# Dalton Transactions

## Accepted Manuscript



This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.



www.rsc.org/dalton

# Three new POM-based compounds constructed by rigid thiabendazole and flexible bis(pyrazole) ligands: structures and properties for Hg<sup>2+</sup> recognition

Aixiang Tian,\* Yali Ning, Yang Yang, Xue Hou, Jun Ying, Guocheng Liu, Juwen

Zhang, Xiuli Wang\*

Department of Chemistry, Bohai University, Jinzhou, 121000, P. R. China

The introduction of S atoms to ligands induces the properties for  $Hg^{2+}$  recognition of POM-based compounds.



Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

## ARTICLE TYPE

### Three new POM-based compounds constructed by rigid thiabendazole and flexible bis(pyrazole) ligands: structures and properties for Hg<sup>2+</sup> recognition<sup>†</sup>

s Aixiang Tian,\* Yali Ning, Yang Yang, Xue Hou, Jun Ying, Guocheng Liu, Juwen Zhang, Xiuli Wang\*

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

By using mixed rigid and flexible organic ligands, three Keggin based compounds,  $[Ag_6(tbz)_4(bmz)_2(H_3PW_{12}O_{40})] \cdot 4H_2O(1)$ ,  $[Ag(H_2bdpm)_2(H_2PMo_{12}O_{40})] \cdot 7.5H_2O(2)$ ,

- <sup>10</sup>  $[Ag_4(tbz)_2(H_2bdpm)_2(HPMo_{12}O_{40})] \cdot 2H_2O$  (**3**) (Htbz = thiabendazole, Hbmz = benzimidazole, H\_2bdpm = 1,1'-bis(3,5-dimethyl-1H-pyrazolate)methane), were hydrothermally synthesized and structurally characterized. Through adopting rigid Htbz ligands, compound **1** with hexa-nuclear Ag<sup>I</sup> clusters has been obtained. These hexa-nuclear clusters are linked by Keggin anions alternately to form a one dimensional (1D) chain. In compound **2**, the organic moiety is the flexible H<sub>2</sub>bdpm ligand. The Keggin anions are
- <sup>15</sup> fused by [Ag(H<sub>2</sub>bdpm)<sub>2</sub>]<sup>+</sup> subunits to form a 1D chain. In compound **3**, the rigid Htbz and flexible H<sub>2</sub>bdpm cooperate to modify the anions. Two tbz and two H<sub>2</sub>bdpm are fused by four Ag<sup>I</sup> ions to construct a tetra-nuclear Ag<sup>I</sup> cycle. The anions connect these cycles through Ag-O bonds alternately to form a 1D chain. Adjacent chains arrange parallel to build a 2D layer. The chains in adjacent layers are vertically packing and linked by Ag-O bonds to construct a 3D framework. The electrochemical and photocatalytic <sup>20</sup> properties of the title compounds have been studied. Furthermore, we have also studied the Hg<sup>2+</sup>

recognition properties in suspension of compounds 1 and 3.

#### Introduction

Polyoxometalates (POMs), as nano-sized metal oxide clusters, have become appealing inorganic building blocks by virtue of

- <sup>25</sup> their various structures and conceivable applications.<sup>1</sup> Owing to the abundant terminal and bridging oxygen atoms of POMs, a current research interest is the introduction of transition metal complexes (TMCs) to POMs, which can be grafted onto the framework of POMs *via* covalent bonds and be served as
- <sup>30</sup> bridging moieties.<sup>2</sup> In this series, single type of organic ligand was usually chosen, combined with transition metals to modify POMs. However, the introduction of mixed organic molecules to POM-TMCs is relatively rare.<sup>3</sup> For example, Cui and co-workers used mixed ligands bipyridine and 1,10-phenanthroline to modify
- <sup>35</sup> Keggin anions.<sup>4</sup> Thus, design and syntheses of versatile POM-TMCs containing mixed organic ligands and exploring new properties have become attractive and challenging branch. In this work, we firstly used rigid ligand thiabendazole (Htbz) and flexible ligand 1,1'-bis(3,5-dimethyl-1H-pyrazolate)methane
- $_{40}$  (H<sub>2</sub>bdpm) respectively to modify POMs. And then we adopted the above synthetic strategy by using mixed rigid Htbz and

This journal is © The Royal Society of Chemistry [year]

flexible H<sub>2</sub>bdpm to cooperatively modify POMs.

As is known, Hg<sup>2+</sup> is a dangerous and widespread global pollutant, which can cause serious environmental and health <sup>45</sup> problems.<sup>5</sup> It is necessary and important to seek new methods for detection of Hg<sup>2+,6</sup> Thus, exploration of POM-TMC compounds to detect Hg<sup>2+</sup> would become a novel and rising branch of POMs. Observed from the reports, complexes with S-containing ligands can usually act as selective fluorescent molecular probe for <sup>50</sup> Hg<sup>2+,5,7</sup> According to Pearson's hard and soft acids and bases theory, soft Hg<sup>2+</sup> ions (soft acid) can preferentially interact with sulfur (soft base). Thus, the introduction of S-containing ligands to POM-TMC series may construct new materials as fluorescent molecular probe for Hg<sup>2+</sup>. Thus, in this work, we introduce S-<sup>55</sup> containing thiabendazole ligand to POM-Ag system, which is seldom used in POM field.<sup>8</sup>

| Fortunately,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | three | compounds, | namely |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|--------|
| $[Ag_6(tbz)_4(bmz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz)_2(Hz$ | (1),  |            |        |
| [Ag(H <sub>2</sub> bdpm) <sub>2</sub> (H <sub>2</sub> H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (2),  |            |        |

