Dalton Transactions

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/dalton

Cite this: DOI: 10.1039/coxx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Luminescent properties of a new green afterglow phosphor NaBaScSi₂O₇:Eu²⁺

Gen Li, Yuhua Wang,* Wei Zeng, Wenbo Chen, Shaochun Han, Haijie Guo and Xicheng Wang

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

A novel green afterglow phosphor NaBaScSi₂O₇:Eu²⁺ was prepared by a solid state reaction under a reductive atmosphere. The NaBaScSi₂O₇:Eu²⁺ phosphor shows two emission bands centered at about 424 (weak) and 502 nm (strong) due to the substitution of Eu²⁺ in both Ba⁺ and Na²⁺ sites, and energy transfer from Eu_{Ba} (424 nm) to Eu_{Na} (502 nm) was found. Both Eu_{Ba} and Eu_{Na} has contribution to the afterglow

¹⁰ process while Eu_{Na} dominates. $Na_{0.99}BaScSi_2O_7:0.01Eu^{2+}$ exhibits green long lasting phosphorescence, whose duration is more than 1 h. The thermoluminescence property of $NaBaScSi_2O_7:Eu^{2+}$ and the relationship between thermoluminescence and thermal quenching property were discussed in detail. This work provides a new and efficient candidate for the long lasting phosphorescence material.

1. Introduction

- ¹⁵ Energy is one of the most focused topics in the 21st century. The development of science and technology brings about the increasing demand of energy sources. The unprecedented global increase in energy consumption has inevitably caused some problems. For example, due to the increasingly rapid exploit of
- ²⁰ conventional energy sources, such as the fossil fuels, the environmental pollution is more and more serious. As it is well known, solar energy is a renewable and clean energy source. Enhancing the ability of solar energy utilization should effectively alleviate these severe problems and ensure the
- ²⁵ sustainable development of our society and economy.¹⁴ Therefore, there is a great requirement to develop a reliable storage and utilization technology of solar energy.

As a novel and efficient solar energy material, long lasting phosphorescence (LLP) material has attracted hectic researches in

- ³⁰ recent years. The materials relate to an interesting optical phenomenon that the luminescence still can be observed for several seconds to hours after the stoppage of excitation.^{5,6} They can absorb and store energy under the excitation (such as sunlight and some other artificial light source) and then release the stored
- ³⁵ energy in the form of light at room temperature under thermal stimulation. Due to the environmentally friendly, energy saving and recyclable properties, LLP materials can be applied in extensive important fields, e.g. emergency signs, decorations, electronic displays, solar energy utilization, imaging or optical
- ⁴⁰ memory storage, medical diagnostics and *vivo* bio-imaging, etc.⁷⁻

At present, the best LLP materials are still Eu^{2+} doped alkaline earth aluminate phosphors, e.g. $SrAl_2O_4:Eu^{2+}$, Dy^{3+} (green) and $CaAl_2O_4:Eu^{2+}$, Nd^{3+} (blue).¹²⁻¹⁶ However, the aluminate-based

⁴⁵ LLP materials have bad water resistance. Besides, the synthetic process usually needs H₃BO₃ as a flux and the synthetic

temperature of these materials is usually too high (>1400 °C).^{12,13} These disadvantages limit the practical application of LLP materials. Compared with aluminate-based LLP materials, the 50 silicate-based LLP materials possess better chemical stability, heat stability, weather resistance and lower synthetic temperature so that they have attracted more and more attention recently.¹⁷⁻¹⁹ Unfortunately, the excellent silicate-based LLP materials are still Sr₂MgSi₂O₇:Eu²⁺,Dy³⁺ limit to $(blue)^{20}$ and 55 Ca₂MgSi₂O₇:Eu²⁺,Dy³⁺ (yellow-green)²¹, and their afterglow intensities are weaker than those excellent aluminate-based LLP materials. Therefore, the development of new silicate-based LLP materials would be necessary to meet the demand of practical

