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New blue or blue-green emitting iridium complexes have been synthesised 

with cyclometalating ligands derived from the 1-methyl-3-(2′′′′-

pyridyl)pyridinium cation. Efficient luminescence is observed in MeCN or 

aqueous solutions, with a large range of lifetimes in the µµµµs region and 

relatively high quantum yields. 

The creation of bright and stable blue emitting compounds is a 

major challenge in the development of light-emitting 

electrochemical cells and organic light-emitting diodes (OLEDs).
1,2

 

Iridium complexes have been investigated extensively due to their 

widely tunable and efficient luminescence.
2–12

 A common structural 

type is [Ir
III

(C^N)2(N^N)]
+
, where C^N is a cyclometalating ligand like 

deprotonated 2-phenylpyridine, and N^N is an α-diimine. A popular 

strategy to blue-shift the emission is to derivatise C^N with 

electron-withdrawing groups (often –F or –CF3) and/or place 

electron donors on N^N. Avoiding the use of fluorine is desirable to 

maximise the stability of the complexes in devices, and from an 

environmental perspective. Hence, we present an alternative 

approach, creating new fluorine-free Ir
III

 luminophores by using 1-

methyl-3-(2′-pyridyl)pyridinium to generate C^N. The quaternised 

nitrogen opposite the cyclometalating carbon is key to blue-shifting 

the emission. 

 

Ir
III

 complexes of C^N ligands derived from pyridinium species are 

extremely scarce.
13

 Notably, these known complexes are not 

suitable for luminescence, but were prepared in the context of 

catalytic studies. Complexes with quaternary N units as part of N^N 

have been reported, but these groups are generally not strongly 

coupled electronically to the Ir
III

 centre.
14–17

 Remote ammonium 

groups have been attached to C^N
18

 or acetylacetonate
19

 ancillary 

ligands. Using Ir
III

 complexes in bio-sensing/imaging
20

 is often 

restricted by poor water solubility,
21

 so increased positive charge is 

beneficial. Given this context and our general interest in 

photoactive complexes with quaternised pyridinium moieties,
22

 we 

targeted unusual Ir
III

 species combining attractive emission and 

solubility properties. 

 

The new complexes 1–3 were synthesised by a standard approach, 

i.e. cleaving a cyclometalated chloride-bridged dimer with a N^N 

ligand (Scheme 1). The PF6
–
 and Cl

–
 salts were characterised by 

1
H 

NMR spectroscopy, electrospray mass spectrometry and elemental 

analyses (see ESI
†
). In addition, single-crystal X-ray structures have 

been solved for 1P∙2MeCN and 3P∙3Me2CO (Tables S1 and S3, Figs. 

S1 and S2, ESI
†
). As expected, both complexes exhibit 

pseudooctahedral coordination at Ir, with the pyridyl rings of the 

C^N ligands in a trans geometry (Fig. 1). Their chemical structures 

bear some resemblance to the widely studied complexes of N-

heterocyclic carbenes derived from imidazolium species, although 

such complexes are typically neutral or only +1 charged.
23–26

 

 

 

Scheme 1 Synthesis of the complex salts 1P–3P; their chloride counterparts 

1C–3C were prepared by treating purified 1P–3P with [
n
Bu4N]Cl in acetone. 

 

 
 

Fig. 1. Representations of the molecular structures of the complex cations in 

1P∙2MeCN and 3P∙3Me2CO, with the PF6
–
 anions, solvent molecules and H 

atoms removed for clarity (50% probability ellipsoids). 
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UV–vis absorption spectroscopic data are shown in Table 1. These 

spectra are almost unaffected by changing the counter-anions and 

solvent. They are dominated by intense bands at λ ˂ 320 nm (Figs. 

S3 and S4, ESI
†
), assigned to π → π* and high energy metal-to-

ligand charge-transfer (MLCT) transitions, involving both the C^N 

and N^N ligands. Weaker bands (λmax ≈ 350–356 nm) are observed 

also. Cyclic voltammograms of 1P–3P in MeCN (Fig. S5, Table S2, 

ESI
†
) show an irreversible oxidation, formally assigned to a Ir

IV/III
 

couple. The reductive region includes multiple irreversible 

processes, and a sharp return peak is observed for 1P and 3P, 

indicating adsorption onto the electrode surface. 