<sup>60</sup> [Ag<sub>4</sub>(tbz)<sub>2</sub>(H<sub>2</sub>bdpm)<sub>2</sub>(HPMo<sub>12</sub>O<sub>40</sub>)]·2H<sub>2</sub>O (3) (Htbz = thiabendazole, Hbmz = benzimidazole, H<sub>2</sub>bdpm = 1,1'-bis(3,5-dimethyl-1H-pyrazolate)methane) have been obtained. Rigid ligand Htbz was used in 1 as reactant, flexile H<sub>2</sub>bdpm was utilized in 2 and mixed Htbz and H<sub>2</sub>bdpm were both captured in <sup>65</sup> 3. Furthermore, experimental data verify that compounds 1 and 3 exhibit Hg<sup>2+</sup> recognition in suspension, further confirming the

Department of Chemistry, Bohai University, Jinzhou, 121000, P. R. China. Fax: +86-416-3400158; Tel: +86-416-3400158; Email: <u>tian@bhu.edu.cn</u>, wangxiuli@bhu.edu.cn

<sup>†</sup>Electronic Supplementary Information (ESI) available: IR Spectra, XRD, CV data and additional figures. CCDC 989452–989454. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/b000000x

rationality of selection of S-containing Htbz as organic

g, 0.71 mmol) and H<sub>2</sub>bdpm (0.04 g, 0.20 mmol) was dissolved in

|                                                                                                     | Table 1. Crystal Data and Structure Refinements for Compounds 1–3.                  |                                     |                                           |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------|
|                                                                                                     | 1                                                                                   | 2                                   | 3                                         |
| formula                                                                                             | $C_{54}N_{16}H_{43}Ag_6S_4PW_{12}O_{44}$                                            | $C_{22}N_8H_{49}AgPMo_{12}O_{47.5}$ | $C_{42}N_{14}H_{49}Ag_4S_2PMo_{12}O_{42}$ |
| Fw                                                                                                  | 4632.67                                                                             | 2475.81                             | 3099.8                                    |
| crystal system                                                                                      | triclinic                                                                           | triclinic                           | monoclinic                                |
| space group                                                                                         | P-1                                                                                 | P-1                                 | P21/c                                     |
| a (Å)                                                                                               | 13.7230(6)                                                                          | 12.8317(6)                          | 14.7828(6)                                |
| b (Å)                                                                                               | 13.9629(6)                                                                          | 12.8788(6)                          | 18.2643(8)                                |
| c (Å)                                                                                               | 14.3365(6)                                                                          | 19.4273(9)                          | 14.7157(6)                                |
| α (°)                                                                                               | 61.8910(10)                                                                         | 80.6810(10)                         | 90                                        |
| β(°)                                                                                                | 82.9930(10)                                                                         | 89.7920(10)                         | 110.3830(10)                              |
| γ(°)                                                                                                | 63.8760(10)                                                                         | 78.5860(10)                         | 90                                        |
| $V(Å^3)$                                                                                            | 2162.81(16)                                                                         | 3104.1(3)                           | 3724.4(3)                                 |
| Z                                                                                                   | 1                                                                                   | 2                                   | 2                                         |
| $D_c (g \cdot cm^{-3})$                                                                             | 3.554                                                                               | 2.649                               | 2.763                                     |
| $\mu$ (mm <sup>-1</sup> )                                                                           | 17.417                                                                              | 2.764                               | 3.150                                     |
| F(000)                                                                                              | 2077                                                                                | 2212                                | 2946                                      |
| final $R_1^a$ , $wR_2^b$ [ $I > 2\sigma(I)$ ]                                                       | 0.0493                                                                              | 0.0470                              | 0.0442                                    |
|                                                                                                     | 0.1131                                                                              | 0.1328                              | 0.1191                                    |
| final $R_1^a$ , $wR_2^b$ (all data)                                                                 | 0.0666                                                                              | 0.0751                              | 0.0655                                    |
|                                                                                                     | 0.1064                                                                              | 0.1205                              | 0.1073                                    |
| GOF on $F^2$                                                                                        | 1.078                                                                               | 1.021                               | 1.037                                     |
| ${}^{a}R_{1} = \sum \left\  F_{o} \right\  - \left\  F_{c} \right\  / \sum \left\  F_{o} \right\ .$ | $^{b} wR_{2} = \{\sum [w(F_{o}^{2}-F_{c}^{2})^{2}]/\sum [w(F_{o}^{2})^{2}]\}^{1/2}$ | 2                                   |                                           |

molecules.

#### **Experimental Section**

- Materials and General Methods. All reagents and solvents for syntheses were purchased from Aladdin Industrial Corporation (Shanghai) and were used as received. Elemental analyses (C, H, and N) were performed on a Perkin-Elmer 2400 CHN elemental analyzer (Perkin-Elmer, Shanghai). The IR
- 10 spectra were obtained on an Alpha Centaurt FT/IR spectrometer (Agilent Technologies, America) with KBr pellet in the 400-4000 cm<sup>-1</sup> region. Electrochemical measurements were performed with a CHI 440 electrochemical workstation (CH Instruments, Shanghai). A conventional three-electrode system was used. A
- 15 saturated calomel electrode (SCE) was used as a reference electrode, and a Pt wire as a counter electrode. Chemically bulkmodified carbon-paste electrodes (CPEs) were used as the working electrodes. Fluorescence spectra were recorded at room temperature on a Hitachi F-4500 fluorescence/phosphorescence
- 20 spectrophotometer. UV-Vis absorption spectra were obtained using a SP-1901 UV-Vis spectrophotometer (Shanghai Spectrum).