utilization. 60 Generally, the design of LLP materials is based on the host and activator. In 2010, the silicate NaBaScSi₂O₇ compound was first reported in the form of a single crystal, which has a monoclinic system with a space-group symmetry of P21/m.22 Later, the structure and luminescence properties of NaBaScSi₂O₇:Eu²⁺ 65 polycrystalline powder were studied in detail by Ray et al., Liu et al. and Zhu et al..23-25 This phosphor with high luminescence efficiency attracts our intense interest and none of its LLP properties has been studied yet upon reviewing the literature. Additionally, until now it is well known that Eu^{2+} acting as an 70 efficient activator is a common ion widely investigated and applied in the field of LLP materials because its 5d electron state is usually close to the conduction band of the host, which makes trapping of electron become possible.²⁶⁻²⁸ Accordingly, NaBaScSi₂O₇:Eu²⁺ was selected as the silicate-based candidate in 75 our work for the sake of basic scientific study and demand for LLP materials. Just as we anticipated, in this paper, a novel green emitting LLP material, NaBaScSi₂O₇:Eu²⁺, was successfully prepared by a solid state reaction under reductive atmosphere and identified by XRD refinement. The photoluminescence, afterglow ⁸⁰ and thermoluminescence properties of NaBaScSi₂O₇:Eu²⁺

phosphors were investigated in detail for the first time.

2. Experimental

2.1. Synthesis

Powder samples of NaBa_{1-x}ScSi₂O₇:xEu²⁺ ($0 \le x \le 0.025$) were s synthesized by conventional solid state reaction method. The raw materials Na₂CO₃ (99%), BaCO₃ (99.9%), SiO₂ (99.9%), Sc₂O₃ (99.99%) and Eu₂O₃ (99.99%) were stoichiometrically weighted out. After the ingredients were mixed thoroughly, the mixtures were placed into an alumina crucible and sintered at 1250°C for 5

¹⁰ h under a reductive atmosphere (5% H_2 + 95% N_2) in an electric tube furnace. Finally, after calcination, the samples were cooled to room temperature in the furnace and ground again into powder for subsequent use.

2.2. Characterization

- ¹⁵ The phase purity of samples was analyzed by X-ray powder diffraction (XRD) using a Bruker D2 PHASER X-ray diffractometer with graphite monochromator using Cu Ka radiation ($\lambda = 1.54184$ Å), operating at 30 kV and 15 mA with a scanning step of 0.02° in the 20 range from 10° to 80°. The
- ²⁰ morphology of the sample and the energy dispersive X-ray spectroscopy (EDS) spectrum were detected by field emission scanning electron microscopy (FESEM, Hitachi, S-4800). Photoluminescence emission (PL), excitation (PLE) and phosphorescence spectra were carried out by a FLS-920T
- 25 spectrometer with Xe 900 (450 W xenon arc lamp) as the light source. The scanning step was 1 nm. Thermal quenching was tested using a heating apparatus (TAP-02) in combination with PL equipment. Afterglow decay curve measurements were measured with a PR305 long afterglow instrument after the
- ³⁰ samples were irradiated with standard artificial daylight (the color temperature 6500 k and the power 18 w) for 10 min. Thermoluminescence (TL) curves were measured with a FJ-427A TL meter (Beijing Nuclear Instrument Factory) with a heating rate of 1 K s⁻¹. The sample weight was kept constant (20 mg).
- ³⁵ Before the measurements, the samples were irradiated with ultraviolet light (254 nm) for 15 min. All the measurements were carried out at room temperature except for thermal quenching and TL curves. The results are repeatable.

3. Results and discussion

40 3.1. Phase analysis

- Fig. 1a shows Rietveld structural refinement of the XRD pattern of NaBaScSi₂O₇ host, obtained using Materials Studio program. Red solid line, black crosses and blue solid line are the calculated pattern, experimental pattern and background, respectively. Pink
- ⁴⁵ short vertical lines show the positions of Bragg reflections of the calculated pattern. The difference between experimental and calculated pattern is plotted by dark cyan line at the bottom. For the structure refinement, initial structural model is constructed with the single crystal data (COD-9013815).²² The final
- ⁵⁰ refinement residual factors are $R_{wp} = 8.52\%$ and $R_p = 5.39\%$. The refinement results confirm the single-phase nature of the compound in the monoclinic space group P2₁/m (No. 11) with cell parameters $a = 6.86117 \pm 0.00133$ Å, $b = 5.61656 \pm 0.00108$ Å and $c = 8.81239 \pm 0.00164$ Å, which almost coincides with the

