Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/dalton

Wenhui Yuan^{a*} Sai Yang^a Li Li^b

A series of Graphite-like g-C₃N₄ hybridized CaIn₂S₄ photocatalysts with different g-C₃N₄ content were fabricated via a facile hydrothermal synthetic method. These asprepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Visible absorption spectra (UV-Vis) and Fourier transform infrared (FT-IR) spectra. Under visible light irradiation, the as-prepared g-C₃N₄/CaIn₂S₄ nanocomposites showed enhanced photocatalytic performance for rhodamine B (RhB) degradation. The sample with 5 wt% g-C₃N₄ hybridized CaIn₂S₄ exhibited the highest photocatalytic activity. The enhanced photocatalytic performance under visible light irradiation could be attributed to the high separation efficiency of the photogenerated electron-hole pairs. This work could provide a new insight into the fabrication of visible light driven photocatalysts with efficient and stable performance.

Keywords: CaIn₂S₄, g-C₃N₄, nanocomposites, visible-light photocatalysis

Introduction

. In past decades, photocatalysis has attracted a lot of attention because of its potential application in the field of energy conversion and pollutant degradation. Various researches have focused on exploiting novel and more efficient photocatalysts for degradation of organic contaminants in wastewater [1]. The

^{*}Corresponding author. Tel: +86 20 8711 1887; fax: +86 20 8711 1887. E-mail address: cewhyuan@scut.edu.cn Present Address: School of Chemistry and Chemical Engineering, South China University of Technology, Wushan, Tianhe, Guangzhou 510640, P. R. China.

semiconductor photocatalysis technique has been regarded as a promising approach to address the increasing global energy and environmental crises [2]. Given the characteristic of low energy consumption and green, semiconductor photocatalysts are regarded as the environmental-friendly technologies for degradation of organic dyes [3-6]. What really matters in the photocatalytic degradation of dye molecules pollutant is how to design photocatalyst with high degradation efficiency [7]. A class of 'multi metal component' oxide semiconductors which is gaining attention from scientific community is 'AIn₂S₄' type metal sulfides. Most metal sulfides are promising candidates for visible-light-driven photocatalysts because of their narrow band gaps and band edge levels at relatively negative potentials compared to oxides [8], such as ZnIn₂S₄ [9-11], CdIn₂S₄ [12-13]. CaIn₂S₄ is a ternary semiconductor chalcogenide that belongs to the AB₂X₄ family of ternary compounds. Recent study found that ternary CaIn₂S₄, first synthesized using a facile hydrothermal method, can produce hydrogen from pure water without any cocatalysts under visible light irradiation [14]. However, the low separation efficiency of photogenerated charge carriers has limited their large-scale practical application. Among various strategies, the rapid separation-transfer-transformation of photo-generated charge carriers is a key issue which should be addressed [15]. One of the techniques for increasing the separation efficiency of photogenerated electron-hole pairs is to form a composite photocatalyst using two kinds of semiconductors [16]. Composite photocatalysts as the separation efficiency of photogenerated charge carriers with two or more components have attract extensive scientific interest. For example, Ding synthesized the CaIn₂S₄^[2]Reduced Graphene Oxide Nanocomposites for efficient RhB degradation under visible light irradiation [17]. Very recently, considerable interest has been focus on graphite-like carbon nitride $(g-C_3N_4)$ with a direct band gap and typical two

dimensional (2D) nanostructure, which exhibits a high visible light photocatalytic performance for the degradation of organic pollutants [18-20]. This material would be a promising photocatalyst owing to its absorption of visible light, low price, and high stability, along with its unique chemical and catalytic properties [21]. Up to now, several kinds of C₃N₄ based heterojunctions have been developed, such as g- C_3N_4/Bi_2WO_6 [22-23], g- $C_3N_4/ZnWO_4$ [24] and g- C_3N_4/Ag_3VO_4 [25], g- C_3N_4/Ag_3PO_4 [26], g- C_3N_4/Co_3O_4 [27], g- $C_3N_4/CuInS_2$ [28]. The key link of constructing a heterojunction is to seek narrow band gap semiconductors with wellmatched band-structure [29]. Considering the previous research, g-C₃N₄ is chosen to modify CaIn₂S₄ to form the new composites. The combination of g-C₃N₄ and CaIn₂S₄ can be an ideal system to extend the absorption to visible light and at the same time to achieve a high separation efficiency of photogenerated electron-hole pairs. To the best of our knowledge, the effect of $g-C_3N_4$ on the photocatalytic performance of $CaIn_2S_4$ has not been reported. Herein, we present a new example of g-C₃N₄ hybridized CaIn₂S₄ photocatalyst. The synergistic effect between CaIn₂S₄ and $g-C_3N_4$ and the possible mechanisms of enhancement of photocatalytic activity were systematically investigated.