Synthesis of  $[Ag_6(tbz)_4(bmz)_2(H_3PW_{12}O_{40})] \cdot 4H_2O$  (1). A mixture of H<sub>3</sub>[PW<sub>12</sub>O<sub>40</sub>]·12H<sub>2</sub>O (0.14 g, 0.044 mmol), AgNO<sub>3</sub> 25 (0.20 g, 1.0 mmol) and Htbz (0.04 g, 0.20 mmol) was dissolved in 10 mL of distilled water at room temperature. When the pH of the mixture was adjusted to about 1.8 with 1.0 mol $\cdot$ L<sup>-1</sup> HNO<sub>3</sub>, the suspension was put into a Teflon-lined autoclave and kept under autogenous pressure at 160°C for 5 days. After slow cooling to

 $_{30}$  room temperature (final pH = 1.9), orange block crystals were filtered and washed with distilled water (30% yield based on W). Anal. Calcd for C<sub>54</sub>N<sub>16</sub>H<sub>43</sub>Ag<sub>6</sub>S<sub>4</sub>PW<sub>12</sub>O<sub>44</sub> (4632.6): C 13.99, H 0.94, N 4.84%. Found: C 14.05, H 0.96, N 4.88%. IR (solid KBr pellet, cm<sup>-1</sup>): 3560 (m), 3345 (w), 2915 (w), 1633 (m), 1584 (m), 35 1514 (m), 1430 (s), 1374 (w), 1329 (w), 1268 (s), 1171 (m), 1066

(s), 965 (s), 877 (s), 798 (s).

Synthesis of [Ag(H<sub>2</sub>bdpm)<sub>2</sub>(H<sub>2</sub>PMo<sub>12</sub>O<sub>40</sub>)]·7.5H<sub>2</sub>O (2). A mixture of H<sub>3</sub>PMo<sub>12</sub>O<sub>40</sub>·12H<sub>2</sub>O (0.2 g, 0.11 mmol), AgNO<sub>3</sub> (0.12

40 10 mL of distilled water at room temperature. When the pH of the mixture was adjusted to about 1.6 with 1.0 mol $\cdot$ L<sup>-1</sup> HNO<sub>3</sub>, the suspension was put into a Teflon-lined autoclave and kept under autogenous pressure at 160°C for 5 days. After slow cooling to room temperature (final pH = 1.8), orange block crystals were 45 filtered and washed with distilled water (35% yield based on Mo). Anal. Calcd for C<sub>22</sub>N<sub>8</sub>H<sub>49</sub>AgPMo<sub>12</sub>O<sub>47.5</sub> (2476): C 10.67, H 2.00, N 4.53%. Found: C 10.62, H 1.96, N 4.57%. IR (solid KBr pellet, cm<sup>-1</sup>): 3447 (m), 3376 (w), 3095 (w), 1628 (m), 1430 (m), 1396 (w), 1325 (w), 1295 (w), 1176 (w), 1067 (s), 970 (s), 886 50 (s), 803 (s).

Synthesis of  $[Ag_4(tbz)_2(H_2bdpm)_2(HPMo_{12}O_{40})]\cdot 2H_2O$  (3). Compound 3 was prepared similarly to compound 2, except that Htbz (0.04 g, 0.20 mmol) was added additionally. After slow cooling to room temperature (final pH = 1.7), orange block 55 crystals were filtered and washed with distilled water (30% yield based on Mo). Anal. Calcd for C42N14H49Ag4S2PM012O42 (3099.8): C 16.27, H 1.59, N 6.33%. Found: C 16.22, H 1.69, N 6.28%. IR (solid KBr pellet, cm<sup>-1</sup>): 3507 (m), 3349 (m), 3086 (w), 2919 (w), 1619 (m), 1426 (m), 1325 (w), 1272 (w), 1167 60 (w), 1057 (m), 939 (s), 860 (m), 794 (s).

Preparations of 1-, 2- and 3-CPEs. The compound 1 bulkmodified CPE (1-CPE) was fabricated as follows: 90 mg of graphite powder and 8 mg of 1, were mixed and ground together by an agate mortar and pestle to achieve a uniform mixture, and 65 then was added 0.1 mL of Nujol with stirring. The homogenized mixture was packed into a glass tube with a 1.5 mm inner diameter, and the tube surface was wiped with weighing paper. Electrical contact was established with a copper rod through the back of the electrode. In a similar manner, 2- and 3-CPEs were 70 made with compounds 2 and 3.

X-ray Crystallographic Study. X-ray diffraction analysis data for compounds 1-3 were collected with a Bruker Smart Apex CCD diffractometer (Bruker Corporation, Germany) with Mo-Ka  $(\lambda = 0.71073 \text{ Å})$  at 293 K. The structures were solved by direct 75 methods and refined on  $F^2$  by full-matrix least squares methods using the SHELXTL package.9 For the compounds, all the hydrogen atoms attached to carbon atoms were generated geometrically, while the hydrogen atoms attached to water molecules were not located but were included in the structure factor calculations. A summary of the crystallographic data and <sup>5</sup> structural determination for them is provided in Table 1. Selected bond lengths and angles of the three compounds are listed in

- Table S1 (Supporting Information). Crystallographic data for the structures reported in this paper have been deposited in the Cambridge Crystallographic Data Center with CCDC Number
- <sup>10</sup> 989452 for **1**, 989453 for **2** and 989454 for **3**.

