Dalton Transactions

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/dalton

Journal Name

Thioiminium and thiaphospholanium derived from acetonitrile *via* nickel(II)–(2-mercaptophenyl)phosphine complexations⁺

Received 00th January 20xx, Accepted 00th January 20xx

Hao-Ching Chang,^a Yu-Chen Hsu,^a Chia-Hui Chen,^a Ting-Shen Kuo^b and Way-Zen Lee^{*a}

DOI: 10.1039/x0xx00000x

www.rsc.org/

 $[Ni(P(o-C_6H_4S)(o-C_6H_4SC(CH_3)=NH_2)(C_6H_5))_2](ClO_4)_2 (2) with two thioiminium functionalities is derived from CH_3CN solvent under anhydrous condition. Moreover, thiaphospholanium salts, <math display="block"> [(C_6H_5)P(C_6H_4SC(CH_3)(NHCOCH_3))(o-C_6H_4SH)](ClO_4) (3) and [(C_6H_5)_2 - P(C_6H_4SC(CH_3)(NH_3))](ClO_4)_2 (5), can be obtained through a similar Pinner-type nitrile activation. These results demonstrate the possible intermediate of enzymatic nitrile transformation and also provide an approach to the preparation of 2-amino-1,3-benzothiaphospholanium derivatives.$

Nitriles are important precursors in biosynthesis¹ as well as versatile reagents in chemical manufacturing. Meanwhile, contamination of nitriles in wastewater becomes a critical environmental issue.¹ Nitrilases (EC 3.5.5.1), which are competent for cyano-carboxyl transformation in nature,²⁻⁵ have been introduced to address synthetic protocol and detoxification of nitrile.⁴⁻⁷ Earlier studies of nitrilase have discovered that a Cys-Glu-Lys functional triad takes charge of the substrate derivatization.^{4,8} In mechanistic aspect, the conserved glutamate and lysine residues act as general acid/base, which activate incoming substrate through a hydrogen bond network. Then the cysteine thiol nucleophilically attacks the cyano carbon within substrate, forming a thioimidate intermediate (Scheme 1); this intermediate is readily hydrolyzed to a thioacyl-enzyme complex, accompanied with ammonia releasing. Sequentially,

Scheme 1 Enzymatic nitrile degradation.

a corresponding carboxylic product is produced while the catalytic site is regenerated by the second hydrolysis. By this cooperation, nitrilase hydrolyzes cyano compounds under physiological conditions, avoiding harsh reagents in conventional chemistry.

Interestingly in our recent studies, solvent acetonitrile is incorporated into thioiminium or ammonium functionalities in complexation reactions of nickel(II) ion with (2mercaptophenyl)phosphines. At ambient temperature, $[Ni(CH_3CN)_6](ClO_4)_2$ reacted with two equivalents of P(o- $C_6H_4SH_2(C_6H_5)$ (H₂PS2) in anhydrous CH₃CN giving a light-green supernatant along with grass green precipitate rapidly. The solid was isolated and then crystallized by vapor diffusion of Et₂O into its CH₂Cl₂ solution. The structure of the green product, determined by X-ray crystallography, is a square planar nickel(II) complex, Ni(P(o-C₆H₄S)(o-C₆H₄SH)(C₆H₅))₂ (1, Fig. 1a). Neutral complex 1 can be recognized as two monodeprotonated HPS2⁻ ligands coordinate to the nickel(II) ion. And two unreacted pendant thiols, one on each HPS2⁻ ligand, reside above and below the coordination plane of 1; the thiol proton points between the nickel center and the bonded sulfur atom of the ligand. The similar interaction was seen in $[PPN][Ni(ER)(P(o-C_6H_4S)_2(o-C_6H_4SH))]$ (ER = phenylselenide or 2-thienylthiolate).⁹ If [Ni(CH₃CN)₆](ClO₄)₂ is slowly added into the H₂PS2 solution at above 55 °C, the same combination turned to an olive solution. From crystallization of the resulting crude, yellow-green crystals[‡] were obtained and structurally analyzed as $[Ni(P(o-C_6H_4S)(o-C_6H_4SC(CH_3)=NH_2)(C_6H_5))_2](CIO_4)_2$

Fig. 1 Thermal ellipsoid representation of (a) Ni(P(o-C₆H₄S)(o-C₆H₄SH)(C₆H₅))₂ (1) and (b) [Ni(P(o-C₆H₄S)(o-C₆H₄SC(CH₃)=NH₂)(C₆H₅))₂](ClO₄)₂ (2) at 50% probability level. Aprotic hydrogens and anions of 1 and 2 are omitted for clarity.