Experimental

Preparation of samples

All of the chemical reagents were of analytical grade and used without further purification. The water used was deionized. The $g-C_3N_4$ powders were prepared according to the literature [30]. The metal-free $g-C_3N_4$ powders were synthesized by heating melamine in muffle furnace at different temperatures. In a typical synthesis run, 5 g melamine was placed into an alumina crucible with a cover. Then the crucible

was heated up to 550 °C and held for 2 h with a heating rate of 10 °C/min. Further deamination treatment was performed at 550°C for 2 h. The resulting yellow product was collected, and ground into powder for further use. The typical preparation of g- $C_3N_4/CaIn_2S_4$ photocatalysts was as follows: an appropriate amount of C_3N_4 was completely dispersed in 60 mL deionized water assisted by ultrasonication. In detail, 1.18 g Ca (NO₃)₂·4H₂O (5 mmol), 3.0 g In (NO₃)₃ (10 mmol), and 3.0 g CH₃CSNH₂ (40 mmol, double amount) were added into the suspension. The mixture was stirred for 30 min and then transferred to a 200 mL Teflon-lined stainless steel autoclave. A hydrothermal reaction took place in the sealed autoclave at 160 °C for 16 h. Then, the autoclave was removed from oven and allowed to cool in air. Yellow precipitates were obtained by decantation followed by washing with distilled water and ethanol for several times. The product was then dried at 80 °C for 6 h. According to this method, different weight ratios of g- $C_3N_4/CaIn_2S_4$ from 1 wt% to 10 wt% were synthesized. The composite catalysts were labeled as x-g- $C_3N_4/CaIn_2S_4$, and x presented the g- C_3N_4 loading amount (1 wt%, 3 wt%, 5 wt%, 8 wt% and 10 wt%).

Characterization of materials

X-ray diffraction (XRD) patterns were obtained by Bruker D8 Advance X-ray diffractometer with Cu-K α irradiation ($\lambda = 1.54$ Å) at 40 kV and 40 mA. The general morphology of the products was examined by scanning electron microscopy (SEM) on a JEOL JSM 6700F instrument operated at 20 kV. The transmission electron microscopy (TEM) images were measured by JEOL model JEM 2100 EX instrument at the accelerating voltage of 200 kV. The specific surface area and porosity of the samples were measured by N₂ adsorption at 77K on a Micrometritics ASAP2020 analyzer and calculate by the Brunauer-Emmett-Teller (BET) method. Fourier

transform infrared (FT-IR) spectra were recorded on a Nicolet Avatar 370 spectrophotometer using the standard KBr disk method. All of the samples were degassed at 120 °C overnight prior to BET measurements. The UV-Vis diffuse reflectance spectra (DRS) were conducted with a Varian Cary 500 UV-Vis spectrophotometer with BaSO₄ as the reference.

Photocatalytic activity measurement

The photocatalytic activities of all powders were evaluated by degradation of RhB aqueous solution. The visible light was obtained by a 250 W tungsten-halogen lamp with a 420 nm cut off filter. A suspension containing 100 mg of catalyst and a fresh RhB aqueous solution (120 mL, 30 mg/L) was magnetically stirred in the dark for 30 min to establish an adsorption/desorption equilibrium. At certain time intervals, 3~4 mL of suspension was sampled and the particles were removed. The filtrate was analyzed by a UV-Vis spectrophotometer (UV-2450) and the absorption peaks at maximum absorption wavelength for RhB were monitored.

Results and discussion

Phase structure

Fig.1 shows the XRD patterns of CaIn₂S₄ and g-C₃N₄/CaIn₂S₄ composites. In general, no obvious difference in XRD patterns was observed among all the samples. The main diffraction peaks of all the samples at 27.4°, 28.4°, 33.1°, 43.4°, and 47.7°, correspond to the diffractions of the (311), (222), (400), (511), and (440) planes of CaIn₂S₄ (PCPDF #310272), respectively. No other impurity peaks corresponding to binary sulfides or oxides related to the reactants are detected, indicating the pure phase of CaIn₂S₄. For pure g-C₃N₄ sample, the characteristic peaks at 27.3° and 12.9°

correspond to the (002) plane arising from the stacking of the conjugated aromatic system, and the (100) plane diffraction arising from the in-plane repeating motifs of the continuous heptazine network, respectively [31]. As coupling these two semiconductors, in $g-C_3N_4/CaIn_2S_4$ heterojunction samples similar diffractions to the pure CaIn₂S₄ are observed, indicating that the heterogeneous process would not bring any influence on the crystal structure. Furthermore, there is not any characteristic diffraction peaks for $g-C_3N_4$ observed in the XRD patterns even though the content of $g-C_3N_4$ is as high as 10 wt%, mainly due to its relatively low diffraction intensity and high dispersion [32-33]. Similar results are also observed in some other C₃N₄ based heterojunctions, such as C₃N₄-ZnWO₄ and C₃N₄-Bi₂WO₆ [24, 29, 34].

