This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Instability of Metal 1,3-Benzodithiophosphinoylmethandiide Complexes: Formation of Hafnium, Tin and Zirconium Complexes of 1,3-Benzodithiophosphinoylthioketone Dianionic Ligand [1,3-C₆H₄(PhPS)₂CS]²⁻

Ya-Xiu Yang,¹ Yongxin Li,² Rakesh Ganguly,³ and Cheuk-Wai So²*⁴

The reaction of [LCH₄] (L = 1,3-C₆H₄(PhPS)₂) and M(NMe₃)₂ (M = Hf, Zr) in toluene at 110 °C afforded a mixture of group 4 metal complexes [[L(5)]M] [M = Hf (2), Zr (3)] and [1,3-C₆H₄(PhPS)(PhP)CH₄]. The reactions appear to proceed through the formation of metal bis(carbene) complexes, [L=MC=CL], which then undergo an intermolecular sulphur transfer reaction with the P=5 bond of [LCH₄] to form 2 and 3 and the byproducts are [1,3-C₆H₄(PhPS)(PhP)CH₄]. In addition, the reaction of 1, [CH₄(PPh₃)] (4) and M(NMe₃)₂ in refluxing toluene gave a mixture of [[L(5)]M(NHMe₃)(C(PhPS)₂)] [M = Hf (5), Zr (6)], [1,3-C₆H₄(PhPS)(PhP)CH₄] and [CH₄(PPh₃)(PhP)Me]. Moreover, the intermolecular sulfur transfer reaction is evidenced by the reaction of the tin(ii) 1,3-benzodithiophosphinoylmethandiide complex [[μ-1,3-C₆H₄(PhPS)₂CSn] (7) with two equivalents of elemental sulfur in CH₂Cl₂ at ambient temperature to give [[1,3-C₆H₄(PhPS)₂CSn]Sn] (8). Compounds 2, 3, 5, 6, and 8 were characterized by NMR spectroscopy and X-ray crystallography.

Introduction

Transition-metal carbene complexes have attracted much attention due to their application in organic transformation in which the nature of carbones greatly depends on the electronic properties of substituents bound to the C carbene atoms.¹ For example, Fischer carbones comprising electronegative heteroatom substituents are electrophilic while Schrock carbones containing hydrogen, alkyl, or aryl substituents are nucleophilic.² Besides these two spectacular carbene classes, in recent years, geminal dianions [C(PPh₃)E]²⁻ (E = NSiMe₃ or S), which were pioneered by research groups of Cavell, Stephan and Le Floch,³,5° bearing two iminophosphoryl or thiophosphinyl substituents were utilized for the synthesis of main-group element,⁴ transition metal,⁵ lanthanide⁶ and actinide⁷ carbene complexes [L₅M=C(PPh₃)E₂] (L = ligand).⁸ They can be easily prepared by the simple salt elimination of geminal dianions [C(PPh₃)E]²⁻ with metal halides or by the double deprotonation of the parent carbene [CH₃(PPh₃)E₂] with metal alkyls or amides. Among these examples, group 4 metal derivatives were well experimentally and theoretically studied. Cavell et al. reported a series of group 4 carbene complexes [M(Cl)][C(PPh₃)NSiMe₃]J₂ (M = Ti, Hf, Zr) by the reaction of [Li₂C(PPh₃)NSiMe₃]J₂ with MCl₄.⁹,10 Their reactivity were also been reported.¹¹ Similar compounds, [Zr(Cp)₂(C(PhPS)₂)], [Zr(C₂H₅)(THF)(C(PhPS)₂)]₂ and [Zr(Cl)₂(py)(C(PhPS)₂)₂] were also reported by Le Floch et al.. X-ray crystallography and theoretical studies show that the σ and π electrons of the M=Cmethandiide double bond in [L₅M=C(PPh₃)E₂] are mainly donated from the Cmethandiide atom to the metal centre. This unique electronic property results in different reactivity compared with Fischer and Schrock carbene complexes.