^{a.} Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan. E-mail: wzlee@ntnu.edu.tw

^{b.} Instrumentation Center, National Taiwan Normal University, Taipei 11677, Taiwan

⁺Electronic Supplementary Information (ESI) available: Synthetic details and NMR, UV-vis, electrospray ionization mass spectra, X-ray crystallographic data for complexes **1–3**, **5**. CCDC: 14206690–14206694. See DOI: 10.1039/x0xx00000x

(2, Fig. 1b). Complex 2 shares the similar coordination geometry with 1. Notably, the pendant thiols of ligands have been transformed into thioiminium groups. Finding of two perchlorate counter anions per nickel in the lattice and unambiguous C–N bond length (1.286-1.288 Å) of 2 confirm the assignment of thioiminium functionality, with a set of characteristic resonances at 8.28, 9.28, and 9.44 ppm in ¹H NMR spectrum.

Such a discrete inorganic complex bearing a thioiminium group is rare in literature. One report of a sulfide-bridged dimolybdenum compound performs nitrile cleavage, in which an iminiumthiolate-bridging species was determined by NMR and mass spectroscopy.¹⁰ In that case, acetonitrile is attacked by bridging sulfur under H₂ atmosphere or by addition of triflic acid. To the best of our knowledge, complex 2 is the only structurally characterized complex possessing the thioiminium functionality. Formation of the thioiminium group is supposed to result from the reaction of the uncoordinated thiol with CH₃CN molecule. Stoichiometrically, as two equivalents of H₂PS2 coordinate to a nickel(II) ion forming complex 1 along with two residual protons, which are spontaneously solvated by surrounding CH₃CN molecules thus activating the C–N bond of the cyano group $(CH_3CN\cdots H^+)$,¹¹ regarded as two equivalents of in situ generated HClO₄ in CH₃CN. In anhydrous condition, there is no water molecule to attract the proton interacting with the cyano group, enhancing the reactivity of $CH_3CN\cdots H^+$. Uncoordinated thiols in 1 therefore attack the charged cyano carbon forming a thioimino group.¹² Subsequent intramolecular proton transfer gives complex 2 (Scheme 2).

Scheme 2 Formation of complex **2** under anhydrous condition. The counter anions (ClO_4^{-}) are omitted for clarity.

Fig. 2 Thermal ellipsoid representation of (a) $[(C_6H_5)P(C_6H_4SC(CH_3)(NHCOCH_3))(o-C_6H_4SH)](CIO_4)$ (3) and (b) $[(C_6H_5)_2P(C_6H_4SC(CH_3)(NH_3))](CIO_4)_2$ (5) at 50% probability level. Aprotic hydrogens and anions are omitted for clarity.

Journal Name

To testify the proposed Pinner-type mechanism, H₂PS2 ligand was treated with 70% HClO₄(aq) in CH₃CN overnight, and some colorless product was isolated from the resulting mixture. After crystallization via CH₃CN/Et₂O vapor diffusion, a clear crystal was analyzed as an amide-tethered phospho-lanium salt, [(C₆H₅)P(C₆H₄SC(CH₃)(NHCOCH₃))(o-C₆H₄SH)](ClO₄) (**3**, Fig. 2a). The 1,3-benzothiaphospholane heterocycle of 3 is composed of one phosphine, one thiophenolate and one exogenous carbon derived from CH₃CN. In the presence of HClO₄, CH₃CN, the solvent molecule, is activated and converted into thioiminium once it is attacked by a thiol of H₂PS2. Without the coordination of nickel, the phosphine of the converted thioiminium is unrestricted to process intramolecular nucleophilic attack forming the heterocycle with a pendant amino group. The pendant amine performs further condensation to yield the acetamide in 3. This result consists with the proposed acid-promoted nitrile activation, but the presence of water complicates the reaction. Afterwards, $P(o-C_6H_4SH)(C_6H_5)_2$ (HPS1) was selected for further investigation. Three equivalents of HPS1 were reacted with $[Ni(CH_3CN)_6](ClO_4)_2$ in anhydrous CH₃CN: two equivalents of the ligand coordinate the nickel(II) ion, which serves as Lewis acid, to generate protons for nitrile activation; the third equivalent of HPS1 can then proceed a similar tandem cyclization. Ni $(P(o-C_6H_4S)(C_6H_5)_2)_2$ (4), reported earlier by M. Y. Darensbourg,¹³ was separated as precipitate in this condition while another metal-free product in supernatant was isolated and further crystallized by CH₃CN/Et₂O diffusion. X-ray analysis reveals that the organic product, $[(C_6H_5)_2P(C_6H_4SC(CH_3)(NH_3))](CIO_4)_2$ (5, Fig. 2b), possesses the same heterocycle as 3. By performing the same reaction in CD₃CN, a deuterated product (5D) was isolated, of which the deuterated methyl group is validated by ¹H and ²H NMR (Fig. 3) as well as by ESI-MS spectrum with an m/z shift of +3 (Fig. S4). These findings confirm the exogenous fragment in 5, circled in Fig. 2b, comes from the solvent molecule, CH₃CN. The formation of 5 along with complex 4 shows the nitrile is intermolecularly activated by coordination-generated Brønsted acid. Wherein, nickel(II) ion serves as sacrificial Lewis acid. Remarkably, the yield of **5** via nickel complexation (56%)