Morphological structure

Fig. 2 shows the SEM images of CaIn₂S₄ and g-C₃N₄/CaIn₂S₄ photocatalysts. The pure CaIn₂S₄ samples appeared to be aggregated particles, which contained many smaller irregular CaIn₂S₄ crystals, as shown in Fig. 2a. From Fig. 2(b), the pure g-C₃N₄ displays aggregated morphologies, which are comprised of block-based flakiness and particles. However, the g-C₃N₄/CaIn₂S₄ composites showed agglomeration structures, which were similar to pure CaIn₂S₄. As shown in Fig. 2c~g, amounts of CaIn₂S₄ particles are deposited on the surface of g-C₃N₄, resulting in the formation of a heterostructure. In addition, the density of CaIn₂S₄ particles deposited on the g-C₃N₄ surface increases step-by-step with the increase of g-C₃N₄ content. In the case of 5 wt% g-C₃N₄/CaIn₂S₄ heterojunction, the surface of g-C₃N₄ content results in a drastic overlapping of CaIn₂S₄ particles, which is helpless for fabrication of heterojunction with a close interface. This result confirmed the formation of

heterojunction between $g-C_3N_4$ and $CaIn_2S_4$ through the hydrothermal process and showed the intimate contact between $g-C_3N_4$ and $CaIn_2S_4$.

The morphology and the dispersion state of CaIn₂S₄ and 5 wt% g-C₃N₄/CaIn₂S₄ composite were analyzed by TEM and shown in Fig. 3. Fig. 3a is the morphology image of pure CaIn₂S₄, it can be seen that CaIn₂S₄ are granular like. The pure g-C₃N₄ owns a typically layered structure, and its surface is relatively smooth and flat, as shown in Fig. 3b. Fig. 3c is the morphology image of 5 wt% g-C₃N₄/CaIn₂S₄ composite. Before the TEM analysis, a typical preparation procedure was proposed by ultrasonic processing the as-prepared samples for 30 min. Even so, the CaIn₂S₄ and g-C₃N₄ is very strong. It is suggested that a heterojunctions structure was formed, which is beneficial for electrons transfer between component semiconductors [35]. This tight coupling is favorable for the charge transfer between g-C₃N₄ and CaIn₂S₄ and promotes the separation of photogenerated electron-hole pairs, subsequently improving the photocatalytic activity. Moreover, this result also suggests that the g-C₃N₄/CaIn₂S₄ heterojunctions in structure are heterogeneous rather than a physical mixture of two separate phases of g-C₃N₄ and CaIn₂S₄.

FT-IR characterization

The composition of g-C₃N₄/CaIn₂S₄ heterojunctions was further characterized by FT-IR spectroscopy, as shown in Fig. 4. It can be clearly seen that the main characteristic peaks of pure g-C₃N₄ sample. In the spectrum of g-C₃N₄, the strong peaks at 3420 cm⁻¹ and 3200 cm⁻¹ could be ascribed to the absorbed water molecules and stretching mode of N-H resulted from incomplete condensation [36-37], respectively. The absorbance peak at about 810 cm⁻¹ was originated from the

characteristic breathing mode of s-triazine, and the peaks at 1000-1750 cm⁻¹ region were associated with either C-N or C=N stretching mode [38-40]. Naturally, all absorption bands of g-C₃N₄ also still present in g-C₃N₄/CaIn₂S₄ heterojunctions, obviously demonstrating that these heterojunctions contain two fundamental components: g-C₃N₄ and CaIn₂S₄.