#### **Results and Discussion**

#### Structural description

- **Crystal Structure of Compound 1**. Crystal structure analysis reveals that compound 1 consists of six  $Ag^{I}$  ions, four tbz and two <sup>15</sup> bmz ligands, one  $[PW_{12}O_{40}]^{3}$  anion (abbreviated to  $PW_{12}$ ), and four crystal water molecules (Fig. 1). The valence sum calculations<sup>10</sup> show that all the twelve W atoms are in +VI oxidation state (Table S2) and all the Ag atoms are in +I oxidation state. Furthermore, each Hbmz ligand precursor has lost
- $_{20}$  one proton to act as a  $bmz^-$  anion (simplified as bmz), and each Htbz ligand precursor has lost one proton to act as a  $tbz^-$  anion (simplified as tbz). To balance the charge of the compound, three protons are added, then 1 is formulated as  $[Ag_6(tbz)_4(bmz)_2(H_3PW_{12}O_{40})]\cdot 4H_2O.$



25

Fig. 1. Ball/stick view of the asymmetric unit of 1. The hydrogen atoms and crystal water molecules are omitted for clarity.

In compound **1**, there are three crystallographically independent  $Ag^{I}$  ions. The Ag1 ion is four-coordinated by three N <sup>30</sup> atoms from one tbz ligand (N3 and N5) and one bmz ligand (N1) and one Ag2 ion in a slightly distorted quadrilateral-type coordination mode. The bond distances and angles around the

- Ag1 are 2.105(9)–2.454(11) Å for Ag-N, 3.1452(14) Å for Ag-Ag and 73.0(4)–161.4(4)° for N-Ag-N. The Ag2 ion shows a <sup>35</sup> tetrahedral mode coordinated by one C7 atom from one bmz ligand, one N8 atom from one tbz ligand, one O9 atom from one
- anion and two Ag<sup>I</sup> ions (Ag1 and Ag3). The bond distances and angles around the Ag2 are 2.149(9) Å for Ag-C, 2.150(9) Å for Ag-N, 2.9334(14) and 3.1452(14) Å for Ag-Ag and 171.9(4)<sup>o</sup> for
- <sup>40</sup> C-Ag-N. The Ag3 ion is four-coordinated by two N atoms from one tbz (N7) and one bmz (N2) ligand, one O7 atom from one anion and one Ag2 ion in a pyramid coordination mode. The Ag-N distances around Ag3 are 2.152(9) and 2.153(9) Å, while the Ag-O distance is 2.763(11) Å. The Ag-C bonds are not very <sup>45</sup> commonly observed in POM-Ag compounds.<sup>11</sup>

In the synthetic process of **1**, the organic ligand Htbz was utilized initially. However, under hydrothermal conditions some Htbz molecules transferred to Hbmz in situ. Thus, there exist two kinds of organic ligands tbz and bmz in compound **1**. The tbz <sup>50</sup> ligands exhibit two types of coordination modes: (i) Two N donors offered by thiazolyl and benzimidazolyl groups play a chelate role to fuse one Ag1 ion (Fig. S1, a-type); (ii) These two N donors also offered by thiazolyl and benzimidazolyl groups link two Ag ions (Ag1 and Ag2) (Fig. S1, b-type). Furthermore,

<sup>55</sup> there exhibit strong metal-metal bond between these two Ag ions. This coordination mode is scarcely observed in similar chelate 2,2'-bipy molecules, which may be rest on the longer N...N distance in tbz ligand. The transferred bmz ligand in 1 also shows a novel coordination mode, providing two N donors and the <sup>60</sup> apical C atom to link three Ag ions with Ag-N and Ag-C bonds.

Both tbz and bmz ligands exhibit interesting coordination styles. In compound **1**, two tbz molecules and one bmz are connected by three Ag ions to form a plane (Fig. 1). Furthermore, the same two sets of planes are fused by Ag2-N8 and Ag2-Ag3 bonds, as shown in Fig. 2. Thus, a hexa-nuclear Ag<sup>1</sup> clusters is formed. The Keggin anion offers one terminal O7 and one bridging O9 to link Ag3 and Ag2 ions of this hexa-nuclear clusters and a 1D chain is constructed (Fig. 3). Between adjacent 1D chains there exist abundant  $\pi...\pi$  stacking interactions (C21...C25 = 3.59 Å, 70 C18...N6 = 3.82 Å, C23...C24 = 3.81 Å) and a 2D supramolecular layer is built (Fig. S2).



**Fig. 2.** The hexa-nuclear Ag<sup>1</sup> clusters in **1** constructed by two sets of planes (yellow and blue) with Ag2-N8 and Ag2-Ag3 bonds as linkers (red <sup>75</sup> line).



Fig. 3. The hexa-nuclear clusters are linked by Keggin anions alternately to form a 1D chain in compound 1.

