This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
A new flexible hexakis-fullerene adduct with two bis(pyridin-4-ylmethyl)malonate groups located at trans-1 positions was synthesized. Via reaction with Ag(PF₆)₂ under two different conditions, two new 1D coordination polymers were obtained; under a nitrogen atmosphere, the silver ions are connected by argentophilic interactions but under an ambient atmosphere, the silver ions exhibit no interaction between them but coordination to the (H₂PO₄) ions.

Introduction

Fullerene derivatives possess unique physicochemical properties and have potential applications as electronic, magnetic, catalytic, biological and optical materials.¹⁻¹⁰ The three-dimensional structure of the carbon sphere and the multiple reactive bonds on C₆₀ make it an ideal candidate as a building block for the construction of interesting and functional supramolecular architectures.¹¹,¹² So far, the synthesis of fullerene-based coordination polymers has been reported in only a few cases. For example, the piperazine adduct of C₆₀, C₆₀[N(CH₂CH₂)₂N] was shown to react with Ag(O₂CCF₃)₂ to form a crystalline linear polymer,¹³ and it also reacted with Rh₂[(O₂CCF₃)₄]₂ to afford a fullerene-containing network that can encapsulate free C₆₀ and C₇₀.¹⁴ Echegoyen et al. used the Kräutler’s synthetic strategy together with a Bingel–Hirsch reaction to prepare a trans-1 hexakisfullerene adduct with two N-containing, 4,5-diazafuluorene groups. This fullerene linker reacted with Ag(I) to form a one dimensional (1D) linear coordination polymer.¹⁶ Similarly, a hexakisfullerene adduct with two pairs of phenylpyridine groups arranged in a trans-1 geometry was treated with cadmium nitrate to build a two-dimensional (2D) fullerene-based MOF.¹⁷ Khlobystov, Schröder et al. synthesized bis(pyridin-4-ylmethyl)malonate fullerenes as flexible coordination linkers to react with Ag(PF₆)₂ resulting in the formation of dimeric and polymeric metallacyclic products.¹⁷ Most fullerene linkers are rigid structures that react with metal ions to form the desired coordination polymers. Herein, we report a new flexible fullerene linker, compound 3, which reacts with Ag(PF₆)₂ under different conditions to afford different coordination polymers.

Results and discussion

The synthetic procedure used to prepare the trans-1 hexakis-fullerene linker 3 is shown in Scheme 1. Tetrakis[di(ethoxycarbonyl)methano]-C₆₀ (1)¹⁵ reacts with bis(pyridin-4-ylmethyl)malonate (2)¹⁷ to afford the yellow trans-1 hexakis-fullerene linker 3.

The ¹H NMR spectrum of 3 (Fig. 1) displays two quartets centered at δ = 4.37 and 4.33 ppm and two triplets centered at δ = 1.35 and 1.33 ppm, that can be assigned to the methylene and methyl protons of the equatorial ethyl malonate groups. The ¹³C resonances for the methylene and methyl carbons of the ethyl malonate groups appear at δ = 63.21, 63.13 and δ = 14.22, 14.20 ppm (Fig. S2). The three signals (δ = 8.56, 7.18 and 5.26 ppm) in the downfield region of the ¹H NMR spectrum are assigned to the protons in the a, b and c positions of the bis(pyridin-4-ylmethyl)malonate, respectively (see Scheme 1). These features (the equivalency of the protons and carbons of the malonates and for the aromatic groups) clearly confirm the D₂h symmetry of 3.

The UV-visible spectra of C₆₀ derivatives are mainly determined by the properties of the cage, not by those of the addends.¹⁸ The UV-visible absorption peaks of 3 in CH₂Cl₂ occur at λ_max: 271, 281, 317, 334 and 388 nm. This pattern is nearly identical to that for the trans-1 hexakis-[di(ethoxycarbonyl)methano]-C₆₀ reported by Hirsch et al.¹⁹