Optical properties

It is known that the optical absorption of a semiconductor is closely related to its electronic structure [41]. The UV-vis diffuse reflectance spectra of $g-C_3N_4$, CaIn₂S₄ and g-C₃N₄/CaIn₂S₄ composites are shown in Fig. 5. Pure CaIn₂S₄ shows a wide absorption in visible region with an absorption edge end at about 575 nm. Meanwhile, g-C₃N₄ has an absorption edge at 470 nm. The band gap values were determined to be about 2.9 eV for g-C₃N₄ and 1.96 eV for CaIn₂S₄ according to the Tauc equation. g-C₃N₄/CaIn₂S₄ composites had only one absorption inflection point and kept the same absorption edge with CaIn₂S₄ at about 575 nm. The same absorption edge indicated that the band gap of CaIn₂S₄ was unchanged. Compared with pure $CaIn_2S_4$, all the hybrid composites show slight absorption red-shift, which indicates that the visible light response of these samples have been successfully extended by the hybridization with g-C₃N₄. However, it should be point out that the visible light absorption ability of hybrid samples does not significantly increase with increasing amount of g-C₃N₄. As g-C₃N₄ content was increased from 1 wt% to 5 wt%, an enhanced absorption in visible region from 575 nm to 800 nm was observed for g- $C_3N_4/CaIn_2S_4$ composites. The absorbance increased with the increase of the amount of g-C₃N₄. Such an additional broad band ($\lambda > 575$ nm) could be attributed to the absorption of g-C₃N₄ phase and revealed the increase of the loading amount of g-C₃N₄

on the surface of $CaIn_2S_4$. Furthermore, the intimate contact between $g-C_3N_4$ and $CaIn_2S_4$ might also contribute to the greater absorption.

BET Specific Surface Area Analyses

The nitrogen adsorption-desorption isotherms of CaIn₂S₄ and g-C₃N₄/CaIn₂S₄ composites are presented in Fig. 6. Obviously, all the samples exhibit type IV isotherms with type H₃ hysteresis loop according to the IUPAC classification, indicating that the samples have a mesoporous structure [42-44]. The BET specific surface area and pore volume of g-C₃N₄/CaIn₂S₄ increases with the increase in the content of g-C₃N₄ up to 5 wt%. The BET specific surface area of 5 wt% g-C₃N₄/CaIn₂S₄ was much larger than that of pure CaIn₂S₄, suggesting that the opposite amount of g-C₃N₄ could significantly increase the specific surface area of the final product. When the content of g-C₃N₄ is higher than 5 wt%, the BET specific surface area and pore volume of the samples are decreased, as listed in Table 1. Therefore, the incorporation of g-C₃N₄/CaIn₂S₄ photocatalysts. As we know, larger specific surface area will provide more adsorptive/active sites during the photocatalytic reaction, which can be beneficial for the improvement of the photocatalytic activity.

Photocatalytic activity and the stability of the catalysts

The photocatalytic performance of all samples was evaluated by degradation of RhB solution under visible light irradiation and the fixed irradiation time was 60 min, as shown in Fig. 7. According to the literature, RhB had only about 5% self-degradation after irradiation for 60 min, which means the self-degradation effect of RhB was almost negligible under visible light irradiation [17]. Before light was turned on, the suspensions were magnetically stirred in the dark for 30 min to ensure

9

Dalton Transactions Accepted Manuscript

absorption-desorption equilibrium between the photocatalyst and RhB. In the meantime, the as-prepared different ratios of composites exhibited markedly higher photocatalytic activity than that of pure CaIn₂S₄ under visible light irradiation. For the hybrid photocatalysts, the photocatalytic activity was related to g-C₃N₄ content of the composites. With the increase of $g-C_3N_4$ content from 1 to 5 wt%, the degradation rate of RhB was increased gradually from 91% to 96.3%. However, further increasing the g-C₃N₄ content to 8 wt% or 10 wt%, the photocatalytic ability of g-C₃N₄/CaIn₂S₄ composites presents decreasing trend. Under the experimental conditions, the optimum amount of g-C₃N₄ in the g-C₃N₄/CaIn₂S₄ composites is 5 wt%. This result proves that these changes in the photocatalytic activity could be understood through considering the synergetic effects of light absorption and heterojunction structure of g-C₃N₄/CaIn₂S₄. The reason that excessive g-C₃N₄ in g-C₃N₄/CaIn₂S₄ composite decreased the photodegradation property could be concluded as follows: the joint effect between the excellent charge transfer capability of g-C₃N₄ and its detrimental effect on visible light absorption and the high content of $g-C_3N_4$ could significantly affect the particle size and distribution of CaIn₂S₄ nanoparticles due to the serious agglomeration, which was confirmed by SEM images. This fact indicated that the heterojunction between g-C₃N₄ and CaIn₂S₄ was indispensable for the electron transfer between the two components and was the key factor for the enhancement of photocatalytic activity.