55 unit cell parameters of the reported NaBaScSi2O7 host22. According to Zhu's report, Eu²⁺ occupies both the Na⁺ and Ba²⁺ sites in NaBaScSi₂O₇.²⁵ As shown in the inset of Fig. 1a, the Ba²⁺ site is coordinated with nine oxygen ions and the Na⁺ site is coordinated with eight oxygen ions. The ionic radii of Na⁺ and 60 Ba²⁺ are 1.18 and 1.47 Å, and the ionic radii for the eight- and nine-coordinated Eu²⁺ are 1.25 and 1.30 Å, which shows that the difference in ionic radii between the doped and substituted ions is acceptable.²⁹ Divalent Eu²⁺ replaces the divalent Ba²⁺ site equivalently, while replaces the monovalent Na⁺ site with the 65 charge imbalance, resulting in generation of vacancies. Fig. 1b shows the EDS spectrum analysis of the NaBaScSi₂O₇ sample. It confirms the presence of sodium (Na), barium (Ba), scandium (Sc), silicon (Si), oxygen (O) and carbon (C) in the NaBaScSi₂O₇ sample. Except for C, which is deduced from the use of 70 conductive adhesive tape for supporting the sample, no other impurity peaks can be detected. The SEM image of NaBaScSi₂O₇ host is shown in the inset of Fig. 1b. It is clearly seen that the grains have irregular shape of blocky particles with a size of about 2-20 µm.

Fig. 1 (a) XRD refinement results of NaBaScSi₂O₇ host. (b) the EDS spectrum of NaBaScSi₂O₇ host. The inset shows SEM image of NaBaScSi₂O₇ host.

Fig. 2 shows a series of XRD patterns for NaBa_{1-x}ScSi₂O₇:xEu²⁺ ⁸⁰ ($0 \le x \le 0.025$) phosphors with different Eu²⁺ concentrations as well as the calculated XRD patterns of NaBaScSi₂O₇ host according to the refinement results. It is obvious that the XRD profiles are well fitted with the calculated XRD pattern and diffraction peaks of these phosphors can be exactly assigned to NaBaScSi₂O₇ host. No detectable impurity phase is observed in ⁵ the obtained phosphors, indicating that all the samples are single phase and Eu²⁺ has been successfully incorporated in the NaBaScSi₂O₇ host without changing the crystal structure noticeably.

 $_{10}$ Fig. 2 XRD patterns of NaBa_{1-x}ScSi₂O₇:xEu²⁺ (0 \leq x \leq 0.025) and the calculated XRD pattern from the refinement results.

3.2. Photoluminescence analysis

In order to investigate the luminescence properties, a series of samples with different Eu^{2+} concentration, $Na_{1-x}BaScSi_2O_7:xEu^{2+}$ ¹⁵ (0.001 $\leq x \leq$ 0.025), were synthesized. Fig. 3a illustrates the PLE and PL spectra of the Eu^{2+} doped NaBaScSi₂O₇ phosphor. Under 368 nm excitation, the PL spectra of the

