Dalton Transactions

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this *Accepted Manuscript* with the edited and formatted *Advance Article* as soon as it is available.

You can find more information about *Accepted Manuscripts* in the [Information for Authors](http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp).

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard [Terms & Conditions](http://www.rsc.org/help/termsconditions.asp) and the Ethical quidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/dalton

An easy-to-prepare $Fe₃O₄$ -graphene oxide nanocomposite which works well as reusable catalyst for A³-coupling reaction

Aldehyde + Alkyne + Amine Propargylamine

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

Dalton Transactions Accepted Manuscript Dalton Transactions Accepted Manuscript

Excellent catalytic activity of magnetically recoverable Fe3O4-graphene oxide nanocomposites prepared by a simple method

Prasenjit Mandal and Asoke P. Chattopadhyay*

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX ⁵ **DOI: 10.1039/b000000x**

Fe3O⁴ -graphene oxide nanocomposite has been synthesized *via* a chemical reaction with magnetite particle size of 18-25 nm. The resulting nanocomposite can be easily manipulated by an external magnetic field, exhibit excellent catalytic activity and may be reused for several cycles with marginal loss of activity. This recyclable nanocomposite provides an efficient, economic, novel route for multicomponent $A³$ coupling reaction of aldehyde, amine and alkyne and gives the propargylamine in excellent yields.

¹⁰ **Introduction**

The highly efficient multi-component reactions in one-pot syntheses play an important role in current organic synthesis¹ since they not only exhibit selectivity and higher atom economy, but allow construction of molecules of more diversity and

- ¹⁵ complexity and are thus highly valued among synthetic methodologies. Furthermore, in many cases, multi-component reactions are easy to perform leading to simple experimental procedures as well as lower cost, time and energy. The catalytic coupling reaction of aldehyde, amine and alkyne $(A^3$ coupling) is
- ²⁰ one of the best examples, where propargylamine is obtained as the major product. During the past decade, much effort has been spent to develop one-pot multi-component reactions to make new carbon–carbon bonds.² These are typically carried out using a host of stoichiometric reagents and protecting groups, often ²⁵ generating much waste in the process.
- Propargylamines are important components of useful synthetic precursors³ and biologically active compounds.⁴ This is reflected in the interest shown in its synthesis.⁵⁻¹⁰ The particular coupling reaction $(A^3$ coupling) can be successful using various types of
- ³⁰ catalyst such as copper-doped alumina with microwave assistance,¹¹ copper in solid phase systems,⁵ gold,¹² silver,¹³ ruthenium–copper cocatalyst⁵ and iridium.¹⁰ The last two in the list are toxic in nature and have low turnover numbers in their respective reactions, are difficult to prepare and are not
- ³⁵ environmentally friendly. Fe₃O₄ nanoparticles and Fe₃O₄graphene oxide (Fe₃O₄-GO) nanoparticle catalysts,¹⁴⁻¹⁵ on the other hand, are prepared from iron-salts and graphite powder, which are both cheap and readily available. They are also moisture-sensitive, and environmentally friendly. $Fe₃O₄$ ⁴⁰ nanoparticles are superparamagnetic, with interesting magnetic
- and biological activities. Such a novel composite with high specific surface area and strong magnetic sensitivity exhibits

excellent catalytic activity in the $A³$ -coupling reaction.

The development of a clean synthetic procedure has become crucial and demanding because of increasing environmental ⁵⁰ concerns. Heterogeneous organic reactions have many advantages in this respect, such as ease of separation and handling, recycling, and environmentally safe disposal.¹⁶ The heterogeneous catalysts such as graphene oxide- $Fe₃O₄$ have attracted a great deal of attention in recent years because of their high catalytic activity 55 and interesting structures.¹⁷ The Fe₃O₄-GO magnetic nanoparticles have been most useful as heterogeneous catalysts because of their numerous applications in biotechnology, nanocatalysis, and medicine. 18 In this context the magnetic properties¹⁹ make possible the complete recovery of the catalyst 60 by means of an external magnetic field.²⁰ On the other hand, performing organic reactions in aqueous media has several benefits because water would be considerably safe, nontoxic and economical compared to organic solvents, abundant, and environmentally friendly. Moreover, water exhibits selectivity ⁶⁵ and unique reactivity, which is different from those in conventional organic solvents. 21 Therefore, the development of a catalyst that is not only stable toward water but also simply recyclable seems highly desirable.

In continuation of efforts to develop new synthetic methods for 70 the synthesis of propargylamines containing important biologically active compounds,²² herein we report our contribution to it viz. using $GO-Fe₃O₄$ nanocomposites as excellent $A³$ coupling catalysts for its production. These materials are robust, inexpensive, and easy to make. They are highly active ⁷⁵ in the coupling reaction of aldehydes, amines, and alkynes, giving propargylamines selectively with water as the only by-product (Scheme-1). This feature is of importance for purity requirement, especially in pharmaceutical industry. Simple mild and low**-**cost reusable methods are highly desirable to avoid toxicity.

45 **Department of Chemistry, University of Kalyani, Kalyani 741235, India; Email: [asoke@klyuniv.ac.in;](mailto:asoke@klyuniv.ac.in) Fax: +91-33- 25828282; Tel: +91-33-25828750*

This journal is © The Royal Society of Chemistry [year] *[journal]*, [year], **[vol]**, 00–00 | **1**

Experimental

Materials

Graphite powder (70 μm, Qingdao Graphite Company), KMnO₄, FeCl₃.6H₂O, H₂SO₄, sodium dodecylsulfate (SDS),

 $F_5 = F_5O_4$.7H₂O, ammonia solution, H₂O₂. All chemicals were reagent grade and purchased from Sinopharm Chemical Reagent Co. Ltd. Milli-Q (Millipore, Billerica, MA, USA) and nanopure (double distilled water, filtered through 200 μm filter) water was used in all experiments.