The stability of photocatalysts is important for its assessment and application [45]. The 5 wt% g-C₃N₄/CaIn₂S₄ photocatalyst was selected as a sample to ascertain the stability. In the cyclic experiment, the recovered photocatalyst was centrifuged and dried at 80 °C for 2 h. The repetition tests reveal that there is no obvious decrease in the photocatalytic efficiency of RhB after five times experiments, which indicates

that 5 wt% g-C₃N₄/CaIn₂S₄ has a good stability in the photocatalytic reaction process. The stability of 5 wt% g-C₃N₄/CaIn₂S₄ was also investigated by XRD patterns of the fresh and used samples. As shown in Fig. 8b, the XRD patterns of the fresh and used samples have no obvious change.

Mechanisms of photocatalysis

According to the analyses above, the excellent visible-light photocatalytic activity of g-C₃N₄/CaIn₂S₄ composites could be attributed to the synergetic effects and charge transfer between CaIn₂S₄ and g-C₃N₄. For the photocatalytic process, the efficient charge separation and transfer are crucial for the photocatalytic activity [46]. Fig. 9 shows the energy level positions of the bands of g-C₃N₄ and CaIn₂S₄. When $CaIn_2S_4$ was loaded on the surface of $g-C_3N_4$ with hydrothermal process, heterojunction between g-C₃N₄ and CaIn₂S₄ was formed, which was proved by FT-IR, SEM and TEM results. The heterojunction was a key factor for the enhancement of photocatalytic activity. For heterojunctions, when the band positions of the material were appropriate, electron transfer could be realized [47]. Under the excitation of visible light, photo-induced electrons and holes were produced in the conduction band and valance band of CaIn₂S₄, respectively. As showed in Fig. 9, on the interface where heterojunction formed, the photo-induced electrons produced in $CaIn_2S_4$ conduction band transferred to g-C₃N₄ conduction band. When photo-induced electrons generated by CaIn₂S₄ remained the same and transferred to g-C₃N₄, the recombination possibility of electron-hole pairs decreased. Furthermore, the heterojunction can efficiently separate the photo-induced electron-hole pairs and prevent the recombination. There were three ways to consume photo-induced electrons [48]: (a) recombine with holes inside the material (volume recombination); (b) recombine with spices on particle surface (surface recombination); (c) react with

 O_2 to produce O_2 . As a result, the separation efficiency of photogenerated charge carriers can be effectively improved at the interface of the nanocomposites. Obviously, the improved photocatalytic efficiency of the g-C₃N₄/CaIn₂S₄ photocatalysts can be attributed to the synergistic effect of the two components. Such special heterstructure composite composed of apposite proportion is assumed to be beneficial for photogenerated charge separation and therefore lead to enhanced photocatalytic activity. Moreover, the shift of the binding energy also indicated that through the hydrothermal synthesis process, an intimate contact was formed between g-C₃N₄ and CaIn₂S₄ through the hydrothermal synthesis process, which is consistent with the TEM results.

Conclusion

g-C₃N₄/CaIn₂S₄ composites with different g-C₃N₄ content were successfully prepared and characterized. The as-prepared g-C₃N₄/CaIn₂S₄ had strong absorption in the visible light region with the optical band gap of the composites unchanged. The BET specific surface areas of g-C₃N₄/CaIn₂S₄ composites were larger than that of pure CaIn₂S₄. Under visible light irradiation, the RhB photodegradation by the g-C₃N₄/CaIn₂S₄ composites was greater than that for CaIn₂S₄ alone. The photocatalytic results indicated that the highest RhB degradation of 96.3% was achieved on the 5 wt% g-C₃N₄/CaIn₂S₄ sample. When the content of g-C₃N₄ is higher than 5 wt%, the RhB photodegradation by the g-C₃N₄/CaIn₂S₄ composites were decreased. The photocatalytic activity of the composite can be ascribed to the heterojunctions between g-C₃N₄ and CaIn₂S₄, which facilitate the separation of photogenerated electrons and holes. The photodegradation mechanism was proposed and discussed in terms of energy band positions. The present g-C₃N₄/CaIn₂S₄ composite is thought to

Acknowledgments

The authors gratefully acknowledge the financial support of National Natural Science Foundation of China (No.20976057) and research fund of The Guangdong Provincial Engineering Research Centre of Green Fine Chemicals, China.