Recently, Gessner et al. showed that when one of the thiophosphinoyl substituents in C(PPh₃)S₂ was replaced by the trimethylsilyl substituent, the negative charge at the Cmethandiide atom in the palladium carbene intermediate [([PPh₃]₃Pd(C(PhPS)₂SiMe₃))] cannot be sufficiently stabilized, which resulted in the intramolecular transfer of the sulphur atom from the thiophosphinoyl substituent to the carbenic carbon atom to form the palladium thiketone complex [([PPh₃]₃Pd(SC(PhPS)₂SiMe₃))].¹² Furthermore, when the trimethylsilyl substituent in C(PPh₃SiMe₃) was replaced by a triphenylsilyl substituent, a mixture of [([PPh₃]₃Pd(C(PhPS)₃SiPh₃))] and [([PPh₃]₃Pd(SC(PhPS)₃SiPh₃))] was isolated. These results illustrate that the steric and electronic effects of ligand substituents are crucial for the stabilization of metal bis(phosphonium)methandiide complexes. However, So and Mézailles et al. report that the geminal dianion Li₂C(PPh₃)S(SiMe₃)J is stable and the negative
charges at the C$_{methandiide}$ atom can be sufficiently stabilized by both SiMe$_3$ and PPh$_2$S substituents.\textsuperscript{11}

We anticipate that metal centres also affect the stability of metal bis(phosphonium)methandiide complexes. This can also be evidenced by a recent example reported by Mészáros et al. that the uranium carbene complex [U(C(PPh$_3$)$_2$)(THF)$_2$] decomposes upon heating in pyridine (py) to form [U(C(PPh$_3$)$_2$)(SC(PPh$_3$)$_2$)(py)] in which a sulphur atom is added to the U=C bond.\textsuperscript{6e}

Our research group has been involved in the preparation of main-group carbene complexes using geminal diimides. We prepared the tin(II) 1,3-benzodi(thiophosphinoyl)methandiide \([\text{[1,3-C$_6$H$_4$(PhPS)$_2$]Sn}])\) by the double deprotonation of \([1,3-C$_6$H$_4$(PhPS)$_2$]CH$_2$\) with Sn\([\text{[N(SiMe$_3$)$_2$]}])\).\textsuperscript{2,4} Its reactivity illustrated that the C$_{methandiide}$ atom bearing a negative charge can react with various Lewis acids such as AlCl$_3$ and GaCl$_3$.\textsuperscript{5c} No sulphur-transfer reaction was observed. In order to understand whether the metal center can affect the stability of a M-C$_{methandiide}$ bond and results in a sulfur transfer reaction, we used \([1,3-C$_6$H$_4$(PhPS)$_2$]CH$_2$\) to react with group 4 metals. In this paper, we report that the M=Ca$_{methandiide}$ double bonds (M = Hf, Zr) supported by 1,3-C$_6$H$_4$(PhPS)$_2$C\textsuperscript{2} are unstable, which lead to intermolecular sulphur transfer. The mechanism is in contrast to the intramolecular sulphur transfer reaction using the \((\text{PPh$_2$S})\text{(SiMe$_3$)C})\text{2}\) ligand, which is proposed by Gessner and her co-workers.\textsuperscript{10}

### Results and Discussion

#### Synthesis of \([1,3-C$_6$H$_4$(PhPS)$_2$]C(S)]_2\text{M} (M = Hf, Zr).

The reaction of \([\text{LC(S)}])_2\text{M} (M = Hf, Zr)\) in toluene occurs at room temperature. In contrast, when the temperature was raised to 110 °C, a mixture of group 4 metal complexes \([\text{LC(S)}])_2\text{M} (M = Hf, Zr)\) in toluene does not occur. In the case of 2, after the mixture of metal bis(carbene) complexes, \([\text{LC(S)}])_2\text{M} = \text{Cl}_2\text{M} = \text{Cl}_2\text{Cl}\), which then undergo an intermolecular sulphur transfer reaction with the P=S bond of \([\text{LC(S)}])_2\text{M} = \text{Cl}_2\text{M} = \text{Cl}_2\text{Cl}\). The reactions appear to proceed through the formation of metal bis(carbene) complexes, \([\text{LC(S)}])_2\text{M} = \text{Cl}_2\text{M} = \text{Cl}_2\text{Cl}\), which then undergo an intermolecular sulphur transfer reaction with the P=S bond of \([\text{LC(S)}])_2\text{M} = \text{Cl}_2\text{M} = \text{Cl}_2\text{Cl}\). Such intermolecular sulphur transfer reaction was also observed in the reaction of the tin(II) 1,3-benzodi(thiophosphinoyl)methandiide \([\text{[1,3-C$_6$H$_4$(PhPS)$_2$]Sn}]) with ZnEt$_2$ to afford a mixture of \([1,3-C$_6$H$_4$(PhPS)$_2$]S\text{ZnEt$_2$})\). SnEt$_2$ and \([1,3-C$_6$H$_4$(PhPS)$_2$](\text{PPh})CH$_2$)\text{.}\textsuperscript{4i}