- NaBaScSi₂O₇:Eu²⁺ phosphors consist of two emission bands centered at about 424 and 502 nm, which is consistent with the ²⁰ result of Zhu's report²⁵. In that report, the conclusion was drawn
- that the former emission band centered at 424 nm is attributed to the 5d-4f transitions of Eu^{2+} occupying Ba^{2+} sites with ninecoordination (Eu_{Ba}), and the latter emission band centered at 502 nm is attributed to the 5d-4f transitions of Eu^{2+} occupying the Na⁺
- $_{25}$ site with eight-coordination (Eu_{Na}), respectively. The intensity of the latter emission band centered at 502 nm is strong while that of the former one centered at 424 nm is weak, which results in a green emission of the NaBaScSi_2O_7:Eu^{2+} phosphor. The PLE spectra of Na_{0.99}BaScSi_2O_7:0.01Eu^{2+} are monitored at 424 and
- $_{30}$ 502 nm. Both the obtained broad bands are assigned to the transition between the ground-state $4f^7$ and the crystal-field split $4f^65d^1$ configuration of Eu²⁺.³⁰ When monitored at 424 nm (Eu_{Ba}), the PLE spectrum exhibits a broad excitation band from 250 to 380 nm, which could be mainly originated from the absorption of
- ³⁵ Eu_{Ba}. When the monitoring wavelength is fixed at 502 nm (Eu_{Na}), the PLE spectrum shows a wider excitation band from 250 to 500 nm. The additional excitation band from 380 to 500 nm should be mainly ascribed to the absorption of Eu_{Na}. Both Eu_{Na} and Eu_{Ba} are found, indicating that Eu_{Na} is essentially excited through Eu_{Ba},
- $_{40}$ which provides an evidence for the energy transfer (ET) between Eu_{Ba} and Eu_{Na} in $NaBaScSi_2O_7.$

Fig. 3b represents the dependence of the emission intensity at 424 nm and the emission intensity at 502 nm on ${\rm Eu}^{2+}$ concentration

for Na_{1-x}BaScSi₂O₇:xEu²⁺ samples, respectively. The emission ⁴⁵ intensity at 502 nm increases with an increase of the Eu²⁺ doping concentration. And it reaches a maximum value at the 1% Eu²⁺ concentration. Since the Eu²⁺ concentration surpasses 1%, the emission intensity illustrates a decrease tendency due to the concentration quenching effect. That is, when the Eu²⁺ ⁵⁰ concentration increases, more and more Eu²⁺ pair or aggregate with others. Efficient resonant energy transfer between Eu²⁺ ions and a fraction of migration to distant luminescent killer occur, leading to the luminescence quenching. It is interesting that, comparatively, the emission intensity at 424 nm changes in ⁵⁵ different way with an increase of the Eu²⁺ concentration. It decreases firstly and then increases, finally reaches a saturation point at x = 0.02.

Fig. 3 (a) PLE and PL spectra of $Na_{1-x}BaScSi_2O_7:xEu^{2+}$ (0.001 $\leq x \leq$ 60 0.025). (b) The dependence of the emission intensity at 424 nm (black) and 502 nm (red) on Eu²⁺ ion concentration for $Na_{1-x}BaScSi_2O_7:xEu^{2+}$ samples, respectively.

Generally, ET occurs only when the emission band of the sensitizer overlaps spectrally with the absorption band of the ⁶⁵ activator.³¹ Spectral overlap has been observed in Eu_{Ba} emission and Eu_{Na} excitation in NaBaScSi₂O₇, which is shown in Fig. 3a. It can be seen that the overlap of Eu_{Ba} emission and Eu_{Na} excitation is almost 100%, which indicates that the ET from Eu_{Ba} to Eu_{Na} is possible. Thus, it should be believed that, in Na₁. ⁷⁰ _xBaScSi₂O₇:xEu²⁺, energy can transfer in three ways:Eu_{Ba}-Eu_{Ba}.

 Eu_{Ba} - Eu_{Na} and Eu_{Na} - Eu_{Na} .

- Since Eu^{2+} is very sensitive to its crystal environment, as a consequence, Eu^{2+} located at the different crystallographic sites in host lattices exhibit different emission bands.³² In ⁵ NaBaScSi₂O₇:Eu²⁺, the two kinds of emitting centers at 424 and 502 nm have been labeled as Eu_{Ba} and Eu_{Na} respectively, and the ET between them can be expected. When the concentration of Eu^{2+} is relative low, the distance between vicinal Eu_{Ba} ions is too large while the distance between Eu_{Ba} and Eu_{Na} ions is near
- ¹⁰ relatively so that ET from Eu_{Ba} to Eu_{Na} is dominant, and the probability of ET from Eu_{Ba} to Eu_{Na} increases as the distance between Eu_{Ba} and Eu_{Na} ions decreases, resulting in that the Eu_{Ba} emission intensity decreases firstly with increasing Eu^{2+} concentration. As the Eu^{2+} concentration increases to 1%, the
- 15 distance between vicinal Eu_{Ba} ions becomes less, thus resulting in that ET from one Eu_{Ba} ion to another is dominant. In this circumstances, the Eu_{Ba} emission intensity increases with the increase of the Eu^{2+} concentration. However, as the Eu^{2+} concentration increases continually and surpasses 2%, the
- $_{\rm 20}$ concentration quenching effect occurs so that the $\rm Eu_{Ba}$ emission intensity illustrates a decrease tendency finally.