Notes and references

- ^aSchool of Chemistry and Chemical Engineering, South China University of Technology, Guangdong Guangzhou 510640; Tel: +86 20 8711 1887; fax: +86 20 8711 1887. E-mail address: cewhyuan@scut.edu.cn; Present Address: School of Chemistry and Chemical Engineering, South China University of Technology, Wushan, Tianhe, Guangzhou 510640, P. R. China.
- ^bSchool of Environment Energy, South China University of Technology, Guangdong Guangzhou 510006

Electronic Supplementary Information (ESI) available: **Figure SI 1.** XRD patterns of CaIn₂S₄, g-C₃N₄ and g-C₃N₄/CaIn₂S₄ composites with variation of g-C₃N₄ content (a) 0, (b) 1 wt%, (c) 3 wt%, (d) 5 wt%, (e) 8 wt%, (f) 10 wt%. **Figure SI 2.** SEM images of the g-C₃N₄/CaIn₂S₄ heterojunction composites: (a) CaIn₂S₄; (b) pure g-C₃N₄; (c) 1 wt% g-C₃N₄/CaIn₂S₄; (d) 3 wt% g-C₃N₄/CaIn₂S₄; (e) 5 wt% g-C₃N₄/CaIn₂S₄; (f) 8 wt% g-C₃N₄/CaIn₂S₄; (g) 10 wt% g-C₃N₄/CaIn₂S₄. **Figure SI 3.** TEM images of (a) CaIn₂S₄, (b) g-C₃N₄, (c) 5 wt% g-C₃N₄/CaIn₂S₄. **Figure SI 4.** FT-IR spectra of CaIn₂S₄, g-C₃N₄ and g-C₃N₄/CaIn₂S₄ composites. **Figure SI 5.** UV-vis DRS spectra of CaIn₂S₄, g-C₃N₄ and g-C₃N₄/CaIn₂S₄ composites. **Figure SI 6.** Nitrogen adsorption-desorption isotherms of g-C₃N₄/CaIn₂S₄ composites. **Figure SI 7.** Concentration change of RhB as the function of the irradiation time. **Figure SI 8.** (a) Cycling runs 13

for the photocatalytic degradation of RhB over 5 wt% g-C₃N₄/CaIn₂S₄ sample under visible light irradiation; (b) XRD patterns of the 5 wt% g-C₃N₄/CaIn₂S₄ sample before and after the cycling photocatalytic experiments. **Figure SI 9.** Energy band diagram and photocatalytic mechanism of g-C₃N₄/CaIn₂S₄ composites. **Table 1** Surface area, pore volume over g-C₃N₄/CaIn₂S₄ photocatalysts

[1] H. Xu, H.M. Li, C.D. Wu, J.Y. Chu, Y.S. Yan, H.M. Shu, Z. Gu, J. Hazard.Mater., 2008, 153, 877-884.

[2] R. Shi, J. Lin, Y.J. Wang, J. Xu, Y.F. Zhu, J. Phys. Chem. C, 2010, 114, 6472-6477.

[3] Y. Tian, B. Chang, Z. Yang, B. Zhou, F. Xi, X. Dong, RSC Adv., 2014, 4, 4187-4193.

[4] M.S.A.S. Shah, A.R. Park, K. Zhang, J.H. Park, P.J. Yoo, ACS Appl. Mater. Interfaces, 2012, 4, 3893-3901.

[5] S. Cao, K.L. Yeung, P.L. Yue, Appl. Catal. B: Environ., 2006, 68, 99-108.

[6] Z. Li, S. Yang, J. Zhou, D. Li, X. Zhou, C. Ge, Y. Fang, Chem. Eng. J., 2014, 241, 344-351.

[7] X.T. Wu, C.G. Liu, X.F. Li, X.G. Zhang, C. Wang, Y.K. Liu, Mat. Sci. Semicon.Proc., 2015, 32, 76-81.

[8] A. Kudo, I. Tsuji, H. Kato, Chem. Commun., 2002, 17, 1958-1959.

[9] Y. Xie, Y.F. Liu, H.L. Cui, W. Zhao, C.Y. Yang, F.Q. Huang, J. Power Sources, 2014, 265, 62-66. [10] W.H. Yuan, X.C. Liu, L. Li, Acta Phys. Chim. Sin., 2013, 29, 151-156.

[11] S. Yang, L. Li, W.H. Yuan, Z.L. Xia, Dalton Trans., 2015, 44, 6374-6383.