10 Preparation of water-soluble magnetic Fe₃O₄ **nanoparticles**

Magnetically active $Fe₃O₄$ nanoparticles were synthesized by chemical co-precipitation of Fe^{3+} and Fe^{2+} ions in an alkaline solution, followed by a treatment under hydrothermal ¹⁵ conditions.²³⁻²⁴ 5.7 g FeCl₃.6H₂O and 2.7 g FeSO₄.7H₂O were dissolved in 10 mL nanopure water separately. These two solutions were thoroughly mixed and added to 20 mL 10 M ammonium hydroxide with constant vigorous stirring for 1 h to make all materials dissolved completely at 25 °C . Colour

- ²⁰ of the solution changes from dark green to black indicating the formation of $Fe₃O₄$ and completion of the reaction. Then the dark black slurry of Fe₃O₄ particles was heated at 80 $^{\circ}$ C in a water bath for 30 min. The particles thus obtained exhibited a strong magnetic response. Impurity ions such as sulphates
- ²⁵ and chlorides were removed by washing the particles several times with nanopure water. Then the particles are dispersed in 20 mL nanopure water and sonicated for 10 min at 60 MHz. The yield of precipitated magnetic nanoparticles was determined by removing known aliquots of the suspension $_{30}$ and drying to a constant mass in an oven at 70 0 C. The prepared magnetic nanoparticles were stable at room
	- temperature (25-30 $\mathrm{^0C}$) without getting agglomerated.

Preparation of graphene oxide

- Graphene oxide (GO) was prepared according to the modified $_{35}$ Hummers' method from graphite powder.²⁵ In detail, 1 g of graphite powder and 300 mg of NaNO₃ in 22 mL of concentrated H_2SO_4 were vigorously stirred in an ice bath. 3 g of KMnO⁴ was added gradually with constant stirring, to prevent the temperature of the mixture from exceeding 8-10
- 40 C. The ice bath was then removed and the mixture was stirred at 30 \pm 3 ⁰c for 35 min. After completion of the reaction, 45 mL of distilled water was added, and the temperature was kept at 95 $^{\circ}$ C for 18 min. The reaction was terminated by adding 140 mL of distilled water and 15 mL of
- 45 30% $H₂O₂$ solution. The reaction product was centrifuged and washed successively with deionized water and 5% HCl solution repeatedly until sulfate could not be detected with BaCl₂. Finally, graphene oxide was obtained after drying under vacuum at $60⁰C$ for 24 h.

Preparation of Fe3O⁴ ⁵⁰ **-GO nanocomposite.**

The Fe₃O₄-GO nanocomposite was synthesized by coprecipitation²⁶ of prepared $Fe₃O₄$ nanoparticle in the presence

of GO in water. SDS was added to the prepared $Fe₃O₄$ nanoparticle, which was then added slowly to the GO ⁵⁵ solution, along with ammonia solution, with constant stirring for 30 min to make all materials dissolve completely. The temperature was raised to 85 $^{\circ}$ C, and a 30% ammonia solution was added to adjust the pH to 10. After being rapidly stirred for 30 min, the solution was cooled to room temperature. The dark black coloured solution was then filtered and washed with Milli**-**Q water/ethanol and dried in vacuum at 70 ^oC. In this powdered Fe₃O₄-GO nanocomposite, the weight ratio of $Fe₃O₄$ to GO was 2:1. (See Scheme 1)

Typical procedure for the A³ coupling reaction

⁶⁵ The reactions were carried out under conventional heating in a conventional round bottomed flask (rbf), under constant stirring. The typical $A³$ coupling reaction was performed as follows. 0.50 mmol aldehyde, 0.60 mmol amine and 0.75 mmol alkyne were taken in a 50 ml rbf with 6 ml water. 0.05 mmol catalyst was added to it. The reaction mixture was stirred for 16 h at 80- 90 0 C. Progress of the reaction was monitored by sampling aliquots of reaction mixture and subsequent analysis by GC/GC-MS (VB-1 column, FID), and/or purified by column chromatography (hexane, silica gel: E tOAc = 4:1). Product identity and purity were confirmed by ¹H NMR spectroscopy and GC-MS spectrometry. (Scheme 2)

Conditions: aldehyde (1 eq.), amine (1.2 eq.), alkyne (1.5 eq.), GO-Fe₃O₄ (50 mg, 0.3 mol% Fe₃O₄ NP) in 5 mL solvent or neat for 16 h, temperature above 90 0C ; conversions were determined by GC-MS and ¹H NMR of crude reaction mixture.

⁸⁵ **Results and discussion**

Characterization

All synthesized nanoparticles were characterized in the usual manner, viz. powder XRD, FT-IR, SEM, TEM, thermogravimetric analysis (TGA) and Raman Spectroscopy. ⁹⁰ Available data for different systems are given below.

Scheme 1. Synthesis of Fe₃O₄-GO nanocomposites. Red dots 95 indicate oxygen atoms, blue dots indicate $Fe₃O₄$ nanoparticles, green lines represent SDS.