3.3. Afterglow characteristic

Fig. 4 The afterglow decay curves of $Na_{1-x}BaScSi_2O_7:xEu^{2+}$ (0.001 $\leq x$ 25 \leq 0.02). The inset shows the PL spectrum and phosphorescence spectra of $Na_{0.99}BaScSi_2O_7:0.01Eu^{2+}$.

Fig. 4 depicts the afterglow decay curves of $Na_{1-x}BaScSi_2O_7:xEu^{2+}$ (0.001 $\leq x \leq$ 0.02) with different Eu^{2+x} concentrations. The optimal Eu^{2+x} concentration for the longest 30 afterglow time of $NaBaScSi_2O_7:Eu^{2+x}$ is 1%. The persistent emission lasts for more than 1 h.

The inset of Fig. 4 shows the PL spectrum of $Na_{0.99}BaScSi_2O_7:0.01Eu^{2+}$ under 368 nm excitation and its phosphorescence spectra measured at different time after the

- ³⁵ excitation source was switched off. The phosphorescence spectra are plotted with an amplification of 150 times. They also reveal two broad bands and their profiles do not change with decay time, indicating that the green LLP originates from the two kinds of Eu^{2+} emission centers. From the phosphorescence spectra, it is
- $_{40}$ safe to say that the phosphorescence should be derived from Eu $^{2+}$ in the above-mentioned Ba $^{2+}$ and Na $^+$ site and the Eu_{Na} emission should be dominant apparently.

3.4. Thermoluminescence characteristic

It is well known that energy traps play an essential role for ⁴⁵ photoenergy storage in LLP materials, which have great effect on the afterglow performance.³³ In general, TL technique is a very useful tool to obtain the information with regard to the energy trap depth and density.³⁴ With different Eu²⁺ concentration, all TL curves show four TL peaks at the same positions approximately, ⁵⁰ corresponding to 87 (T₁), 130 (T₂), 229 (T₃) and 365 °C (T₄), respectively. There is no variation of their profiles except for their intensities, so the TL curve of the Na_{0.99}BaScSi₂O₇:0.01Eu²⁺ sample is exhibited merely in Fig. 5.

55 Fig. 5 TL curve of Na_{0.99}BaScSi₂O₇:0.01Eu²⁺.

Fig. 6 TL curves of Na_{1-x}BaScSi₂O₇:xEu²⁺ (0.001 $\leq x \leq$ 0.02). The inset shows the dependence of the T₁ intensity on Eu²⁺ concentration for Na_{1-x}BaScSi₂O₇:xEu²⁺ samples.

⁶⁰ It is well known that the TL peak at somewhere between 50 and 150°C is suitable for LLP materials to free the trapped carriers slowly by thermal energy at room temperature.^{35,36} So neither T₃ nor T₄ is appropriate for creating afterglow phenomenon. T₁ and T₂ are exactly the traps which lead to the afterglow phenomenon ⁶⁵ in the Na_{1-x}BaScSi₂O₇:xEu²⁺ phosphors and T₁ is dominant. In order to investigate the relationship between TL characteristic and afterglow characteristic, the TL curves from 25 to 160°C of Na_{1-x}BaScSi₂O₇:xEu²⁺ (0.001 $\leq x \leq 0.02$) samples are given in Fig. 6, and the inset shows the dependence of the T₁ intensity on ⁷⁰ Eu²⁺ concentration. It is found that, with increasing the Eu²⁺ concentration is beyond 1%, which corresponds to the variation tendency of the afterglow decay time. Due to the nonequivalent

Page 5 of 7

substitution, an excess of positive charge in the host must be compensated. The only possible way to fulfill the charge compensation is that one Eu^{2+} replace two Na⁺ to balance the charge of the phosphor, which results in large generation of