- [12] Y.G. Yu, G. Chen, G. Wang, Z.S. Lv, Int. J. Hydrogen Energy, 2013, 38, 1278-1285.
- [13] W.J. Wang, T. W. Ng, W. K. Ho, J.H. Huang, S.J. Liang, T.C. An, G.Y. Li, J.C.Yu, P. K. Wong, Appl. Catal. B: Environ., 2013, **129**, 482-490.
- [14] J.J. Ding, S. Sun, W.H. Yan, J. Bao, C. Gao, Int. J. Hydrogen Energy, 2013, 38, 13153-13158.
- [15] C. C. Han, L.E. Wu, L. Ge, Y.J. Li, Z. Zhao, Carbon, 2015, 92, 31-40.
- [16] K. Katsumata, R. Motoyoshi, N. Matsushita, K. Okada, J. Hazard. Mater., 2013,260, 475-482.
- [17] J.J. Ding , W.H. Yan, S. Sun, J. Bao, C. Gao, ACS Appl. Mater. Interfaces, 2014, 6, 12877-12884.
- [18] S. Yan, Z. Li, Z. Zou, Langmuir, 2009, 25, 10397-10401.
- [19] F. Dong, L. Wu, Y. Sun, M. Fu, Z. Wu, S.C. Lee, J. Mater. Chem., 2011, 21, 15171-15174.
- [20] F. Dong, Y. Sun, L. Wu, M. Fu, Z. Wu, Catal. Sci. Technol., 2012, 2, 1332-1335.
- [21] Y. Wang, X. Wang, M. Antonietti, Angew. Chem. Int. Edit., 2012, 51, 68-89.
- [22] Y. Wang, X. Bai, C. Pan, J. He, Y. Zhu, J. Mater. Chem., 2012, 22, 11568-11573.

[23] Y. Tian, B. Chang, J. Lu, J. Fu, F. Xi, X. Dong, ACS Appl. Mater. Interfaces, 2013, 5, 7079-7085.

[24] Y.J. Wang, Z.X. Wang, S. Muhammad, J. He, CrystEngComm, 2012, 14, 5065-5070.

[25] T.T. Zhu, Y.H. Song, H.Y. Ji, Y.G. Xu, Y.X. Song, J.X. Xia, S. Yin, Y.P. Li, H.Xu, Q. Zhang, H.M. Li, Chem. Eng. J., 2015, 271, 96-105.

[26] S. Kumar, T. Surendar, A. Baruah, V. Shanker, J. Mater. Chem. A, 2013, 1, 5333-5340.

[27] C. Han, L. Ge, C. Chen, Y. Li, X. Xiao, Y. Zhang, L. Guo, Appl. Catal. B: Environ., 2014, 147, 546-553.

[28] F. Yang, V. Kuznietsov, M. Lublow, C. Merschjann, A. Steigert, J. Klaer, A. Thomas, T. Schedel-Niedrig, J. Mater. Chem. A, 2013, 1, 6407-6415.

[29] Y.L. Tian, B.B. Chang, J.L. Lu, J. Fu, F.G. Xi, X.P. Dong, ACS Appl. Mater. Interfaces, 2013, 5, 7079-7085.

[30] L. Ge, Mater. Lett., 2011, 65, 2652-2654.

[31] J.H. Sun, J.S. Zhang, M.W. Zhang, M. Antonietti, X.Z. Fu, X.C. Wang, Nat. Commun., 2012, 2, 1139.

[32] W.G. Wang, J.G. Yu, Q.J. Xiang, B. Cheng, Appl. Catal. B: Environ., 2012, 119-120, 109-116.

[33] J.X. Low, J.G. Yu, Q. Li, B. Cheng, Phys. Chem. Chem. Phys., 2014, 16, 1111-1120.

[34] Y. Wang, X. Bai, C. Pan, J. He, Y. Zhu, J. Mater. Chem., 2012, 22, 11568-11573.

- [35] L.Y. Huang, H. Xu, Y.P. Li, H.M. Li, X.N. Cheng, J.X. Xia, Y.G. Xu, G.B. Cai, Dalton Trans., 2013, 42, 8606-8616.
- [36] Y.M. He, J. Cai, L.H. Zhang, X.X. Wang, H.J. Lin, B.T. Teng, L.H. Zhao, W.Z.Teng, H.L. Wan, M.H. Fan, Ind. Eng. Chem. Res., 2014, 53, 5905-5915.
- [37] C. Chang, L.Y. Zhu, S.F. Wang, X.L. Chu, L.F. Yue, ACS Appl. Mater. Interfaces, 2014, **6**, 5083-5093.
- [38] Y. Cui, Z. Ding, X. Fu, X. Wang, Angew. Chem. Int. Edit., 2012, **51**, 11814-11818.
- [39] H.P. Li, J.Y. Liu, W.G. Hou, N. Du, R.J. Zhang, X.T. Tao, Appl. Catal. B: Environ., 2014, **160-161**, 89-97.
- [40] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.O. Mueller, R. Schloegl,J.M. Carlsson, J. Mater. Chem., 2008, 18, 4893-4908.
- [41] J.F. Zhang , Y.F. Hu, X.L. Jiang, S.F. Chen, S.G. Meng, X.L. Fu, J. Hazard. Mater., 2014, 280, 713-722.
- [42] L.S. Zhang, K.H. Wong, H.Y. Yip, C. Hu, J.C. Yu, C.Y. Chan, P.K. Wong, Environ. Sci. Technol., 2010, 44, 1392-1398.
- [43] X. Li, R. Huang, Y. Hu, Y. Chen, W. Liu, R. Yuan, Z. Li, Inorg. Chem., 2012, 51, 6245-6250.
- [44] P. Madhusudan, J.R. Ran, J. Zhang, J.G. Yu, G. Liu, Appl. Catal. B: Environ., 2011, 110, 286-295.