FTIR Study

The FTIR spectra of GO and GO–Fe₃O₄ hybrid are shown in Figs 1 and 2. The peak at 1711 cm⁻¹ corresponding to $v(C=O)$ of – 100 COOH on the GO shifts to 1634 cm⁻¹ due to the formation of –

Cite this: DOI: 10.1039/c0xx00000x

ARTICLE TYPE

FT-IR spectra of (Fig. 1, top) Fe₃O₄-GO nanocomposite and (Fig. 2, bottom) graphene oxide

55

60

-COO⁻ after coating with Fe₃O₄. The characteristic peak ⁴⁰ corresponding to the stretching vibration of Fe–O bond is also shifted to 786.2 cm⁻¹ compared to 545.9 cm⁻¹ reported for bulk Fe_3O_4 , $^{27-29}$ suggesting that Fe_3O_4 is bound to the -COO⁻ on the GO surface.

SEM Study

- ⁴⁵ In Fig 3, SEM images of iron oxide nanoparticles, and nanocomposites of iron oxide and graphene oxide (GO) are shown. The images are clearly distinguishable, with the image of iron oxide nanoparticles showing more cluster**-**like compositions having larger grains, and its nanocomposite with
- ⁵⁰ GO showing more uniform structure with smaller particles. In Fig 4(a), energy dispersive X-ray analysis (EDX) of $Fe₃O₄$

nanoparticles and in Fig. $4(b)$ that of Fe₃O₄-GO nanocomposite are shown.

Fig. 3. SEM images of $Fe₃O₄$ nanoparticles (left) and $Fe₃O₄$ ⁶⁵ GO nanocomposite (right)

ARTICLE TYPE

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

55

60

Fig. 4. EDX images of Fe₃O₄ nanoparticles (top) and of Fe₃O₄-GO nanocomposites (bottom)

XRD Study

Next, the powder XRD data of iron oxide-GO nanocomposite ³⁰ is presented in Fig. 5. The most striking feature is the typical graphene (002) signature at 26.6° . Usually, it is expected that, as graphene is oxidized to graphene oxide, this peak disappears and another one at much smaller angle (around $10-11^0$) appears. Also, as GO is made into a composite with metallic

35 nanoparticles, the peak at 26.6° is supposed to become broader, with sharper peaks appearing at larger angles due to metal (or metal oxide). The peaks at 24.3^0 , 33.2^0 and 49.5^0 (marked in blue) may be ascribed to (012), (104) and (024) lines of α haematite.³⁰ The peak at 30.6° , 35.7° and 41.1° may be

- identified as (220) , (311) and (400) of Fe₃O₄ (marked in red).¹⁰ 40 Thus, beside the peak at 26.6° of graphene (002), the broader peak centred at 43.5° is most probably composed of the (100) peak of graphene, which is usually followed immediately by the (101) peak.³¹ This may explain the broadness of the peak.
- 45 Please note that the (311) peak is expected to reduce much upon formation of composite with GO, ¹⁰ which is observed here. While the peak at 24.3° could also be ascribed to a different interplanar distance between graphene sheets, i.e. to the (002) peak usually observed at 26.6° , that would also lead
- $\frac{1}{20}$ to a much broader peak in this region,³² which is not seen.

⁶⁵ Fig. 5. Powder XRD spectrum of iron oxide GO nanocomposite. Black, red and blue denote GO, $Fe₃O₄$ and α - $Fe₂O₃$ respectively.

TGA Study

⁷⁰ We next present thermogravimetric analysis of iron oxide and iron oxide-graphene oxide nanocomposites. The TGA data of the two systems are shown in Fig. 6 below. The TGA curve of iron oxide nanoparticles show a 5% weight loss till 200 $^{\circ}$ C, followed by a further weight loss of 3.5% till 300 0C , and a $\frac{1}{75}$ slow loss of 1.5% from 300 ⁰C to 800 ⁰C. These indicate loss of moisture, some of it more tightly bound. The curve for iron oxide-GO nanocomposite shows two shoulders, one around

Fig. 6. Thermogravimetric analysis of $Fe₃O₄$ nanoparticles and $Fe₃O₄$ -GO nanocomposite

 20

375 ^oC (wt loss 1.5%) and another \sim 535 ^oC (wt loss 2.7%). The remaining weight loss upto 800 $^{\circ}$ C is ~5.6%. This behaviour is clearly different from most known samples of GO, which show upto 15% wt loss till 100 ${}^{0}C^{33}$ and over 30% 25 wt loss beyond, in the 100-200 0 C range.³⁴ The nanocomposite

shows far greater stability upto 800 0C , most probably due to binding of iron oxide nanoparticles to the carboxylate groups etc. of GO platelets.

TEM Study

Fig.7 shows transmission electron micrographs of graphene o xide-Fe₃O₄ nanocomposites. Low magnification TEM images (Fig. 7(a) and (b)) reveals the clean images of small $Fe₃O₄$ nanoparticles distributed homogeneously in the flexible two

- ³⁵ dimensional graphene oxide nanosheets. These images are the direct proof of the formation of graphene oxide- $Fe₃O₄$ nanocomposites. Moreover, high resolution TEM images (Fig. 7(c), (d) and (e)) shows high crystallinity of $Fe₃O₄$ nanoparticles with the appearance of lattice fringes distributed in
- ⁴⁰ the graphene oxide nanosheets matrix. The distance between two lattice fringes are calculated by using the line profile (a line drawn to the perpendicular of lattice fringes) graph shown in Fig. 7(f). It shows that the distance between two lattice fringes is 0.252 nm which corresponds to the (311) plane of
- 45 Fe₃O₄ crystal. Interestingly, the distinction among the composites and the two constituents can be clearly made by analyzing the selected area electron diffraction (ED) patterns. Fig. 8 shows the ED patterns of $Fe₃O₄$ nanoparticles, graphene oxide nanosheets and $Fe₃O₄-GO$ nanocomposites. Fig. 8(a)
- 50 shows the ED pattern of Fe₃O₄ nanoparticles with the appearance of rings indicates the polycrystalline nature of the particles. Fig 8(b) shows the ED pattern of graphene oxide taken from a single sheet. Hexagonal ED pattern of GO indicates the single crystalline nature. Fig. 8(c) shows the ED
- 55 pattern taken from a $Fe₃O₄$ -GO composite. Both ring like ED pattern of $Fe₃O₄$ nanoparticles and hexagonal ED pattern of

GO can be clearly observed. This fact suggests the formation of GO-Fe₃O₄ nanocomposites.