Fig. 3 NMR spectra of **5** (a) and deuterated **5D** (b, c), formed in CH₃CN and CD₃CN solvent, respectively. The characteristic methyl signal of **5** in ¹H NMR spectrum is a ³¹P-coupled doublet at 2.18 ppm, ²J_{HP} = 14.0 Hz. The signal vanished in ¹H spectrum of **5D** (b) and reappeared in its ²H NMR (c). The asterisks denote internal reference of solvent.

Journal Name

Scheme 3 Proposed mechanism for benzothiaphospholanium products. Acidic protons are presented in blue and counter anions (CIO_4^-) are omitted.

is even better than that by applying concentrated HClO₄(aq) in CH₃CN (35%).⁺ This result indicates the in situ generated HClO₄ is comparable to additive HClO₄(aq) and has no water interference.

The Proposed mechanism of the acid-promoted annulation CH₃CN and between (2mercaptophenyl)phosphines is depicted in Scheme 3, whereby thioiminium species is rapidly cyclized due to the proximity of phosphine atom. In an intramolecular manner, cyclization producing phospholanium compounds is efficient;¹⁴ yet there is no reported 1,3-benzothiaphospholanium but few fused derived benzothiaphospholanes from their benzothiadiphosphole precusor.¹⁵ In both **3** and **5**, the incorporated cyano carbon is converted into a unique quaternary center, which bonds a phosphonium and an amidyl/amino group, exhibiting a large downfield shift in ¹³C NMR (**3**: $\delta_{\rm C}$ = 67.2 ppm, ${}^{1}J_{\rm CP}$ = 59.2 Hz; **5**: $\delta_{\rm C}$ = 69.5 ppm, ${}^{1}J_{\rm CP}$ = 58.1 Hz). It is noteworthy that the reactivity of the amine of the cyclized intermediate is altered by an extra pendant thiol, which induces a sequential nucleophilic attack on second activated CH₃CN, eventually yielding the amide in 3. Whereas, without the pendant thiol, no amide derived from HPS1 was observed. Activated CH₃CN is probably directed via hydrogen interaction and causes this differentiation.

In a way, nitrile is activated and reacted with (2mercaptophenyl)phosphines to form thioiminium species. By employing template effect of d⁸ nickel(II) ion, thioiminium functionalities are trapped as that in complex **2**. If the nucleophilicity of phosphine is not inhibited by the coordination, the imminent cycloaddition to the thioiminium occurs, similar to the first hydrolysis step carried out in the active site of nitrilase in which a water molecule is properly orientated for nucleophilic attack on the thioimidate intermediate. These isolated species can be regarded as snapshots of the enzymatic nitrile hydration. However, owing to the thermodynamic sink of the tandem cyclization, no catalysis has been achieved.

summary, acid-triggered situ acetonitrile In in incorporation is observed in the reactions of $[Ni(CH_3CN)_6](ClO_4)_2$ with (2-mercaptophenyl)phosphines. Several compounds possessing uncommon functionalities are isolated whereby proposed intermediates of nitrilase are consolidated. Besides the implication about how nitrilase functions, these results also provide a synthetic route to prepare 2-amino-1,3-benzothiaphospholanium derivatives which have not been studied yet.

Acknowledgements

We thank the Ministry of Science and Technology of Taiwan for financial supports (MOST 102-2113-M-003-007-My3 to W.-Z. L.).