[45] C.C. Han, L. Ge, C.F. Chen, Y.J. Li, X.L. Xiao, Y.N. Zhang, L.L. Guo, Appl. Catal. B: Environ., 2014, 147, 546-553.

[46] L. Ge, C.C. Han, X.L. Xiao, L.L. Guo, Appl. Catal. B: Environ., 2013, 142-143, 414-422.

[47] H. Dong, G. Chen, J. Sun, Y. Feng, C. Li, G. Xiong, C. Lv, Dalton Trans., 2014,43, 7282-7289.

[48] J. Xu, X.J. Cao, Chem. Eng. J., 2015, 260, 642-648.

Figure Captions

Fig. 1. XRD patterns of $CaIn_2S_4$, $g-C_3N_4$ and $g-C_3N_4/CaIn_2S_4$ composites with variation of $g-C_3N_4$ content (a) 0, (b) 1 wt%, (c) 3 wt%, (d) 5 wt%, (e) 8 wt%, (f) 10 wt%.

Fig. 2. SEM images of the $g-C_3N_4/CaIn_2S_4$ heterojunction composites: (a) $CaIn_2S_4$; (b) pure $g-C_3N_4$; (c) 1 wt% $g-C_3N_4/CaIn_2S_4$; (d) 3 wt% $g-C_3N_4/CaIn_2S_4$; (e) 5 wt%

 $g-C_{3}N_{4}/CaIn_{2}S_{4}; (f) \ 8 \ wt\% \ g-C_{3}N_{4}/CaIn_{2}S_{4}; (g) \ 10 \ wt\% \ g-C_{3}N_{4}/CaIn_{2}S_{4}.$

Fig. 3. TEM images of (a) $CaIn_2S_4$, (b) $g-C_3N_4$, (c) 5 wt % $g-C_3N_4/CaIn_2S_4$.

Fig. 4. FT-IR spectra of CaIn₂S₄, g-C₃N₄ and g-C₃N₄/CaIn₂S₄composites.

Fig. 5. UV-vis DRS spectra of CaIn₂S₄, g-C₃N₄and g-C₃N₄/CaIn₂S₄ composites.

Fig. 6. Nitrogen adsorption-desorption isotherms of g-C₃N₄/CaIn₂S₄ composites.

Fig. 7. Concentration change of RhB as the function of the irradiation time.

Fig. 8. (a) Cycling runs for the photocatalytic degradation of RhB over 5 wt% $g-C_3N_4/CaIn_2S_4$ sample under visible light irradiation; (b) XRD patterns of the 5 wt% $g-C_3N_4/CaIn_2S_4$ sample before and after the cycling photocatalytic experiments

Fig. 9. Energy band diagram and photocatalytic mechanism of $g-C_3N_4/CaIn_2S_4$ composites.

Fig. 1

Dalton Transactions Accepted Manuscript

Dalton Transactions Accepted Manuscrip

Fig.5

Fig. 7

Fig. 8

Fig. 9

Photo-oxidation

sample	g-C ₃ N ₄ (wt %)	$\frac{S_{BET}}{(m^2 g^{-1})}$	pore volume $(cm^3 g^{-1})$
CaIn ₂ S ₄	0	75.1013	0.0929
1% g-C ₃ N ₄ /CaIn ₂ S ₄	1	113.5364	0.1051
3% g-C ₃ N ₄ /CaIn ₂ S ₄	3	115.9741	0.1094
5% g-C ₃ N ₄ /CaIn ₂ S ₄	5	120.6552	0.1140
8% g-C ₃ N ₄ /CaIn ₂ S ₄	8	88.9464	0.0969
10% g-C ₃ N ₄ /CaIn ₂ S ₄	10	76.8248	0.0891

Table 1. Surface area, pore volume over $g-C_3N_4/CaIn_2S_4$ photocatalysts