 

Excitation at 315–400 nm in deoxygenated and oxygenated MeCN 

or aqueous solutions leads to bright blue (1 and 3) or blue-green (2) 

luminescence (Table 1). The spectra show significant fine structure, 

indicating primarily ligand-centred emission. As for the absorption 

spectra, changing the counter-anion and solvent has only slight 

effects, and the excitation profiles remain constant in all cases while 

monitoring at all the emission maxima. The spectra are very similar 

for R = H or 
t
Bu (λem = 468–474 nm), but shifted significantly to 

lower energy when R = CF3 (λem = 494). The fact that replacing H 

with 
t
Bu has little effect while –CF3 groups give a red-shift suggests 

that the character of the emitting state varies. The almost identical 

spectra of 1 and 3 (Fig. 2) indicate mainly 
3
LC emission involving 

C^N with little 
3
MLCT contribution. However, the red-shift for 2 

suggests that the emission is associated with N^N. The quantum 

yields ɸ are not affected significantly by the counter-anions under 

deoxygenated conditions, but are substantially enhanced when R = 

CF3 or 
t
Bu (ɸ ≈ 42–45%) as opposed to H (ɸ ≈ 24–27%). In 

oxygenated conditions, 2 shows the largest ɸ values. All complexes 

have emission lifetimes τ in the µs region, covering a large range of 

values (ca. 1–12 µs), with monoexponential decay kinetics. 1C and 

3C show relatively long τ values in water, considerably longer than 

for 2C (Fig. 3). 

 

The observed blue emissions from the fluorine-free complexes 1 

and 3 are remarkable since, as mentioned above, decorating the 

C
˄
N ligands with F or fluorinated groups is a common strategy to 

blue-shift the emission of this type of complex. The influence of the 

pyridinium fragment located para to the cyclometalating carbon is 

clearly shown by comparing the emission properties of 3P (λmax = 

470 nm, ɸdeox = 43%, τdeox = 3.8 ms) with other reported complexes 

[Ir
III

(C^N)2{4,4′-(
t
Bu)2bpy}]

+
. When using the heavily fluorinated 

cyclometalating ligand derived from 2-(2,4-difluorophenyl)-5-

trifluoromethylpyridine, the emission in MeCN (λmax = 470 nm, ɸdeox 

= 68%, τdeox = 2.3 ms) is similar to that of 3P.
27

 On the other hand, 

when C^N is deprotonated 2-phenylpyridine, the emission in MeCN 

is red-shifted strongly (λmax = 581 nm) with a lower ɸdeox (24%) and 

shorter τdeox (0.56 ms).
28 

 

The singlet ground (S0) and lowest triplet excited (T1) states of 1–3 

were optimised by using density functional theory (DFT) (Figs. S6–

S9, Tables S3–S7, ESI
†
). The calculated ground-state structures for 1 

and 3 reproduce well the X-ray crystallographic ones. The LUMO is 

located on the C^N (69–90%) and N^N (6–27%) ligands. The HOMO 

is located at the Ir atom (50–55%) and the C^N ligands (40–46%), 

and is essentially invariant. Such relatively high C^N contributions 

are consistent with the irreversible oxidations observed by cyclic 

voltammetry (see above). The spectra simulated by time-dependent 

DFT agree relatively well with those measured. The weak low 

energy bands are due to a single transition for 1 and 3, a mixture of 

HOMO → LUMO and HOMO → LUMO+1 (347 nm, 1) or HOMO → 

LUMO (348 nm, 3). For 2, transitions occur at 342 nm (HOMO → 

LUMO+1) and 336 nm (HOMO–2 → LUMO), with the latter being 

ca. 5-fold more intense. These results indicate 
1
MLCT character with 

1
ML′CT and also 

1
LL′CT for 1 and 2 (L = C^N; L′ = N^N). 

 

 

Fig. 2. Emission spectra of 1P (blue), 2P (green) and 3P (red) with excitation 

at 350 nm in MeCN. 