Compounds 2 and 3 are highly insoluble in THF and CHCl$_3$ and slightly soluble in MeCN only. The $^{13}$C NMR spectra could not be obtained owing to very poor solubility in any NMR solvents. The $^1$H NMR spectra display resonances for the phenyl protons. The $^{31}$P($^1$H) NMR spectra of 2 and 3 display a singlet (2: δ 54.6, 3: 55.2 ppm) for the equivalent P nuclei, which are shifted downfield in comparison with that of 1 (δ 45.80 ppm).\textsuperscript{40}

![Scheme 1. Synthesis of 2 and 3](Image)

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Solubility</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Slightly soluble in MeCN only.</td>
</tr>
<tr>
<td>3</td>
<td>Slightly soluble in MeCN only.</td>
</tr>
</tbody>
</table>

#### Figure 1. Molecular structure of 2 with thermal ellipsoids at the 50% probability level.

Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): Hf1-C2 2.4282(18), Hf1-C1 2.4374(18), S3-C1 1.7607(18), S5-C2 1.7607(18), Hf1-S1 2.6764(5), Hf1-S2 2.1712(5), Hf1-S3 2.4919(4), Hf1-S4 2.7093(5), Hf1-S5 2.5020(5), Hf1-S6 2.7030(4), C1-P1 1.7386(18), C1-P2 1.7381(19), C2-P3 1.7420(19), C2-P4 1.7335(19), P1-S1 1.9947(7), P2-S2 2.1997(6), P3-S4 2.0017(6), P4-S6 1.9936(6), P1-C1-P2 2.1620(6), P1-C1-H1 1.9598(8), P2-C1-H1 1.9448(8), C1-P1-S1 1.0459(6), P1-P2-S2 1.9475(6), P1-S1-H1 1.8303(2), P2-S2-H1 1.9809(2), C1-P3-H1 1.7671(6), S3-C1-H1 1.1677(6), S3-H3-C1 1.417(4)

#### Figure 1: Molecular structure of 2 with thermal ellipsoids at the 50% probability level.

Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): Hf1-C2 2.4282(18), Hf1-C1 2.4374(18), S3-C1 1.7607(18), S5-C2 1.7607(18). The reactions appear to proceed through the formation of metal bis(carbene) complexes, \([\text{LC(S)}])_2\text{M} = \text{Cl}_2\text{M} = \text{Cl}_2\text{Cl}\), which then undergo an intermolecular sulphur transfer reaction with the P=S bond of \([\text{LC(S)}])_2\text{M} = \text{Cl}_2\text{M} = \text{Cl}_2\text{Cl}\). Such intermolecular sulphur transfer reaction was also observed in the reaction of the tin(II) 1,3-benzodi(thiophosphinoyl)methandiide \([\text{[1,3-C$_6$H$_4$(PhPS)$_2$]Sn}]) with ZnEt$_2$ to afford a mixture of \([1,3-C$_6$H$_4$(PhPS)$_2$]S\text{ZnEt$_2$})\). SnEt$_2$ and \([1,3-C$_6$H$_4$(PhPS)$_2$](\text{PPh})CH$_2$)\text{.}\textsuperscript{4i}

Compounds 2 and 3 are highly insoluble in THF and CHCl$_3$ and slightly soluble in MeCN only. The $^{13}$C NMR spectra could not be obtained owing to very poor solubility in any NMR solvents. The $^1$H NMR spectra display resonances for the phenyl protons. The $^{31}$P($^1$H) NMR spectra of 2 and 3 display a singlet (2: δ 54.6, 3: 55.2 ppm) for the equivalent P nuclei, which are shifted downfield in comparison with that of 1 (δ 45.80 ppm).\textsuperscript{40}

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Solubility</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Slightly soluble in MeCN only.</td>
</tr>
<tr>
<td>3</td>
<td>Slightly soluble in MeCN only.</td>
</tr>
</tbody>
</table>