**Crystal Structure of Compound 2**. Crystal structure analysis <sup>80</sup> reveals that compound **2** consists of one Ag<sup>I</sup> ions, two H<sub>2</sub>bdpm ligands, one [PMo<sub>12</sub>O<sub>40</sub>]<sup>3-</sup> anion (abbreviated to PMo<sub>12</sub>), and seven and a half crystal water molecules (Fig. S3). The valence sum calculations<sup>10</sup> show that all the Mo atoms are in +VI oxidation state (Table S2) and all the Ag atoms are in +I <sup>85</sup> oxidation state. To balance the charge of the compound, two protons are added in the formula of **2**. In compound **2**, there is

55

only one crystallographically independent Ag1 ion, showing a "seesaw" geometry coordinated with two N donors from two H<sub>2</sub>bdpm ligands and two terminal O atoms from two anions. The bond distances and angles around Ag1 are 2.122(6) and 2.134(7) 5 Å for Ag-N, 2.789(6) and 2.798(8) Å for Ag-O and 176.9(3) for

N-Ag-N. Compound **2** shows a 1D chain with  $PMo_{12}$  anions and  $[Ag(H_2bdpm)_2]^+$  arranging alternately (Fig. 4). The structure is isostructural with compound  $[Ag(H_2bdpm)_2(H_2PW_{12}O_{40})]\cdot 4H_2O$  reported by our group.<sup>12</sup>



Fig. 4. The 1D chain with  $PMo_{12}$  anions and  $[Ag(H_2bdpm)_2]^+$  arranging alternately in compound 2.

**Crystal Structure of Compound 3**. Crystal structure analysis reveals that compound 3 consists of four  $Ag^{I}$  ions, two  $H_{2}bdpm$  <sup>15</sup> and two tbz ligands, one  $[PMo_{12}O_{40}]^{3-}$  anion (abbreviated to  $PMo_{12}$ ), and two crystal water molecules (Fig. 5). The valence sum calculations<sup>10</sup> show that all the twelve Mo atoms are in +VI oxidation state (Table S2) and all the Ag atoms are in +I oxidation state. Furthermore, each Htbz ligand precursor has also

 $_{20}$  lost one proton to act as a tbz<sup>-</sup> anion (simplified as tbz), one proton is also added in the formula to balance the charge of the compound **3**.



**Fig. 5.** Ball/stick view of the asymmetric unit of **3**. The hydrogen atoms <sup>25</sup> and crystal water molecules are omitted for clarity.

There are two crystallographically independent Ag<sup>I</sup> ions in compound **3**, both exhibiting a "seesaw" geometry coordinated by one Ag ion, one terminal O atom from one PMo<sub>12</sub> anion (O8 for Ag1 and O20 for Ag2) and two N donors from one tbz (N3 <sup>30</sup> for Ag1 and N2 for Ag2) and one H<sub>2</sub>bdpm (N5 for Ag1 and N6

for Ag2) respectively. The bond distances and angles around the Ag ion are 2.115(6)-2.173(6) Å for Ag-N, 3.2165(10) Å for Ag-Ag, 2.663(6) and 2.744(6) Å for Ag-O and 167.6(3) and  $178.6(3)^{\circ}$  for N-Ag-N.



**Fig. 6.** (a) The 1D chain in compound **3** with anions and tetra-nuclear  $Ag^{I}$  cycles connecting each other alternately. (b) The schematic view of the 1D chain. (c) This 1D chain is viewed along the given direction.

In compound 3, the mixed flexible  $H_2$  bdpm and rigid tbz <sup>40</sup> cooperate to construct the unique structure of **3**. The tbz exhibits the same b-type coordination mode with compound 1 to link two Ag<sup>I</sup> ions, by offer two N donors from thiazolyl and benzimidazolyl groups respectively. The H<sub>2</sub>bdpm provides two apical N atoms from two pyrazolyl groups to connect two Ag 45 ions. The coordination styles of H<sub>2</sub>bdpm and tbz induce a tetranuclear Ag<sup>I</sup> cycle in compound **3** (Fig. 5). The existence of Ag1-Ag2 bonds strengthen the stability of this cycle. Each PMo<sub>12</sub> anion supplies two symmetrical terminal O8 atoms to link two tetra-nuclear Ag<sup>I</sup> cycles. Namely, the anions and tetra-nuclear Ag<sup>I</sup> 50 cycles connect each other alternately and a 1D chain is formed, as shown in Fig. 6. Each chain offers O20 and Ag2 to link adjacent chains through Ag2-O20 bonds. The chain is vertical with its adjacent linking chains (Fig. S4). Through this linking mode, a 3D framework of compound 3 is constructed (Fig. 7).



Fig. 7. The 3D framework of compound 3. Blue and orange sticks: adjacent vertical chains. Green sticks: Ag2-O20 bonds to link adjacent vertical chains.

The respective and cooperative roles of rigid Htbz and 60 flexible H<sub>2</sub>bdpm to construct Keggin based structures. In the reported POM-based inorganic-organic compounds, the rigid and flexible organic ligands are usually used to modify POM anions. The rigid and flexible ligands own their unique coordination styles respectively and can induce different POM-based 65 structures. In this work, we choose one rigid ligand thiabendazole (Htbz) and one flexible ligand 1,1'-bis(3,5-dimethyl-1Hpyrazolate)methane (H<sub>2</sub>bdpm) to construct POM-based compounds respectively and cooperatively (Scheme 1). The rigid Htbz was utilized alone and compound 1 was obtained. Some 70 Htbz molecules transferred to Hbmz in situ under hydrothermal conditions. The coordination characters of tbz and bmz induce a hexa-nuclear Ag<sup>I</sup> cluster, which are linked by Keggin anion to form a 1D chain. The single  $H_2$  bdpm used in compound 2 only constructs a simple mono-nuclear  $[Ag(H_2bdpm)_2]^+$  unit, also

connected by anions to build a 1D chain. Furthermore, both Htbz and H<sub>2</sub>bdpm were chosen together to construct a novel structure. The mixed tbz and H<sub>2</sub>bdpm cooperate to form a tetra-nuclear Ag<sup>I</sup> cycle of compound **3**. The anions and cycles arrange alternately <sup>5</sup> to form a 1D chain. Adjacent chains are vertical and linked through Ag2-O20. Thus, a 3D framework is formed. Not only single ligand but also cooperation of Htbz and H<sub>2</sub>bdpm can induce new structures of **1–3**.