- $_{\rm 5}$ defects, $V_{\rm Na}$, as energy trap centers for photoenergy storage. As a consequence, with increasing the Eu^{2+} concentration, the number of energy trap centers should rise. And more and more excited electrons would be captured by traps rather than return immediately to emission centers, which is beneficial to the
- ¹⁰ afterglow performance. However, as the distances of traps to traps or traps to emission centers decrease due to the increasing concentration, the excited electrons prefer to transfer from one center to another with non-radiative transition^{31,37,38}, such as thermal energy, leading to the decrease of the direct radiation
- ¹⁵ transition for afterglow, which corresponds to the variation tendency of the afterglow decay time.

3.5. Relationship between Thermoluminescence and Thermal quenching property

According to the previous reports, the NaBaScSi₂O₇:Eu²⁺ ²⁰ phosphor possesses an excellent thermal stability, even at high temperature.^{24,25} In the thermoluminescence characteristic analysis discussed above, there are four TL peaks, corresponding to 87 (T₁), 130 (T₂), 229 (T₃) and 365 °C (T₄) respectively, in the NaBaScSi₂O₇:Eu²⁺ phosphor. At room temperature, only T₁ and

- $_{25}$ T₂ could free the trapped carriers to generate the afterglow while deep T₃ and T₄ could not. However, in the thermal quenching property investigation, deep T₃ and T₄ could free readily the trapped carriers to generate luminescence when measured the PL spectra at high temperature (eg. 200 or 250°C). Therefore, there is
- $_{30}$ doubt that the thermoluminescence from the deep traps may play a role as compensation for the PL intensity and have a positive influence on the thermal quenching property of NaBaScSi₂O₇:Eu²⁺.
- For the sake of clarifying the relationship between the ³⁵ thermoluminescence and thermal quenching property of NaBaScSi₂O₇:Eu²⁺, the following experimental procedures were performed. Before the thermal quenching test, the phosphor was heated at 500 °C for 10 min to erase any residual trapped carriers. The Na_{0.99}BaScSi₂O₇:0.01Eu²⁺ phosphor without heat treatment is
- ⁴⁰ labeled as S1 while it is labeled as S2 with heat treatment at 500°C. As shown in Fig. 7a, the TL curves of S1 (black) and S2 (red) indicates apparently that the residual trapped carriers are erased after heat treatment in the S2 sample.
- The temperature dependent emission spectra for S1 and S2 45 excited at 368 nm were measured and are illustrated in Fig. 7b, respectively. It can be seen obviously that all the emission intensities of S1 at different temperature are much stronger than that of S2. This phenomenon can be explained as follows. Generally, the excited electrons could directly return to the
- ⁵⁰ ground state and emit photons simultaneously. In the S2 sample, the residual trapped carriers have been erased through heat treatment. When irradiated by the excitation light source, the part excited electrons would be captured by the empty traps rather than return immediately to emission centers, resulting in the weak ⁵⁵ emission intensity.

As shown in the inset of Fig. 7b, the thermal quenching property of the commercial green phosphor (com-green LMS520B) have also been measured for comparison. As the same as previous

reports, the thermal stabilities of both S1 and S2 are found to be ⁶⁰ much better than that of the com-green phosphor LMS520B in this work. Surprisingly, S2 shows nearly the same thermal stability as S1. The unexpected result of the thermal stability comparison between S1 and S2 indicates that the excellent thermal stability of NaBaScSi₂O₇:Eu²⁺ is irrelevant to the TL. ⁶⁵ The traps in the NaBaScSi₂O₇:Eu²⁺ could influence the emission intensity while have little effect on the thermal quenching property. The excellent thermal stability should be an intrinsic property of the NaBaScSi₂O₇:Eu²⁺ phosphor, related to the crystal structure, valence band, chemical composition of the host lattice ⁷⁰ and doping concentration of the activator.³⁹

Fig. 7 (a) TL curves of S1 and S2. (b) The temperature dependent PL spectra of S1 and S2, the inset shows the thermal stabilities of S1 (solid), S2 (dot) and the com-green phosphor (LMS520B).