#### Figure 1: Molecular structure of 2 with thermal ellipsoids at the 50% probability level.

Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): Hf1-C2 2.4282(18), Hf1-C1 2.4374(18), S3-C1 1.7607(18), S5-C2 1.7607(18). The reactions appear to proceed through the formation of metal bis(carbene) complexes, \([\text{LC(S)}])_2\text{M} = \text{Cl}_2\text{M} = \text{Cl}_2\text{Cl}\), which then undergo an intermolecular sulphur transfer reaction with the P=S bond of \([\text{LC(S)}])_2\text{M} = \text{Cl}_2\text{M} = \text{Cl}_2\text{Cl}\). Such intermolecular sulphur transfer reaction was also observed in the reaction of the tin(II) 1,3-benzodi(thiophosphinoyl)methandiide \([\text{[1,3-C$_6$H$_4$(PhPS)$_2$]Sn}]) with ZnEt$_2$ to afford a mixture of \([1,3-C$_6$H$_4$(PhPS)$_2$]S\text{ZnEt$_2$})\). SnEt$_2$ and \([1,3-C$_6$H$_4$(PhPS)$_2$](\text{PPh})CH$_2$)\text{.}\textsuperscript{4i}

Compounds 2 and 3 are highly insoluble in THF and CHCl$_3$ and slightly soluble in MeCN only. The $^{13}$C NMR spectra could not be obtained owing to very poor solubility in any NMR solvents. The $^1$H NMR spectra display resonances for the phenyl protons. The $^{31}$P($^1$H) NMR spectra of 2 and 3 display a singlet (2: δ 54.6, 3: 55.2 ppm) for the equivalent P nuclei, which are shifted downfield in comparison with that of 1 (δ 45.80 ppm).\textsuperscript{40}
2.502(1) Å; Zr: average 2.522 Å). The PS→M bonds (2: average 2.714; 3: 2.741 Å) are comparable to the S→Zr dative bond in the zirconium dithiocarboxylate complex [Cp2Zr(SiMe3)(S2CNMe2)] (Zr-S: 2.713(1) Å). Moreover, comparing the bond lengths of the ligand skeletons in 2 and 3 [P-C: average 1.738 (2), 1.743 Å (3); P-S: average 1.997 (2), 1.997 Å (3); C-S: average 1.763 (2), 1.762 Å (3)] with those of the thioaldehyde dianionic ligand [(tmeda)Li(SPPh3)] (P-C: average 1.757, P-S: average 2.001, C-S: 1.736(3) Å), it is suggested that there is an electron delocalization along the ligand backbones.

Synthesis of [(1,3-C5H4(PhPS)2CS)M(NHMe2)2(C(PPh3)S)] (M = Hf, Zr). The abovementioned results illustrate that the nature of a metal centre can affect the stability of a M=C bond supported by the (1,3-C5H4(PhPS)2CS) ligand. We then further extended our study to investigate whether a C≡M=C skeleton can be supported by both (1,3-C5H4(PhPS)2CS) and (Ph2PS)2C ligands. The latter is well-known for stabilizing a Cmethandiide=MO bond. The reaction of 1, 4 and M(NHMe2)2 in refluxing toluene gave a mixture of [(LC)(S)M(NHMe2)(C(PPh3)S)] (M = Hf (5), Zr (6)), [1,3-C5H4(PhPS)(PhPCH3)], [CH2(PhPS)(PPh3)]19 and unidentified products (Scheme 2), which was confirmed by 31P NMR spectroscopy. The reaction mixtures were filtered and the filtrates were concentrated to afford 5 and 6 as air- and moisture-sensitive yellow crystalline solids, respectively. The NMR spectra of the mother liquors show the presence of [1,3-C5H4(PhPS)(PhP)CH3], [CH2(PhPS)(PPh3)] and unidentified products. Although the mechanisms are not certain as yet, the reactions appear to proceed through the deprotonation of 1 and 4 with M(NHMe2)2 to form NHMe2 and [LC≡M≡C(PhPS)S], which further undergo intermolecular sulphur-transfer reactions with another molecules of 1 and 4 to form [(LC)(S)M(NHMe2)(C(PPh3)S)] (5: M = Hf; 6: M = Zr), [CH2(PhPS)(PPh3)] and [1,3-C5H4(PhPS)(PhP)CH3]. Compounds 5 and 6 are first compounds that contain tridentate dianionic thioketone ligand “1,3-C5H4(PhPS)2CS” and geminal dianion “(PhPS)2C” bonded to the metal center. In addition, a NHMe2 moiety is coordinated to the metal center in 5 and 6. These results illustrate that the steric and electronic effects of ligand are crucial for the stabilization of metal bis(phosphonium)methandiide complexes.