10 Scheme 1. The rigid tbz and flexible  $H_2$ bdpm to construct Keggin based structures respectively (1 and 2) and cooperatively (3).

**IR spectra.** Fig. S5 shows the IR spectra of compounds **1–3**. In the spectrum of **1**, characteristic band at 1066, 965, 877 and <sup>15</sup> 798 cm<sup>-1</sup> are attributed to v(P-O),  $v(W-O_d)$  and  $v(W-O_{b/c}-W)$ .<sup>13</sup> In the spectra of **2** and **3**, characteristic bands at 1067, 970, 886 and 803 cm<sup>-1</sup> for **2** and 1057, 939, 860 and 794 cm<sup>-1</sup> for **3**, are attributed to v(P-O),  $v(Mo-O_d)$  and  $v(Mo-O_{b/c}-MO)$ , respectively. <sup>14</sup> Bands in the regions of 1633–1171 cm<sup>-1</sup> for **1**, 1628–1176 cm<sup>-1</sup> 20 region for **2**, and 1619–1167 cm<sup>-1</sup> for **3** are attributed to the Htbz, Hbmz and H<sub>2</sub>bdpm ligands, respectively.

**Cyclic voltammetry.** Cyclic Voltammetric methods represent a very extensive use method of studying the electrochemical properties of cluster anions. The bulk-modified carbon paste <sup>25</sup> electrode (CPE) has become an optimal choice to study the electrochemical properties for the target compounds, which is credible and inexpensive, easy to prepare and handle.<sup>15</sup> The cyclic voltammograms for 1– and 3–CPEs in 0.1 M H<sub>2</sub>SO<sub>4</sub> + 0.5M Na<sub>2</sub>SO<sub>4</sub> aqueous solution at different scan rates are shown in Fig.

- <sup>30</sup> 8. For 1–CPE, two reversible redox peaks can be observed in the potential range of -780 to 0 mV for 1–CPE. The half-wave potentials  $E_{1/2} = (E_{pa}+E_{pc})/2$  are -523 (I–I') and -728 (II–II') mV (scan rate: 100 mV·s<sup>-1</sup>). The redox couples I–I' and II–II' are ascribed to two consecutive two-electron processes of the PW<sub>12</sub>.<sup>16</sup>
- The electrochemical behaviors of the 2– and 3–CPEs are similar, and the 3–CPE has been taken as an example to study their electrochemical properties. In the potential range of -180 to +650mV, there exist three reversible redox peaks I-I', II-II' and III-III' for 3–CPE with the half-wave potentials at +284 (I-I'), +100 (II-
- 40 II'), -122 (III-III') mV (scan rate: 100 mV·s<sup>-1</sup>), which are ascribed to three consecutive two-electron processes of the

This journal is © The Royal Society of Chemistry [year]

 $PMo_{12}$ .<sup>17</sup> When the scan rates varied from 20 to 300 mV·s<sup>-1</sup> for **1**– and **3**–CPE, the peak potentials change gradually; the cathodic peak potentials shift towards the negative direction, while the <sup>45</sup> corresponding anodic peak potentials to the positive direction. The peak currents are proportional to the scan rates up to 300 mV·s<sup>-1</sup> (Fig. S6), which indicate that the redox process of the **1**– and **3**–CPEs are surface-confined.

Fig. S7 shows cyclic voltammograms for the electrocatalytic 50 reduction of hydrogen peroxide by the 1- and 3-CPE in 0.1 M  $H_2SO_4 + 0.5M Na_2SO_4$  aqueous solution. For 1–CPE, it can be clearly seen that with addition of hydrogen peroxide, both two reduction peak currents gradually increase while the corresponding oxidation peak currents decrease, suggesting that 55 1–CPE shows good electrocatalytic activity toward the reduction of H<sub>2</sub>O<sub>2</sub>. However, for 3-CPE, with addition of hydrogen peroxide the second and the third reduction peak currents gradually increase while the corresponding oxidation peak currents decrease, but the first redox peak remains almost 60 unchanged, which indicates that the four- and six-electron reduced species of PMo12 anions present electrocatalytic activity at 3-CPE for the reduction of hydrogen peroxide. Obviously, the third reduced species show the best electrocatalytic activity, namely, the catalytic activity is enhanced with increasing extent 65 of POM anion reduction.



**Fig. 8.** The cyclic voltammograms of the **1**– and **3**–CPEs in 0.1 M  $H_2SO_4$  + 0.5M  $Na_2SO_4$  at different scan rates (from inner to outer: 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280 and 300 mV·s<sup>-1</sup>).

Photocatalytic activity. The photocatalytic activities of compounds 1–3 were studied by the degradation of methylene blue (MB) solution under UV irradiation. In the process of photocatalysis, 100 mg compounds was suspended in 0.02 mmol/L MB aqueous solution 250 mL and magnetically stirred for about 10 min to ensure the equilibrium in the dark. Then 5.0 mL samples were taken out every 20 min for analysis by UVvisible spectroscopy. However, the absorption peaks of MB with

- <sup>5</sup> compound 2 show almost no obvious change. It can be clearly observed from Fig. 9 and Fig. S8 that the absorption peaks of MB photocatalyzed by 1 decreased obviously with increasing of reaction time and the conversions of MB is 89.1% after 140 min. The conversion of MB photocatalyzed by 3 is the lower with
- <sup>10</sup> 40.5%, which maybe rest on the different polyoxomolybdate anions. This results show that compounds **1** and **3** own excellent photocatalytic activities for the degradation of MB, especially **1**.