Notes and references

‡Crystals of **2** were obtained with different colors, from green to olive. X-ray crystallography revealed the same nickel complex but different solvent-packing modes: {**2**·4CH₃CN} in $P\overline{1}$ (Z = 1), a = 9.5352(3) Å, b = 11.8573(5) Å, c = 13.0288(6) Å, α = 80.481(2)°, β = 73.240(2)°, γ = 76.247(2)°, V = 1362.60(10) Å³ and *R* = 0.0651 and {**2**·3CH₃CN·Et₂O} in *P*2₁ (Z = 2), a = 8.99760(10) Å, b = 31.5617(5) Å, c = 9.9610(2) Å, α = γ = 90°, β = 90.7300(10)°, V = 2828.49(8) Å³ and *R* = 0.0568.

- T. C. Bhalla, N. Sharma and R. K. Bhatia, in *Microorganisms in Environmental Management: Microbes and Environment*, ed. T. Satyanarayana, B. N. Johri and A. Prakash, Springer, New York, 2012, ch. 25, pp 569–587.
- (a) K. V. Thimann and S. Mahadevan, Arch. Biochem. Biophys., 1964, 105, 133–141; (b) S. Mahadevan and K. V. Thimann, Arch. Biochem. Biophys., 1964, 107, 62–68.
- 3 (*a*) H. C. Pace and C. Brenner, *Genome Biol.*, 2001, **2**, reviews0001.1–0001.9; (*b*) C. Brenner, *Curr. Opin. Struct. Biol.*, 2002, **12**, 775–782.
- 4 R. N. Thuku, D. Brady, M. J. Benedik and B. T. Sewell, *J. Appl. Microbiol.*, 2009, **106**, 703–727.
- 5 J.-S. Gong, Z.-M. Lu, H. Li, J.-S. Shi, Z.-M. Zhou and Z.-H. Xu, Microb. Cell Fact., 2012, **11**, No. 142.
- 6 C. Vergne-Vaxelaire, F. Bordier, A. Fossey, M. Besnard-Gonnet, A. Debard, A. Mariage, V. Pellouin, A. Perret, J.-L. Petit, M. Stam, M. Salanoubat, J. Weissenbach, V. De Berardinis and A. Zaparucha, *Adv. Synth. Catal.*, 2013, **355**, 1763–1779.
- 7 Y. P. Xue, C.-C. Shi, Z. Xu, B. Jiao, Z.-Q. Liu, J.-F. Huang, Y.-G. Zheng and Y.-C. Shen, *Adv. Synth. Catal.*, 2015, **357**, 1741–1750.
- 8 (a) J. E. Raczynska, C. E. Vorgias, G. Antranikian and R.
 Wojciech, J. Struct. Biol., 2011, **173**, 294–302; (b) L. Zhang, B.
 Yin, C. Wang, S. Jiang, H. Wang, Y. A. Yuan and D. Wei, J.
 Struct. Biol., 2014, **188**, 93–101.
- 9 C.-M. Lee, C.-H. Chen, S.-C. Ke, G.-H. Lee and W.-F. Liaw, J. Am. Chem. Soc., 2004, **126**, 8406–8412.
- 10 P. Bernatis, J. C. V. Laurie and M. R. DuBois, *Organometallics*, 1990, **9**, 1607–1617.
- 11 J. F. Coetzee and I. M. Kolthoff, J. Am. Chem. Soc., 1957, **79**, 6110–6115.
- 12 (a) É. Dufour, A. C. Storer and R. Ménard, *Biochemistry*, 1995, **34**, 16382–16388; (b) S. Y. Reddy, K. Kahn, Y.-J. Zheng and T. C. Bruice, *J. Am. Chem. Soc.*, 2002, **124**, 12979–12990.
- 13 J. S. Kim, J. H. Reibenspies and M. Y. Darensbourg, J. Am. Chem. Soc., 1996, **118**, 4115–4123.

- 14 W. R. Purdum and K. D. Berlin, *J. Org. Chem.*, 1975, **40**, 2801–2806.
- 15 G. Baccolini and E. Mezzina, J. Chem. Soc., Perkin Trans. 1, 1990, 19–22.

Page 4 of 5

4 | J. Name., 2012, 00, 1-3

Dalton Transactions

Graphical Abstract

Acid produced by nickel complexation drives incorporation of acetonitrile to yield uncommon thioiminium/phospholanium species.