Compounds 5 and 6 were isolated as air- and moisture-sensitive yellow crystalline solids which show poor solubility in any organic solvents, such as THF, DME, MeCN. The 1H NMR spectra display resonances for the phenyl protons (δ: 6.706 - 8.41; 6: 7.07 - 8.45 ppm) and NHMe2 [5: δ 4.68 (sept., JHH = 5.89 Hz); 6: 4.99 ppm (sept., JHH = 5.95 Hz)]. The 31P NMR spectra of 5 and 6 display two doublets for “1,3-C5H4(PhPS)2CS” (5: δ 42.3 and 46.7 ppm, Jp-p = 91.0 Hz; 6: δ 43.58 and 47.22 ppm, Jp-p = 95.4 Hz), which are upfield shifted compared with those of 2 and 3. In addition, their spectra show signals for “(PhPS)2C” (5: δ 23.9, 24.9; 6: 25.6, 27.9 ppm), which are comparable with those of group 4 bis(phosphonium)-stabilized carbene complexes.5–8

The molecular structures of 5 and 6 are shown in Figures 2 and S2, respectively. The dianionic thioketone ligands “1,3-C5H4(PhPS)2CS” and geminal dianions “(PhPS)2C” are tridentate bonded to the metal centers. One of the thiophosphinoyl substituents in “1,3-C5H4(PhPS)2CS” is uncoordinated. The C1-M bonds (5: 2.218(5); 6: 2.2243(15) Å) are comparable with those in the zirconium (2.180(3) - 2.251(2) Å) and hafnium bis(phosphonium)-stabilized carbene complexes (2.162(6) Å), respectively.5–8 Moreover, the P-Cmethandiide bonds (5: average 1.669; 6: 1.668 Å) are shorter than those in the parent ligand 4 (P-C: 1.820(3), 1.831(3) Å),8 which are due to the electrostatic interaction within the P-C=O-P’ skeletons resulting from the substantial negative charge on
the C_{methanide} atoms. Furthermore, due to negative hyperconjugation effects, the elongation of the P-S (P1-S1, P2-S2) bonds \( (5: \text{average } 2.042; 6: 2.039 \text{ Å}) \) are also observed compared with those in 4.\(^{41}\) Similar shortening of the P-C_{methanide} bonds and lengthening of the P-S bonds can be found in the group 4 metal bis(phosphonium)-stabilized carbene complexes.\(^{16}\) The M-C_{methanide} and M-S_{bidentate} bonds (5: Hf1-C2: 2.407(5), Hf1-S5: 2.5149(13); 6: Zr1-C26: 2.4126(15), Zr1-S5: 2.5275(4) Å), together with the bonding of the \{(1,3-C_{6}H_{4}(PhPS)_{2})CS\}^{\mu} ligands in 5 and 6, are comparable with those in 2 and 3, respectively. The M-N bonds (5: 2.341(4); 6: 2.3766(13) Å) are longer than the M-N_{amido} bonds in \{(PPh_{3})(PPh_{3}NSiMe_{3})CM(NMe_{2})_{2}\} \((\text{Hf-N_{amido}}: 2.017(2), 2.031(2); \text{Zr-N_{amido}}: 2.038(2), 2.028(2) Å), which indicate that they are N→M dative bonds.\(^{20}\)

**Synthesis of \{(1,3-C_{6}H_{4}(PhPS)_{2})CS\}Sn.** In order to illustrate the feasibility of intermolecular sulphur transfer at the C_{methanide} atom, \{(\text{Hf}-1,3-C_{6}H_{4}(PhPS)_{2})CS\}Sn (7) was reacted with two equivalents of elemental sulphur in CH_{2}Cl_{2} at ambient temperature to give \{(1,3-C_{6}H_{4}(PhPS)_{2})CS\}Sn (8, Scheme 3). The reaction proceeds through the nucleophilic attack of the C_{methanide} atom in 7 to the sulphur atoms, followed by the elimination of elemental tin to form 8. It was isolated as a dark red crystalline solid. It is only slightly soluble in MeCN. The \(^{13}\)C and \(^{119}\)Sn NMR spectra could not be obtained owing to very poor solubility in any NMR solvents. Its \(^{31}\)P NMR spectrum shows a singlet at \( \delta 54.1 \text{ ppm} \).