Fig. 9. Absorption spectra of the MB solution during the decomposition <sup>15</sup> reaction under UV irradiation with the presence of compounds 1 and 3.

Luminescent sensing functions to Hg<sup>2+</sup> of compounds 1 and 3. At present, some coordination polymers containing sulfur atoms as a mercury-coordinating element have usually been used as highly selective luminescent probes for Hg<sup>2+, 5,7</sup> In this work, <sup>20</sup> we design compounds 1 and 3 employing S-based Htbz to explore the potential sensing functions of Hg<sup>2+</sup> in suspension of distilled water of 1 and 3. The emission spectrum of 1 suspension at room temperature excited at 320 nm shows an intense emission band at 399 nm (Fig. 10a). When addition Hg<sup>2+</sup> to compound 1 <sup>25</sup> suspension, its luminescence quenched three-quarter until the concentration of Hg<sup>2+</sup> was enhanced higher than 4.5 mM. Furthermore, in order to make a further understanding of this phenomenon, we have performed the same experiments to introduce Ag<sup>+</sup>, Zn<sup>2+</sup>, Cd<sup>2+</sup>, Pb<sup>2+</sup>, Cu<sup>2+</sup> and Fe<sup>3+</sup> to the system. <sup>30</sup> With addition of 4.5 mM Zn<sup>2+</sup>, Cd<sup>2+</sup>, Pb<sup>2+</sup> and Fe<sup>3+</sup> to the

suspension of **1** respectively, the luminescent intensities increase (Fig. 10b). Although the introduction of  $Ag^+$ ,  $Cu^{2+}$  can also decrease the luminescent intensities, the decreasing degree is not obvious compared with  $Hg^{2+}$ .

The same phenomenon happened on compound **3**. Namely, the introduction of  $Hg^{2+}$  decreased the luminescent intensities of **3**, and with enhancing the  $Hg^{2+}$  concentration up to 4.5 mM, the luminescent intensities change to the lowest level (Fig. 11a). The introduction of  $Zn^{2+}$  causes the luminescent intensities of **3** to be <sup>40</sup> enhanced extremely. Although the luminescent intensities decrease by introduction of other equal  $Ag^+$ ,  $Cd^{2+}$ ,  $Pb^{2+}$ ,  $Cu^{2+}$  and  $Fe^{3+}$ , the luminescent intensities are still much stronger than that of  $Hg^{2+}$  (Fig. 11b).



<sup>45</sup> Fig. 10. (a) Emission spectra of 1 suspension in distilled water in the absence and presence of Hg<sup>2+</sup> with different concentrations (excited at 320 nm). (b) Emission spectra of 1 suspension with addition of different metal ions (4.5 mM, excited at 320 nm).



**Fig. 11.** (a) Emission spectra of **3** suspension in distilled water in the absence and presence of Hg<sup>2+</sup> with different concentrations (excited at 320 nm). (b) Emission spectra of **3** suspension with addition of different <sup>5</sup> metal ions (4.5 mM, excited at 320 nm).

As shown in Fig. 12, the introductions of  $Zn^{2+}$ ,  $Cd^{2+}$  in **1** suspension and  $Zn^{2+}$  in **3** suspension induce the luminescent intensities increase as discussed above. However, when the equal  $Hg^{2+}$  was added consequently, the luminescent intensities still

- <sup>10</sup> decrease, which shows that compounds 1 and 3 acting as fluorescent molecular probes own high selectivities. Furthermore, the luminescent change induced by  $Fe^{3+}$  ions in 1 and 3 suspensions respectively is the most distinct, enhancing in 1 suspension and decreasing in 3 suspension obviously. This
- $_{15}$  phenomenon maybe depend on the N-H groups of compound **3**. According to Pearson's hard and soft acids and bases theory, the N-H group is hard base, which is easy to coordinate with  $\rm Fe^{3+}$  (hard acid).



<sup>20</sup> Fig. 12. Luminescent intensity of compounds 1 and 3 at about 399 nm in suspension at room temperature upon the addition of Hg<sup>2+</sup>, Zn<sup>2+</sup> or Fe<sup>3+</sup> ions (excited at 320 nm).

#### Conclusions

In this work, by using mixed rigid ligand Htbz and flexible  $_{25}$  ligand H<sub>2</sub>bdpm, we have synthesized three POM-based compounds 1–3 under hydrothermal conditions. Compounds 1 and 2 show 1D chain by using rigid Htbz and flexible H<sub>2</sub>bdpm, respectively. In compound 3, mixed Htbz and H<sub>2</sub>bdpm are both captured to construct a 3D framework of 3. The S atoms in 1 and

 $_{30}$  **3** are both non-coordinated and exposed. Compounds **1** and **3** exhibit good luminescent recognition for Hg<sup>2+</sup> in suspension. Further endeavors will focus on other POM-based Hg<sup>2+</sup> fluorescent probes by using S-containing ligands.

#### Acknowledgements

<sup>35</sup> Financial supports of this research by the National Natural Science Foundation of China (No. 21101015, 21471021 and 21201021, 21401010) and Talent-supporting Program Foundation of Education Office of Liaoning Province (LJQ2012097).

