-IR, UV-Vis data. See DOI: 10.1039/b000000x/
- ¹ a) L. C. W. Baker, V. S. Baker, K. Eriks, M. T. Pope, M. Shibata, O. W. Rollins, J. H. Fang, L. L. Koh, *J. Am. Chew. Soc.* **1966**, *88*, 2329; b)
 L. C. W. Baker, J. S. Figgis, *J. Am. Chew. Soc.* **1970**, *92*, 3794-3797;
 c) T. J. R. Weakley, *J. Chem. Soc., Dalton Trans.* **1973**, 341-346; d)
 C. L. Hill, R. B. Brown Jr., *J. Am. Chem. Soc.* **1986**, *108*, 536-538;
 e) M. Faraj, C. L. Hill, *J. Chem. Soc. Chem. Commun.* **1987**, 1487-1489; f) J. Hu, R. C. Burns, *J. Mol. Catal. A: Chemical* **2002**, *184*, 451–464; g) J.-H. Choi, J. K. Kim, D. R. Park, T. H. Kang, J. H.
 Song, I. K. Song, *J. Mol. Catal. A: Chemical* **2013**, *371*, 111–117.
- ² a) J.-H. Son, J. Wang, W. H. Casey, *Dalton Trans.*, 2014, 43, 17928-17933. b) J.-H. Son, C. A. Ohlin, W. H. Casey, *Dalton Trans.*, 2013, 42, 7529-7533.
- ³ a) M. Nyman, L. J. Criscenti, F. Bonhomme, M. A. Rodriguez, R. T. Cygan, J. Solid State Chem. 2003, 176, 111–119; b) C. A. Ohlin, E. M. Villa, J. C. Fettinger, W. H. Casey, Dalton Trans. 2009, 2677–2678; c) E. M. Villa, C. A. Ohlin, J. R. Rustad, W. H. Casey, J. Am. Chem. Soc., 2009, 131(45), 16488-16492; d) E. M. Villa, C. A. Ohlin, W. H. Casey, J. Am. Chem. Soc., 2010, 132(4), 5264-5272; e) G. Guo, Y. Xu, J. Cao, C. Hu, Chem. Commun., 2011, 47, 9411-9413; f) P. Huang, C. Qin, X.-L. Wang, C.-Y. Sun, G.-S. Yang, K.-Z. Shao, Y.-Q. Jiao, K. Zhou, Z.-M. Su, Chem. Commun., 2012, 48, 103-105; g) J.-H. Son, C. A. Ohlin, E. C. Larson, P. Yu, W. H. Casey, Eur. J. Inorg. Chem., 2013, 1748–1753. h) Y.-T. Zhang, P.

Huang, C. Qin, L.-K. Yan, B.-Q. Song, Z.-X. Yang, K.-Z. Shao, Z.-M. Su, *Dalton Trans.*, **2014**, *43*, 9847-9850; i) P. Huang, E.-L. Zhou, X.-L. Wang, C.-Y. Sun, H.-N. Wang, Y. Xing, K.-Z. Shao, Z.-M. Su, *CrystEngComm*, **2014**, *16*, 9582-9585; j) J.-Y. Niu, G. Chen, J.-W. Zhao, P.-T. Ma, S.-Z. Li, J.-P. Wang, M.-X. Li, Y. Bai, B.-S. Ji, *Chem. Eur. J.*, **2010**, *16*, 7082 – 7086.

- ⁴ a) A. V. Besserguenev, M. H. Dickman, M. T. Pope, *Inorg. Chem.*, 2001, 40(11), 2582–2586. b) P. A. Abramov, M. N. Sokolov, A. V. Virovets, S. Floquet, M. Haouas, F. Taulelle, E. Cadot, C. Vicent, V. P. Fedin, *Dalton Trans.*, 2015, 44(5), 2234-2239. c) P. A. Abramov, C. Vicent, N. B. Kompankov, A. L. Gushchin and M. N. Sokolov, *Chem. Commun.*, 2015, 51, 4021-4023
- ⁵ U. Lee, H.-C. Joo, K.-M. Park, S.S. Mal, U. Kortz, B. Keita, L. Nadjo, *Angew. Chem., Int. Ed.* **2008**, *47*, 793-796;
- ⁶ J.-H. Son, C. A. Ohlin, W. H. Casey, *Dalton Trans.* **2012**, *41*, 12674-12677.
- ⁷ a) J. S. Loring, J. Rosenqvist, W. H. Casey, *J. Colloid Interface Sci.*, 2004, 274(1), 142-149. b) J. R. Houston, P. Yu, W. H. Casey, *Inorg. Chem.*, 2005, 44(14), 5176-5182.
- ⁸ C. A. Ohlin, E. M. Villa, J. Fettinger, W. H. Casey, 2008, 47, 8251-8254.
- ⁹ J.-H. Son, W. H. Casey, *Dalton Trans.*, **2013**, *42*, 13339-13342.
- ¹⁰ F. A. Cotton, G. Wilkinson, C. A. Murillo, M. Bochmann, Advanced Inorganic Chemistry, 6th Ed. Wiley-Interscience: New York, 1999.
- ¹¹ a) Z. Zhang, Q. Lin, D. Kurunthu, T. Wu, F. Zuo, S.-T. Zheng, C. J. Bardeen, X. Bu, P. Feng, J. Am. Chem. Soc. 2011, 133, 6934–6937;
 b) P. Huang, C. Qin, Z.-M. Su, Y. Xing, X.-L. Wang, K.-Z. Shao, Y.-Q. Lan, E.-B. Wang, J. Am. Chem. Soc. 2012, 134, 14004–14010; c)
 Z.-L. Wang, H.-Q. Tan, W.-L. Chen, Y.-G. Li, E.-B. Wang, Dalton Trans. 2012, 41, 9882–9884. d) J.-H. Son, J. Wang, F. E. Osterloh, P. Yu, W. H. Casey, Chem. Commun. 2014, 50, 836-838. e) H. Lv, J.
 Song, H. Zhu, Y. V. Geletii, J. Bacsa, C. Zhao, T. Lian, D. G.
 Musaev, C. L. Hill, J. Catal. 2013, 307, 48-54. f) H. Lv, W. Guo, K.
 Wu, Y. V. Geletii, Z. Chen, S. M. Lauinger, J. Bacsa, D. G. Musaev, T. Lian, C. L. Hill, J. Am. Chem. Soc. 2014, 136, 14015-14018.