Raman spectrum of the ⁶⁰ **-graphene oxide nanocomposite**

Raman spectrum of the $Fe₃O₄$ -graphene oxide nanocomposite is given below (Fig. 9). Characteristic peaks of $Fe₃O₄$ alone, which are seen in the range $200 - 600$ cm⁻¹, are absent in the ⁶⁵ present spectrum. Only, the typical D and G peaks of graphene oxide are seen at 1355.5 and 1585 cm^{-1} respectively. The I_D/I_G ratio is 1.037, showing onset of disorder induced by iron oxide.

Fig. 9. Raman spectrum of Fe₃O₄-GO nanocomposite

The harmonics are also seen at 2711 and 3170 cm⁻¹. Absence ⁸⁵ of the iron oxide peaks in Raman spectrum may indicate low concentration of $Fe₃O₄$ particles in GO. The actual amount of Fe3O⁴ in GO was ascertained by Atomic Absorption Spectroscopy (AAS) as 8.232% of Fe₃O₄ in GO (w/w).³⁵

Catalytic activity

Propargylic amines, products of the $A³$ -coupling, are important synthetic intermediates for natural products and potential therapeutic agents.³⁶ There is some report of single $Fe₃O₄$ nanoparticles catalyzing A^3 -coupling.^{37,38} As a comparison, we 95 used graphene oxide–Fe₃O₄ nanocomposite as a catalyst in A^3 coupling reaction.

Optimization of the performance of the catalyst with different amounts of GO-Fe₃O₄ nanocomposite was carried out. The A^3 coupling reaction of aryl aldehyde, amine and benzene alkyne ¹⁰⁰ was examined by various catalysts of varying amounts was examined (Table 1). In the absence of the nanocomposite, no $A³$ coupling product was observed (Table 1, entry 10). As expected, in the presence of catalyst, yield of the coupling product was 93% for 5 wt% loading of GO-Fe₃O₄ nano-¹⁰⁵ composite catalyst. The catalytic activity increased with the increase of the GO-Fe₃O₄ amount up to 5 wt% (Table 1, 1-7). On the other hand, in a control experiment when homogeneous phase $Fe₃O₄$, GO and an iron salt was used as the catalyst under optimized conditions, only 19% , 25% and 83% yields ¹¹⁰ of the propargylamines (Table 1 Entry 8,9,11) were obtained. Thus $GO-Fe₃O₄$ nanocomposite catalyst was more efficient in $A³$ coupling reaction than the other substances used.

5

10

15

25

30

35

²⁰ Fig. 7. (a) and (b) Low magnification TEM images, (c), (d) and (e) HRTEM images of graphene oxide-Fe₃O₄ nanocomposites. (f) Line profile of Fig. 6 (e)

Fig. 8. (a), (b) and (c) Electron diffraction patterns of $Fe₃O₄$, graphene oxide and Fe₃O₄-graphene oxide nanocomposites respectively.

Table 1. Effect of catalyst in the 3**-**component coupling of cyclohexanecarbaldehyde, piperidine, and phenylacetylene.

$$
^{40} \qquad \qquad \bigg\downarrow^{60} \qquad \qquad \bigg\downarrow^{60} \qquad \qquad \qquad \underbrace{\qquad \qquad }_{n}
$$

Conditions of the above reaction were as follows. Aldehyde (1 equiv), amine (1.2 equiv), alkyne (1.5 equiv) and GO**-** $F_{\text{e}_3\text{O}_4}$ (50mg, 0.3 mol% Fe_3O_4 np) were taken in 5 mL solvent or neat for 16 h, at temperature above 90 0C .

Conversions were determined by $GC-MS$ and 1H NMR analysis of crude reaction mixture.³⁹

We also investigated the effects of reaction temperature, solvents and reaction time on the catalytic efficiency. At a lower reaction temperature (25 $^{\circ}$ C), the GO-Fe₃O₄ nanocomposite (0.0050 mmol) showed lower conversion due to an incomplete reaction. We obtained excellent conversion at a higher reaction temperature (above 90 $\mathrm{^{0}C}$). ⁵⁵ Solvent-free conditions proved to be the most effective for the $A³$ -coupling reaction (Table 2) and the conversion was comparable to that of the homogeneous catalyst (Table 1). As shown in Table 2, one could conclude from the influence of the reaction time on the activity that the A^3 -coupling ⁶⁰ reaction reaches completion after 24 h under the present conditions. We obtained the products in moderate or low conversions when using ethanol, dichloromethane (DCM), *N*,*N*-dimethylformamide (DMF), tetrahydrofuran (THF), acetonitrile, dimethyl sulfoxide (DMSO), and ethyl acetate ⁶⁵ (Table 2). We also obtained slightly lower conversions when using water or toluene as the solvent (Table 2). The optimized reaction conditions include 0.5 equiv of aldehyde, 0.6 equiv of amine, 7.5 equiv of alkyne, and 0.0050 mmol of GO-Fe₃O₄ nanocomposite at 90 ⁰C, solvent-free in air.