 

Table 1. Absorption and emission data at 298 K
 
 in

 
solutions ca. 1.0 × 10

–5
 – 2.0 × 10

–4
 M. Luminescence data measured in the 

presence (ox) or absence (deox) of oxygen. 
Complex 

salt 
Absorption, λmax/nm (ε/10

3
 M

–1
 cm

–1
) Emission, λ/nm 

τ/µs
c
 ɸ(%)

c
 

deox ox deox ox 

1P
a
 237 (54.3), 255sh (48.5), 302 (25.9), 313 (24.5), 352sh (5.3) 444, 474max, 504, 548  3.5 1.2 24 4.7 

1C
b
 237 (48.3), 255sh (42.4), 302 (22.8), 312 (21.8), 353sh (4.8) 442, 470max, 504, 547  12.1 3.9 27 9.7 

2P
a
 236 (47.4), 257 (43.2), 308 (21.6), 316 (20.9), 350sh (5.4) 466, 494max, 525, 574  3.8 1.5 43 16 

2C
b
 237 (52.7), 259 (52.1), 308 (25.2), 317 (24.3), 350sh (5.8) 462, 494max, 529, 575  4.3 2.6 42 24 

3P
a
 236 (51.8), 259sh (44.9), 299 (23.9), 311 (23.2), 356sh (4.5) 440, 470max, 502, 546  3.8 1.2 43 11 

3C
b
 237 (58.0), 260 (49.9), 300 (25.4), 312 (25.9), 355sh (5.5) 440, 468max, 500, 547 9.5 2.9 45 14 

a 
In MeCN. 

b 
In water. 

c
 Estimated experimental errors ±10%. 
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The T1 geometries resemble the S0 ones, except that 1 and 3 now 

have unequal Ir–C and (chemically equivalent) Ir–N distances, while 

in 2, these pairs of distances are equal. The calculated emission 

energies (Table 2) follow the experimental trend (1 ≈ 3 > 2). The 

spin densities for the T1 state (Fig. 4) show mainly 
3
LC involving one 

C^N ligand with some 
3
MLCT contribution for 1 and 3. In contrast, 

for 2, the spin density is located on N^N largely, indicating that the 

emission has 
3
L′C character with some 

3
ML′CT. Therefore, on 

excitation from the C^N/Ir-centred HOMO–2 to the C^N-centred 

LUMO (336 nm transition) in 2, there is efficient inter-ligand energy 

transfer to the emitting 
3
L′C excited state of N^N. Such energy 

transfer is expected if the 
3
L′C state lies below the 

3
MLCT.

29
 In 2, the 

presence of the electron-withdrawing –CF3 groups stabilises the π* 

orbitals of the N
˄
N ligand, lowering the energy of the 

3
L′C state. 

 

 

 

Fig. 3. Emission decay traces in water of 1C (blue), 2C (green) and 3C (red) 

following 375 nm excitation with a ps pulsed diode laser. 

 

 

Fig. 4. M06/Def2-QZVP/SVP-calculated spin density plots for the T1 state of 

complexes 1–3. 

To conclude, using 1-methyl-3-(2′-pyridyl)pyridinium to generate 

C^N affords new water-soluble Ir
III

 complexes. Their excited-state 

and emissive behaviour can be switched between two types by 

modifying N^N. The bright blue emission in MeCN and water of the 

fluorine-free complexes 1 and 3 suggests potential uses in highly 

efficient OLEDs or bioimaging. The tunability of the emission 

properties is shown, not only by the emission maxima, but also in 

the range of quantum yields (ca. 5–45%) and lifetimes, from quite 

short (ca. 1 μs) to relatively long (ca. 12 μs). Much further scope 

exists for modifying properties, for example by using groups other 

than methyl on the quaternised N atom. 
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GRAPHICAL ABSTRACT 

 

Using the cation 1-methyl-3-(2′-pyridyl)pyridinium to produce cyclometalating 
ligands gives novel IrIII complex salts that are water-soluble and emit efficiently 
blue or blue-green light. 
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