75 4. Conclusions

In summary, а novel green afterglow phosphor NaBaScSi₂O₇:Eu²⁺ is successfully synthesized by a solid state reaction. The PL spectra of the NaBaScSi₂O₇:Eu²⁺ phosphors consist of two emission bands centered at about 424 (weak) and ⁸⁰ 502 nm (strong), attributed to the 5d-4f transitions of Eu_{Ba} and Eu_{Na} , respectively. Energy transfer from Eu_{Ba} to Eu_{Na} is found. The green persistent emission of NaBaScSi₂O₇:Eu²⁺ can last for more than 1 h. It should be believed that T_1 (87 °C) and T_2 (130 °C) at the appropriate depth are exactly the traps which lead to the ⁸⁵ afterglow phenomenon in the NaBaScSi₂O₇:Eu²⁺ phosphors. The

experimental result indicates that the excellent thermal stability of NaBaScSi₂O₇:Eu²⁺ is irrelevant to the TL.

Acknowledgments

This work is supported by Specialized Research Fund for the

⁵ Doctoral Program of Higher Education (Grant No.20120211130003) and the National Natural Science Funds of China (Grant No.51372105). Thanks for the support of Gansu Province Development and Reform Commission.

Notes and references

- ¹⁰ Department of Materials Science, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, PR China and Key Laboratory for Special Function Materials and Structural Design of the Ministry of Education, Lanzhou University, Lanzhou 730000, China. *Corresponding author: Yuhua Wang
- 15 Email address: wyh@lzu.edu.cn; tel.: +86 931 8912772; fax: +86 931 8913554.
 - P.F. Ribeiro, B.K. Johnson, M.L. Crow, A. Arsoy, Y. Liu, Proc. IEEE, 2001, 89, 1744-1756.
 - 2. S.G. Chalk, J.F. Miller, J. Power Sources, 2006, 159, 73-80.
- 20 3. Y.H. Jin, Y.H. Hu, L. Chen, Y.R. Fu, Z.F. Mu, T. Wang, J. Lin, J. Alloys Comp., 2014, 616, 159-165.
- I. Hadjipaschalis, A. Poullikkas, V. Efthimiou, Renew. Sust. Energy Rev., 2009, 13, 1513-1522.
- 5. Z. Pan, Y. Y. Lu and F. Liu, Nat. Mater., 2012, 11, 58-63.
- 25 6. X. Yu, X. Xu, H. Yu, T. Jiang, P. Yang, Q. Jiao and J. Qiu, Mater. Res. Bull., 2012, 47, 2696-2699.
 - A. Bessière, Suchinder K. Sharma, N. Basavaraju, K.R. Priolkar, L. Binet, B. Viana, A.J.J. Bos, T. Maldiney, C. Richard, D. Scherman, D. Gourier, Chem. Mater., 2014, 26, 1365-1373.
- 30 8. L.L. Noto, M.L. Chithambo, O.M. Ntwaeaborwa, H.C. Swart, J. Alloys Comp., 2014, 589, 88-93.
 - 9. H. A. Hoppe, H. Lutz, P. Morys, W. Schnick and A. Seilmeier, J. Phys. Chem. Solids, 2000, 61, 2001-2006.
- 10. M. Kowatari, D. Koyama, Y. Satoh, K. Iinuma and S. Uchida, Nucl. Instrum. Methods Phys. Res., Sect. A, 2002, 480, 431-439.
- 11. C. N. Xu, T. Watanabe, M. Akiyama and X. G. Zheng, Appl. Phys. Lett., 1999, 74, 2414-2416.
- T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, J. Electrochem. Soc., 1996, 143, 2670-2673.
- ⁴⁰ 13. Y. Gong, Y.H. Wang, Y.Q. Li, X.H. Xu, and W. Zeng, Opt. Express, 2011, 19, 4310-4315.
 - 14. D.S. Kshatri, A. Khare, J. Alloys Comp., 2014, 585, 488-495.
 - W. Xie, J. Quan, H.Y. Wu, L.X. Shao, C.W. Zou, J. Zhang, X.Y. Shi, Y.H. Wang, J. Alloys Comp., 2012, 514, 97-102.
- ⁴⁵ 16. T. Katsumata, H. Kubo, S. Komuro, H. Aizawa, J. Am. Ceram. Soc., 2014, 97, 1704-1707.
 - 17. T. L. Barry, J. Electrochem. Soc., 1968, 115, 1181-1183.
 - Y. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, J. Mater. Sci. Lett., 2001, 20, 1505-1506.
- 50 19. Y. Lin, Z. Zhang, Z. Tang, X. Wang, and Z. Zheng, J. Eur. Ceram. Soc., 2001, 21, 683-685.
 - 20. C. Shi, Y. Fu, B. Liu, G. Zhang, Y. Chen, Z. Qi, and X. Luo, J. Lumin., 2007, 122-123, 11-13.
- 21. L. Jiang, C. Chang, D. Mao, and C. Feng, Opt. Mater., 2004, 27, 51-55 55.