70

75

80

85

Table 2. Effects of various solvents in the 3**-**component coupling of cyclohexanecarbaldehyde, piperidine, and phenylacetylene catalyzed by the graphene– $Fe₃O₄$ catalyst.

$$
\left(\begin{array}{c}\n\begin{array}{c}\n\text{or } \\
\hline\n\end{array}\n\end{array}\right) = + \bigcap_{\text{Solvent/Neat}} \overbrace{\text{Solvent/Neat}}^{\text{Catalyst}}
$$

10

5

On the other hand the reaction depends on temperature and time (data given in Supplementary Information). When reaction time increases, the product yield also increases in ¹⁵ water and in solvent. In addition, it was found that at higher temperatures GO-Fe₃O₄ nanaocomposite show good catalytic activity; at 90 ⁰c-120 ⁰c, a 93% yield were obtained, however at room temperature lower yields are obtained even after longer reaction times.

- $_{20}$ To expand the scope of this A^3 -coupling, we used various aldehydes, alkynes, and amines were used as substrates under the optimized reaction conditions, and the results are summarized in Table 3. In general, both aliphatic and aromatic aldehydes underwent the addition reaction ²⁵ smoothly to provide the desired product in moderate to excellent yields. As shown in Table 3 (entry 1), only a trace of $A³$ -coupling product was observed by NMR. Note that the reactions proceeded smoothly to give the corresponding propargylamines in a excellent yield. The presence of
- ³⁰ electron-rich groups on the benzene ring (Table 3, entries 2– 5) increased the reactivities of the alkynes whereas electronwithdrawing groups (Table 3, entry 6) on the benzene decreased the yield. However, aliphatic aldehydes such as cyclohexanecarboxaldehyde, 2-ethylbutanal and
- ³⁵ formaldehyde all give both higher conversions and greater yields (Table 3, entries 7-10). It was important to notice that formaldehyde provides excellent yield than other carbon chain aliphatic aldehyde (Table 3, entry 10). Good yields were observed when cyclic dialkylamines such as
- pyrrolidine and morpholine were used (Table 3, entries 11 and 12). The effect of electron-withdrawing groups on the alkyne was

also investigated (Table 3, entries 13 and 14). For 2 ethynylpyridine and 2-ethynylthiophene, yields were 58%

- ⁴⁵ and 37% respectively. The reaction failed with 2 ethynylfuran. One problem could be the high volatility of the
- 05

reactants, which require low temperatures for storage, while our optimum condition was above 90 $\mathrm{^{0}C}$. We are currently investigating reaction with such substrates further.

⁵⁰ We also investigated the effect of adding a mixture of GO and Fe3O⁴ nanoparticles, instead of the nanocomposite, for the reaction of cyclohexanecarbaldehyde, piperidine and phenylacetylene. The yield obtained was 34.5%, less than for nanocomposite (Table 3, entry 7). Also, in O_2 and N_2 ⁵⁵ atmosphere, the yields of the same reaction were 62% and 75% respectively. This may be related to the stability of intermediate species involved.^{40, 41}

Catalyst recycling

 60 The magnetically active GO-Fe₃O₄ nanoparticles were adsorbed onto the magnetic stirring bar when the magnetic stirring was stopped. The nanoparticles were then washed with ethyl acetate, air-dried and used directly for the next round of reactions without further purification. It was shown ⁶⁵ that the nanocomposite catalyst could be recovered and reused 12 times without significant loss of catalytic activity (Table 4 and Fig. 10).

Table 4. The reuse of catalyst in A^3 -coupling

Cycle	$100 \div 100 \$ % Yield by	Cycle	% Yield by
	GC-MS		GC-MS
	93		79
$\overline{2}$	87		77
3	86	9	75
	84	10	74
5	83	11	72
	82	12	71

Fig. 10. Recycling of GO-Fe₃O₄ (3 mol %) catalyst for the t $A³$ -coupling of aldehyde, amine and alkyne in air in solventfree conditions.

⁹⁰ Further examination of the catalyst after recycling it 12 times in the above reaction produced interesting results. The FTIR and XRD spectra, given in Supplementary Information (Figs. S1 and S2) have the following general features.

Ņ. R_{2} ₂

Cite this: DOI: 10.1039/c0xx00000x

 $R_1CHO + NHR_2R_3 + R_4$

Table 3. Effect of substituents on the Fe₃O₄-GO nanocomposite catalysed A^3 coupling reaction

 $GO-Fe₃O₄$

www.rsc.org/xxxxxx

ARTICLE TYPE

Entry Aldehyde Amine Alkyne Product Product Yield(%) 1 1a Trace 2 2a 81 3 3a 84 4 4a 76 5 5a 70 6 6a 64 CHO Me MeO MeO N Cl Cl N H CHO N OMe N H CHO N N H CHO N O Me N H CHO N Me N H **CHO** N N H $R_1 \cong R_4$

Most notably, the Fe-O bond, at 786.2 cm^{-1} in pristine $Fe₃O₄$ -GO nanocomposite, shifts to 772.50 cm⁻¹ (Fig. S1 in Supplementary Information). This shows that the Fe—O is weakened after recycling the nanocomposite 12 times, but is still intact. This is true of other features of the nanocomposite (See Figs. S1 and S2 in Supplementary Information). In other words, the essential features of the nanocomposite remain intact after recycling a dozen times.