Scheme 1 Synthesis of compound 3, R=[C-(OOC,H₄)₂].
molecules of 3 connected by coordination of the nitrogen atom in each pyridine ring to a bridging silver ion as shown in Fig. 3. Each silver ion in the chain is coordinated by two pyridine ligands from different molecules of 3. There is some disorder in the positions of the silver ions. Ag1a has 0.40 fractional occupancy. In addition, there is a second silver site, Ag1B, which also has 0.40 occupancy, and a third site, Ag1C with 0.20 occupancy (Fig. S5). The chain constructed using Ag1B is virtually identical to that shown in Fig. 2. In both of these cases the silver ions make argentophilic interactions with each other. The Ag1A····Ag1A’ distance is 2.986(5) and the corresponding Ag1B···Ag1B’ distance is 3.178(10) Å. The Ag-N distances (Ag1A-N1, 2.166(7); Ag1A-N2, 2.066(5) Å) are comparable to those in [(py)₂Ag][PF₆] where the Ag-N distances are 2.127(3) and 2.123(3) Å.²⁴ In polymeric 4, the N-Ag1A-N angle (161.3(3) °) is bent in an inward direction that facilitates the argentophilic interaction between the silver ions. The simple salt [(py)₂Ag][PF₆] also displays argentophilic interactions with the shortest Ag···Ag distance equal to 3.0001(5) Å.²⁴ In the crystal, strands of the linear polymer run diagonally parallel to the ac plane as seen in the packing diagram in Fig. S6. These polymeric strands are closely packed so that there are no significant voids in the crystal, but there are π-π interactions between pyridyl groups in neighboring strands. The (PF₆)⁻ ions are not coordinated to the silver ions. A second linear 1D polymer, compound 5 with composition [(Ag₃(3)(H₂PO₄))₃]•(PF₆)₃•(CH₃CN), was obtained by diffusion of a moist acetonitrile solution of Ag(PF₆) into a dichloromethane solution of 3 followed by diffusion of toluene under air. Under these conditions partial hydrolysis of the (PF₆)⁻ ion occurred, as has been observed previously.⁷ The structure of polymeric 5 is shown in Fig. 4. The structure of this polymer and its packing (Fig. S7) are similar to that of compound 4. Individual molecules of precursor 3 are connected together through silver ions, which coordinate to the pyridine arms of neighboring molecules of 3. In this case there are no argentophilic interactions between the silver ions. However, each silver ion is three coordinate with T-shaped bonding to an (H₃PO₄)⁻ ion and the two pyridine nitrogen atoms. The Ag-N distances (Ag1-N1, 2.173(8); Ag1-N2, 2.196(8) Å) are similar in polymeric 4. The Ag-O16 distance is 2.544(9) Å. The Ag-Ag1-N bond angle is 162.0(3) °; while the Ag-Ag1-O16 and Ag-Ag1-O16 bond angles are 98.08(45) and 102.85(44), respectively. A similar structural arrangement is seen in the ladder polymer, [(Ag₄(4’- bipy)(H₃PO₄)₃)]•(H₃PO₄), which has Ag-N distances of 2.133(3) and 2.126(3) Å and an Ag-O distance (2.822(2) Å) that is significantly larger than the corresponding distance in polymeric 5.²⁶ The hydrolysis reaction is incomplete since the (H₃PO₄)⁻ site is shared by ca 25% (PF₆)⁻ in compound 5.
Conclusions

In summary, the transparent, yellow, linear polymers 4 and 5 were prepared from a flexible fullerene linker compound, 3, and Ag(PF₆) by crystallization under a nitrogen atmosphere or under ambient conditions, respectively. The silver ions in compound 4 are connected by argentophilic interactions while for compound 5 these interactions are replaced by (H₂PO₄)⁻ and silver ion interactions. In both 4 and 5 the flexible, pyridine-containing arms adopt a parallel alignment that facilitates linear polymer formation. However, we expect that other molecules made from 3 may use these flexible arms to form two-dimensional networks as well, and may find applications in gas adsorption/storage and adsorption of organic molecules.

Experimental

General procedure
All reactions were conducted under an atmosphere of purified dinitrogen using standard Schlenk techniques. All chemicals were obtained from commercial sources and used without further purification. Infrared spectra were recorded on a Bruker Tensor27 IR spectrometer. The NMR spectra were recorded using a JEOL 600 NMR spectrometer. The UV–vis spectrum was recorded using a Cary 5000 UV–vis–NIR spectrophotometer. Matrix-assisted laser desorption ionization (MALDI) mass spectra were recorded on a Bruker Microflex LRF mass spectrometer. Cyclic voltammetry was carried out in a one compartment cell using a BAS 100B workstation in a solution of dichloromethane containing 0.1 M n-Bu₄NPF₆. A 2 mm diameter glassy carbon disk was used as
The working electrode, silver wire as a pseudo reference and a platinum wire as a counter electrode. Ferrocene was added to the solution at the end of each experiment as an internal potential standard. Tetakis-[di(ethoxycarbonylmethyl)ethenyl]C_{60} and bis-[pyridin-4-ylmethyl]malonate were prepared as described in the literature.15, 17

Synthesis of Trans-1 Hexakis-Adduct 3.