#### Notes and references

<sup>40</sup> 1 (a) J. Zhou, J. W. Zhao, Q. Wei, J. Zhang, G. Y. Yang, J. Am. Chem. Soc. 2014, **136**, 5065; (b) P. Huang, C. Qin, Z. M. Su, Y. Xing, X. L. Wang, K. Z. Shao, Y. Q. Lan, E. B. Wang, J. Am. Chem. Soc. 2012, **134**, 14004; (c) S. J. Li, S. M. Liu, S. X. Liu, Y. W. Liu, Q. Tang, Z. Shi, S. X. Ouyang, J. H. Ye, J. Am. Chem. Soc. 2012, **134**, 19716; (d) S. Ogo, N. Shimizu, K. Nishiki, N. Yasuda, T. Mizuta, T. Sano, M. Sadakane, *Inorg. Chem.* 2014, 53, 3526.

- 2 (a) S. T. Zheng, J. Zhang, X. X. Li, W. H. Fang, G. Y. Yang, J. Am. Chem. Soc. 2010, 132, 15102; (b) H. J. Pang, J. Peng, C. J. Zhang, Y.
- G. Li, P. P. Zhang, H. Y. Ma, Z. M. Su, *Chem. Commun.* 2010, 46, 5097; (c) X. L. Wang, H. L. Hu, G. C. Liu, H. Y. Lin, A. X. Tian, *Chem. Commun.* 2010, 46, 6485.
- Wang, *Inorg. Chim. Acta* 2007, **360**, 3347; (c) Z. K. Qu, K. Yu, Z. F. Zhao, Z. H. Su, J. Q. Sha, C. M. Wang, B. B. Zhou, *Dalton Trans.* 2014, **43**, 6744.
- 4 L. M. Wang, Y. Wang, Y. Fan, L. N. Xiao, Y. Y. Hu, Z. M. Gao, D. F. Zheng, X. B. Cui, J. Q. Xu, *CrystEngComm.* 2014, **16**, 430.
- <sup>15</sup> 5 Q. Zhao, T. Y. Cao, F. Y. Li, X. H. Li, H. Jing, T. Yi, C. H. Huang, Organometallics, 2007, 26, 2077.
- 6 (a) H. Yang, Z. G. Zhou, K. W. Huang, M. X. Yu, F. Y. Li, T. Yi, C. H. Huang, *Org. Lett.* 2007, 9, 4729; (b) Z. H. Cheng, G. Li, N. Zhang, H. O. Liu, *Dalton Trans.* 2014, 43, 4762.
- 20 7 Y. Liu, M. Y. Li, Q. Zhao, H. Z. Wu, K. W. Huang, F. Y. Li, *Inorg. Chem.* 2011, **50**, 5969.
- 8 A. X. Tian, Y. Yang, N. Sun, J. C. Li, J. Ying, J. W. Zhang, X. L. Wang, X. L. J. Coord. Chem. 2014, 67, 1550.
- 9 G. M. Sheldrick, *SHELXS-97*, University of Göttingen, Germany, 1997. 25 10 I. D. Brown, D. Altermatt, *Acta Crystallogr. B.* 1985, **41**, 244.
- 11 (a) M. X. Liang, C. Z. Ruan, D. Sun, X. J. Kong, Y. P. Ren, L. S. Long, R. B. Huang, L. S. Zheng, *Inorg. Chem.* 2014, **53**, 897; (b) P. P. Zhang, J. Peng, H. J. Pang, J. Q. Sha, M. Zhu, D. D. Wang, M. G. Liu, Z. M. Su, *Cryst. Growth Des.* 2011, **11**, 2736.
- 30 12 A. X. Tian, Y. Yang, J. Ying, N. Li, X. L. Lin, J. W. Zhang, X. L. Wang, *Dalton Trans.* 2014, **43**, 8405.
- 13 L. L. Fan, D. R. Xiao, E. B. Wang, Y. G. Li, Z. M. Su, X. L. Wang, J. Liu, Cryst. Growth Des. 2007,7, 592.
- 14 J. Q. Sha, M. T. Li, J. W. Sun, Y. N. Zhang, P. F. Yan, G. M. Li, Dalton Trans. 2013,**42**, 7803.
- (a) H. Beitollahi, I. Sheikhshoaie, *Electrochim. Acta*, 2011, 56, 10259;
  (b) H. Beitollahi, A. Mohadesi, S. Mohammadi, A. Akbari, *Electrochim. Acta*, 2012, 68, 220;
  (c) H. Beitollahi, I. Sheikhshoaie, *J. Electroanal. Chem.* 2011, 661, 336;
  (d) H. Beitollahi, M. Mostafavi,
- *Electroanalysis*, 2014, 26, 1090; (e) H. Beitollahi, I. Sheikhshoaie, *Anal. Methods*, 2011, 3, 1810; (f) E. Molaakbari, A. Mostafavi, H. Beitollahi, R. Alizadeh, *Analyst*, 2014, 139, 4356.
- 16 (a) M. Sadakane, E. Steckhan, *Chem. Rev.* 1998, **98**, 219; (b) S. X. Guo, A. W. A. Mariotti, C. Schlipf, A. M. Bond, A. G. Wedd, *Inorg.* <sup>45</sup> *Chem.* 2006, **45**, 8563.
- 17 W. B. Song, Y. Liu, N. Lu, H. D. Xu, C. Q. Sun, *Electrochim. Acta* 2000, **45**, 1639.