10 **Conclusion**

Nanocomposites of graphene oxide, doped with $Fe₃O₄$ nanoparticles, were prepared by a simple and robust method. These particles were characterized by the usual manner. ¹⁵ They display excellent catalytic activity, which was used in the one-pot synthesis of propargylamines following the $A³$ coupling protocol. Magnetic behaviour of the nanocomposites may be employed to reuse the catalyst. Currently, we are engaged in examining how both product ²⁰ yield and catalyst life may be increased using easily available means.

Characterization of compounds

1-(1,3-diphenylprop-2-ynyl)piperidine (1a)

¹H NMR (CDCl3, 250 MHz) δ: 1.57-1.63 (m, 2H), 1.72-²⁵ 1.83 (m, 4H), 2.71-2.73 (m, 4H), 4.96 (s, 1H), 7.42-7.53 (m, 6H), 7.66-7.69 (m, 2H), 7.82 (*d*, *j*= 7.2 HZ, 2H), **1-[1-Cyclohexyl-3-(4-methylphenyl)-2-propynyl] piperidine (2a)** ¹ H-NMR (CDCl , 400MHz): δ 7.30 (d, 2H), 7.06 (d, 2H),

30 3.08 (d, 1H), $2.\overline{66}$ -2.58 (m, 2H), 2.40-2.32 (m, 2H), 2.30 (s, 3H), 2.10-1.96 (m, 2H), 1.77-1.67 (m, 2H), 1.64-1.47 (m, 6H), 1.44-1.35 (m, 2H), 1.31-1.10(m, 3H), 1.06-0.88 (m, 2H),

1-(1-cyclohexyl-3-(4-methoxyphenyl) prop-2-ynyl)

³⁵ **piperidine (3a)**

¹ H-NMR (400MHz, CDCl): δ= 7.36 (d, 2H), 6.80 (d, 2H), 3 3.81 (s, 3H), 3.07 (d, 1H), 2.65-2.58 (m, 2H), 2.38 (br, 2H), 2.10-2.02 (m, 2H), 1.76-1.56 (m, 8H), 1.45-1.40 (m, 2H), 1.30-1.01 (m, 3H), 1.00-0.86 (m, 2H),

⁴⁰ **1-(1-cyclohexyl-3-(3-methoxyphenyl)-prop-2-ynyl) piperidine** (4a)

H-NMR (400MHz, CDCl): δ= 7.20-7.17 (m, 1H), 7.05 (d, 3 1H), 6.97 (d, 1H), 6.81-6.80 (d, 1H), 3.81 (s, 3H), 3.10(d, 1H), 2.63-2.58 (m, 2H), 2.38 (br, 2H), 2.10-2.01(m, 2H), ⁴⁵ 1.76-1.53 (m, 8H), 1.45-1.40 (m, 2H), 1.31-1.01 (m, 3H),

1.01-0.85 (m, 2H) **1-(3-(4-chlorophenyl)-1-cyclohexylprop-2-ynyl) piperidine (5a)** ¹

H-NMR (400MHz, CDCl): δ = 7.34 (d, 2H), 7.27 (d, 2H), 50 3.07 (d, 1H), 2.60-2.57(m, 2H), 2.36 (br, 2H), 2.07-2.00 (m, 2H), 1.84-1.73 (m, 2H), 1.66-1.50 (m, 6H), 1.45-1.40 (m, 2H), 1.32-1.13 (m, 3H), 1.04-0.85 (m, 2H)

1-(1-Cyclohexyl-3-phenyl-2-propynyl]piperidine (**6a**) 1

H-NMR (CDCl , 400MHz, ppm): *δ* 7.46-7.44 (m, 2H), 3 ⁵⁵ 7.30-7.24 (m, 3H), 3.09 (d, 1H), 2.65-2.60 (m, 2H), 2.44- 2.40 (m, 2H), 2.14-2.04 (m, 2H), 1.80-1.70 (m, 2H), 1.65- 1.51(m, 6H), 1.45-1.40 (m, 2H), 1.34-1.15 (m, 3H), 1.07- 0.88 (m, 2H).

N-(1-Isopropyl-3-phenyl-2-propynyl) piperidine (7a) ¹

60 H-NMR (CDCl_, 400MHz, ppm): δ= 7.47–7.44 (m, 2H), 3 7.34–7.30 (m, 3H), 3.01 (d, 1H), 2.69–2.65 (m, 2H), 2.43 (br, 2H), 1.97-1.93 (m, 1H), 1.68–1.57 (m, 4H), 1.49–1.46 (m, 2H), 1.10 (d, 3H), 1.02 (d, 3H).

1-[1-(1-Ethylpropyl)-3-phenyl-2-propynyl] piperidine ⁶⁵ **(8a)** ¹ H-NMR (CDCl , 400MHz, ppm): δ= 7.44-7.41 (m, 2H),

3 7.33-7.23 (m, 3H), 3.21 (d, 1H), 2.65-2.61 (m, 2H), 2.43- 2.39 (m, 2H), 1.78-1.65 (m, 1H), 1.61-1.50 (m, 6H), 1.51- 1.40 (m, 4H), 0.91 (t, 3H), 0.83 (t, 3H)

⁷⁰ **N-(3-Phenyl)-prop-2-ynyl) piperidine (9a)**

 H -NMR (CDCl₋₂, 400MHz, ppm): δ= 7.44-7.42 (m, 2H), 3 7.31-7.28 (m, 3H), 3.47 (s, 2H), 2.56 (br, 4H), 1.69-1.60 (m, 4H), 1.45 (br, 2H).