- 22. W. W. Maria, K. Uwe and T. Ekkehart, Can. Mineral., 2010, 48, 51-68.
- 23. S. Ray, K. Toda, S. Kamei, T. Ishigaki, K. Uematsu, M. Sato, H. Kato, M. Kobayashi and M. Kakihana, The 12th International Meeting on Information Display, Daegu, Korea, 2012, 42.
- 24. C.Y. Liu, Z.G. Xia, Z.P. Lian, J. Zhou and Q.F. Yan, J. Mater. Chem. C, 2013, 1, 7139-7147.
- 25. G. Zhu, Y.R. Shi, M. Mikami, Y. Shimomura and Y.H. Wang, CrystEngComm, 2014, 16, 6089-6097.
- 65 26. D. Jia, W. Jia, D. Evans, W. Dennis, H. Liu, J. Zhu, and W. Yen, J. Appl. Phys., 2000, 88, 3402-3407.
 - 27. Y.Q. Li, Y.H. Wang, Y. Gong, X.H. Xu and M.J. Zhou, Opt. Express, 2010, 18, 24853-24858.
- 28. F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, and
 M. Whangbo, Chem. Mater., 2006, 18, 3212-3220.
- 29. R. D. Shannon, Acta Crystallogr., 1976, 32, 751-767.
- G. Blasse and B. C. Grabmaier, Luminescent Materials, Springer-Verlag, Berlin, 1994.
- 31. D.L. Dexter, J. Chem. Phys., 1953, 21, 836-850.
- 75 32. X. Yu, X.H. Xu, H.L. Yu, T.M. Jiang, P.H. Yang, Q. Jiao, J.B. Qiu, Mater. Res. Bull., 2012, 47, 2696-2699.
 - 33. D. Jia, W. Jia, D. R. Evans, W. M. Dennis, H. Liu, J. Zhu and W. M. Yen, J. Appl. Phys., 2000, 88, 3402-3407.
- 34. J. Glodo and A. Wojtowicz, J. Alloys Compd., 2000, 300, 289-294.
- 80 35. T. Aitasalo, P. Deren, J. Holsa, H. Junger, J. C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski and W. Strek, J. Solid State Chem., 2003, 171, 114-122.
 - T. Kinoshita, M. Yamazaki, H. Kawazoe and H. Hosono, J. Appl. Phys., 1999, 86, 3729-3733.
- 85 37. H. Yu, D.G. Deng, S.Q. Xu, C.P. Yu, H.Y. Yin, Q.L. Nie, J. Lumin., 2012, 132, 2553-2556.
 - 38. G. Li, Y.H. Wang, W. Zeng, S.C. Han, W.B. Chen, Y.Y. Li, H. Li, Opt. Mater., 2014, 36, 1808-1813.
- 39. C.N. Zhang, T. Uchikoshi, R.J. Xie, L.H. Liu, Y.J. Cho, Y. Sakka, N.
- 90 Hirosaki and T. Sekiguchi, J. Mater. Chem. C, 2015, DOI: 10.1039/c5tc01575h.

(a) TL curves of S1 and S2. (b) The temperature dependent PL spectra of S1 and S2, the inset shows the thermal stabilities of S1 (solid), S2 (dot) and the com-green phosphor (LMS520B). 323x480mm (300 x 300 DPI)