To a solution of 100.0 mg (0.074 mmol) of 1, 41.5 mg (0.163 mmol) of 3b, and 46.5 mg (0.162 mmol) of bis-[pyridin-4-ylmethyl]malonate 2 in 50 mL of CH_{2}Cl_{2} was added 44 μL (0.294 mmol) of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). The reaction mixture was allowed to stir at room temperature overnight. The solvent was then removed under reduced pressure and the mixture was purified by silica gel column to get a yellow solid (48.6 mg, 34% yield).

X-ray Crystallography and Data Collection of 3.

Crystals were grown by a slow diffusion of an acetone solution of AgPF_{6} into a solution of 3 in dichloromethane followed by diffusion of toluene into the resulting solution under an ambient atmosphere.

Crystal data for |\(3\text{Ag}_{2}\text{H}_{2}\text{PO}_{4}\text{L}_{1.5}\text{PF}_{6}\text{L}_{0.5}\text{•(CH}_{3}\text{CN})_{n}\) (5). C_{12}H_{7}O_{8}Na_{2}P_{4}F_{6}S_{0}M_{n}: \(M = 2393.46\), yellow needle, \(0.094 \times 0.047 \times 0.019\) mm, \(\lambda = 1.0333\) Å (synchrotron radiation at Beamline 11.3.1 at the Advanced Light Source, Lawrence Berkeley Laboratory), triclinic, space group P\(\overline{1}\) (no. 2), \(a = 10.910(6)\), \(b = 14.7707(9)\), \(c = 16.9006(11)\), \(\alpha = 105.067(3)^{\circ}\), \(\beta = 94.215(4)^{\circ}\), \(\gamma = 93.227(3)^{\circ}\), \(T = 100(2)\) K, \(V = 2418.4(3)\) Å{\(^3\)}, \(Z = 1\), 32870 reflections measured, 8653 unique \((R_{int} = 0.0658)\) which were used in all calculations, Bruker Apex II; \(2\theta_{\text{max}} = 76.99\)°; min/max transmission = 0.5944 / 0.7476 (multi-scan absorption correction applied); direct and Patterson methods solution; full-matrix least squares based on \(F^{2}\) (SHELXT and SHELXL-2014); The final \(wR(F_{2})\) was 0.2214 (all data), conventional \(R_{2} = 0.1057\) computed for 6518 reflections with \(I > 2\sigma(I)\) using 760 parameters with 8 restraints.

X-ray Crystallography and Data Collection of 4.

Crystals were grown by a slow diffusion of an acetone solution of AgPF_{6} into a solution of 3 in dichloromethane followed by diffusion of toluene into the resulting solution under a nitrogen atmosphere. Crystal data for |\(3\text{Ag}_{2}\text{H}_{2}\text{PO}_{4}\text{L}_{1.5}\text{PF}_{6}\text{L}_{0.5}\text{•(CH}_{3}\text{CN})_{n}\) (4). C_{12}H_{7}O_{8}Na_{2}P_{4}F_{6}S_{0}M_{n}: \(M = 2509.52\), yellow needle, 0.200x 0.075x 0.025 mm, \(\lambda = 1.5417\) Å, triclinic, space group P\(\overline{1}\) (no. 2), \(a = 10.1664(4)\), \(b = 14.1537(6)\), \(c = 20.4581(8)\) Å, \(\alpha = 72.744(2)^{\circ}\), \(\beta = 81.9800(18)^{\circ}\), \(\gamma = 78.445(2)^{\circ}\), \(T = 90(2)\) K, \(V = 2740.3(2)\) Å^{3}, \(Z = 1\), 39479 reflections measured, 8706 unique \((R_{int} = 0.0471)\) which were used in all calculations, Bruker Apex Duo; \(2\theta_{\text{max}} = 136.5\)°; min/max transmission = 0.6088 / 0.7531 (multi-scan absorption correction applied); direct and Patterson methods solution; full-matrix least squares based on \(F^{2}\) (SHELXT and SHELXL-2014); The final \(wR(F_{2})\) was 0.2323 (all data), conventional \(R_{1} = 0.0884\) computed for 866 reflections with \(I > 2\sigma(I)\) using 875 parameters with 113 restraints. PLATON/SQUEEZE was employed to account for the missing electron density of disordered solvent molecules with low occupancies in the structure.

Acknowledgements

LE thanks the Robert A. Welch Foundation for an endowed chair, Grand CH-0033 and the U. S. NSF (Grant CHE-1408865) for support. ALB and MMO thank the U. S. NSF (Grant CHE-1305125), and the Advanced Light Source, Beamline 11.3.1, Lawrence Berkeley Laboratory, for support. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

References

Synopsis

A new flexible hexakis-fullerene adduct with two bis(pyridin-4-ylmethyl)malonate groups was synthesized and reacted with Ag(PF$_6$) to form two new 1D crystalline coordination polymers.