4-(1,3-Diphenyl-prop-2-ynyl)-morpholine (10a)

⁵ ¹H NMR (300 MHz,CDCl3): 17.63 (d, J = 6.9 Hz, 2H),7.50 $(d, J = 6.9 \text{ Hz}, 2\text{H}), 7.36-7.31 \text{ (m, 6H)}, 4.78 \text{ (s, 1H)}, 3.71-$ 3.64 (m,4H), 2.62–2.56 (m, 4H);

1-[1-Cyclohexyl-3-phenyl-2-propynyl] pyrrodine (11a) ¹ H-NMR (CDCl_, 400MHz, ppm): δ= 7.43-7.42 (m, 2H),

 10 7.31-7.24 (m, 3H), 3.33 (d, 1H), 2.74-2.70 (m, 2H), 2.64-2.63 (m, 2H), 2.08 (d, 1H), 1.94 (d, 1H), 1.75-1.74 (m, 6H), 1.68-1.64 (m, 1H), 1.60-1.51 (m, 1H), 1.31-1.04 (m, 5H). Besides these, ¹H-NMR and HRMS data of several products are given in Supplementary Information.⁴²

¹⁵ **Acknowledgements**

The authors would like to acknowledge help and assistance received from Prof. K. Ghosh of the Dept. of Chemistry, and from Prof. T. Basu of the Dept. of Biochemistry & Biophysics, University of Kalyani. Help from DST-FIST, ²⁰ DST-PURSE programs are gratefully acknowledged. PM acknowledges financial support from RGNF from UGC, New Delhi. Prof. A. Kaviraj, Dept. Of Zoology, University of Kalyani must be acknowledged for help with AAS. The authors gratefully acknowledge suggestions from the ²⁵ anonymous referees, which not only improved the content, but also pointed to new lines of investigation, esp. with substituted alkynes.

References

1 C. Cao, Y. Shi and A. L. Odom, *J. Am. Chem. Soc*., 2003,

³⁰ 125, 2880-2881; S. Kamijo and Y. Yamamoto, *J. Am. Chem. Soc*., 2002, 124, 11940-11945; A. Domling and I. Ugi, *Angew. Chem*., 2000, 112, 3300-3344; I. Ugi, A. Domling and B. Werner, *J. Heterocycl. Chem*., 2000, 37, 647-658; R. W. Armstrong, A. P. Combs, P. A. Tempst, S. D. Brown and

³⁵ T. A. Keating, *Acc. Chem. Res*., 1996, 29, 123-131. **2** For representative reviews on multi-component reactions, see: (*a*) J. Zhu and H. Bienayme (Eds.), *Multicomponent Reaction*, Wiley-VCH, Weinheim, 2005; (*b*) G. H. Posner, *Chem. Rev.*, 1986, 86, 831-844; (*c*) A. Domling, *Chem. Rev.*,

⁴⁰ 2006, 106, 17-89; (*d*) D. M. D'Souza and T. J. J. Muller, *Chem. Soc. Rev.*, 2007, 36, 1095-1108; (*e*) D. Tejedor and F. Garcia-Tellado, *Chem. Soc. Rev.*, 2007, 36, 484-491; (*f*) B. Ganem, *Acc. Chem. Res.*, 2009, 42, 463-472.

3 (*a*) G. S. Kauffman, G. D. Harris, R. L. Dorow, B. R. P. ⁴⁵ Stone, R. L. Parsons, Jr., J. A. Pesti, N. A.Magnus, J. M. Fortunak, P. N. Confalone and W. A. Nugent, *Org. Lett.*, 2000, 2, 3119–3121; (*b*) M. A. Huffman, N. Yasuda, A. E. DeCamp and E. J. J. Grabowski, *J. Org. Chem.*, 1995, 60, 1590–1594; (*c*) M. Konishi, H. Ohkuma, T. Tsuno, T. Oki,

⁵⁰ G. D. Van Duyne and J. Clardy, *J. Am. Chem. Soc.*, 1990, 112, 3715–3716. **4** (*a*) Y. Mori and H. Hayashi, *Tetrahedron*, 2002, 58, 1789– 1797; (*b*) C. V. Galliford, M. A. Beenen, S. T. Nguyen and K. A. Scheidt, *Org. Lett.*, 2003, 5, 3487–3490; (*c*) C. I.

⁵⁵ Garcia, A. Tillack, C. G. Hartung and M. Beller, *Tetrahedron Lett.*, 2003, 44, 3217–3221

5 (*a*) M. A. Youngman and S. L. Dax, *J. Comb. Chem.*, 2001, 3, 469–472; (*b*) S. L. Dax, M. A. Youngman, P. Kocis and M. North, *Solid-Phase Org. Synth.*, 2001, 1, 45–53;(*c*)

- ⁶⁰ A. B. Dyatkin and R. A. Rivero, *Tetrahedron Lett.*, 1998, 39, 3647–3650; (*d*) J. J. McNally, M. A. Youngman and S. L. Dax, *Tetrahedron Lett.*, 1998, 39, 967–970; (*e*) M. A. Youngman and S. L. Dax, *Tetrahedron Lett.*, 1997, 38, 6347–6350.
- ⁶⁵ **6** (*a*) G. W. Kabalka, L. Wang and R. M. Pagni, *Synlett*, 2001, 5, 676–678; (*b*) A. Sharifi, H. Farhangian, F. Mohsenzadeh and M. R. Naimijamal, *Monatsh. Chem.*, 2002, 133, 199–204; (*c*) L. Wang and P.-H. Li, *Chin. J. Chem.*, 2003, 21, 710–713
- ⁷⁰ **7** (*a*) C. Wei, J. T. Mague and C.-J. Li, *Proc. Natl. Acad. Sci. U. S. A.*, 2004, 101, 5749–5754; (*b*) C. Wei and C.-J. Li, *Chem. Commun.*, 2002, 268–269; C. Wei, Z. Li and C.-J. Li, *Synlett*, 2004, 1472–1483; Y. Ju, C.-J. Li and R. S. Varma, *QSAR Comb. Sci.*, 2004, 23, 891–894.
	- ⁷⁵ **8** C. Wei and C.-J. Li, *J. Am. Chem. Soc.*, 2003, 125, 584– 9585.

9 C. Wei, Z. Li and C.-J. Li, *Org. Lett.*, 2003, 5, 4473–4475; Z. Li, C. Wei, L. Chen, R. S. Varma and C.-J. Li, *Tetrahedron Lett.*, 2004, 45, 2443–2446.

⁸⁰ **10** S. Satoshi, K. Takashi and Y. Ishii, *Angew. Chem., Int. Ed.*, 2001, 40, 2534–2536.

11 For examples, see: (*a*) V. Polshettiwar, B. Baruwati and R. S. Varma, *Chem. Commun.*, 2009, 1837-1839; (*b*) S. Luo, X. Zheng, H. Xu, X. Mi,L. Zhang and J.-P. Cheng, *Adv.*

- ⁸⁵ *Synth. Catal.*, 2007, 349, 2431-2434; (*c*) V. Polshettiwar, B. Baruwati and R. S. Varma, *Green Chem.*, 2009, 11,127-131; (*d*) M. Kotani, T. Koike, K. Yamaguchi and N. Mizuno, *Green Chem.*, 2006, 8, 735-741; (*e*) D.-H. Zhang, G.-D. Li, J.-X. Lia and J.-S. Chen, *Chem. Commun.*, 2008, 3414-3416;
- ⁹⁰ (*f*) M. Kawamura and K. Sato, *Chem. Commun.*, 2006, 4718- 4719; (*g*) M. Kawamura and K. Sato, *Chem. Commun.*, 2007, 3404-3405; (*h*) A. Hu, G. T. Yee and W. Lin, *J. Am. Chem. Soc.*, 2005, 127, 12486-12487; (*i*) G. Chouhan, D. Wang and H. Alper, *Chem. Commun.*, 2007, 4809-4811; (*j*) ⁹⁵ R. Abu-Reziq, D. Wang, M. Post and H. Alper, *Adv. Synth. Catal.*, 2007, 349, 2145-2150; (*k*) V. Polshettiwar and R. S. Varma, *Chem.–Eur. J.*, 2009, 15, 1582-1586; (*l*) J. Ge, Q. Zhang, T. Zhang and Y. Yin, *Angew. Chem., Int. Ed.*, 2008,

47, 8924-8928 ¹⁰⁰ **12** M. Kidwai, V. [Bansal,](http://pubs.rsc.org/en/results?searchtext=Author%3AVikas%20Bansal) A. [Kumar](http://pubs.rsc.org/en/results?searchtext=Author%3AAjeet%20Kumar) and S. [Mozumdar,](http://pubs.rsc.org/en/results?searchtext=Author%3ASubho%20Mozumdar) *Green Chem*., 2007, 9, 742-745 **13** A. Teimouri, A. N. Chermahini, M. Nariman 1556 *Bull. Korean Chem. Soc*., 2012, 33, 1556-1560 **14** V. Chandra, J. Park, Y. Chun, J. W. Lee, I. C. Hwang and ¹⁰⁵ K. S. Kim, *ACS Nano*, 2010, 4, 3979-3986 **15** Y. [Zhang,](http://scholar.google.co.in/citations?user=DnPuGycAAAAJ&hl=en&oi=sra) B. [Chen,](http://scholar.google.co.in/citations?user=iJq7jggAAAAJ&hl=en&oi=sra) L. Zhang, J. Huang, F. Chen and Z. Yang, *Nanoscale*, 2011, *36*, 1446-1450 **16** (a) S. Ikegami and H. Hamamoto, *Chem. Rev.* 2009, 109, 583-593; (b) J. Lu and P. H. Toy, *Chem. Rev.* 2009, 109, 110 815838

> **17** (a) G. M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth and R. Mulhaupt, *J. Am. Chem. Soc.* 2009, 131,

39 Reaction products were quantified using a Varian 3400 Gas Chromatograph equipped with a 30-m CP-SIL8CB capillary column and flame ionization detector and identified by Trace DSQIIGC equipped with a 60-m TR-50

MS capillary column **40** A. Berrichi, R. Bachir, M. Benabdallah and N. Choukchou-Braham, *Tetrahedron Lett*., 2015, 56, 1302- 1306

41 J. Lim, K. Park, A. Byeun and S. Lee, *Tetrahedron Lett*., ¹⁰ 2014, 55, 4875-4878

42 ¹H NMR spectra (Fig. S3 - Fig. S12, Supplementary Information) were recorded on a Bruker DRX-300A Vance Spectrometer, with $CDCl₃$ as solvent and TMS as the internal standard. HRMS spectra of 13a and 14a (the last

¹⁵ two products) (Fig. S13 and S14, Supplementary Information) were taken with a Xevo G2-SQTof Mass Spectrometer (Waters).