**Figure 3. Molecular structure of 8 with thermal ellipsoids at the 50% probability level. Hydrogen atoms and solvent molecules are omitted for clarity. Selected bond lengths (Å) and angles (deg): Sn1-S1 2.7045(6), Sn1-S2 2.7390(6), Sn1-S3 2.4818(6), C1-P1 1.749(2), C1-P2 1.755(2), P1-S1 2.0146(9), P2-S2 2.0183(9), S3-Sn1-S3A 180.0, C1-S3-Sn1 95.15(8), P1-C1-P2 106.08(12), P1-C1-S3 115.51(13), P2-C1-S3 117.03(13).**

The molecular structure of 8 shows that the dianionic thioacetone ligand is tridentate coordinated to the Sn atom, which adopts an octahedral geometry. The Sn1-S3 bond (2.4818(6) Å) is slightly longer than that in \[\text{Sn(SPh)}_{4}\] (2.379(4), 2.401(4) Å)\(^{16}\) and \([(\text{Tbt})(\text{Mes})\text{Sn(µ-S)})_{2}\] (Tbt = 2,4,6-(CH(SiMe_{3})_{2})C_{6}H_{3}, 2.434(3), 2.432(3) Å),\(^{17}\) but it is shorter than the dative Sn1-S1 (2.7045(6) Å) and Sn1-S2 bonds (2.7390(6) Å). This indicates that the Sn1-S3 bond is a single bond. In addition, the C1-S3 bond (1.742(2) Å) is comparable with that in 2 and 3. Moreover, the C1 atom adopts a trigonal pyramidal geometry and the Sn1-C1 distance (3.158(2) Å) is longer than the Sn-C_{methanide} bond in \[\text{SnCH(PPh}_{2}S)(PPh_{2}NSiMe}_{3})\] (2.384(4) Å).\(^{18}\) These indicate that the negative charge is presented at the C1 atom. It is stabilized by the delocalization along the ligand backbone, which is indicated by the shortening of the C-P bonds (1.749(2), 1.755(2) Å) and the lengthening of the P-S bonds (2.0146(9), 2.0183(9) Å) compared with 1.\(^{41}\)

**Conclusions**

The formation of 2 and 3 shows that the metal centres and ligand substituents can affect the stability of a M=C_{methanide} double bond supported by the \{(1,3-C_{6}H_{4}(PhPS)_{2})C\}^{2} ligand, which leads to intermolecular sulphur transfer reaction. In addition, the formation of 5 and 6 demonstrates that the M=C_{methanide} double bond supported by the \{(1,3-C_{6}H_{4}(PhPS)_{2})C\}^{2} ligand is more prone to accept sulphur atom than that by the \{(PPh_{3}PS)_{2}C\}^{2} ligand. The intermolecular sulphur transfer reaction is evidenced by the reaction of 7 with two equivalents of elemental sulphur to form 8.

**Experimental**

General procedure. All manipulations were carried out under an inert atmosphere of argon gas by standard Schlenk techniques. MeCN and CH_{2}Cl_{2} were dried and distilled over CaH_{2} prior to use. Toluene was dried and distilled over Na/K alloy prior to use. 1 and 7 were prepared as described in the literatures.\(^{41}\) The \(^{1}H, \:^{13}\)C, and \(^{31}\)P NMR spectra were recorded on a JEOL ECA 400 spectrometer. The chemical shifts \( \delta \) are relative to external references SiMe_{4} for \(^{1}H\) and \(^{13}\)C and 85% H_{2}PO_{4} for \(^{31}\)P. Elemental analyses were performed by the Division of Chemistry and Biological Chemistry, Nanyang Technological University. Melting points were measured in sealed glass tubes and were not corrected.

\[\{1,3-C_{6}H_{4}(PhPS)_{2}C(S)_{2}\}Hf\] (2). Toluene (20 mL) was added to a mixture of Hf(NMe_{4})_{4} (0.36 g, 1.0 mmol) and 1 (1.48 g, 4.0 mmol) at ambient temperature. The resulting yellow solution was heated at 110 °C in a sealed flask overnight. After filtration and concentration of the filtrate (approx. 8 mL), 2 was afforded as yellow crystals. Yield: 0.30 g (30.7 %). Mp: 275 °C (dec.). Anal. Calcd for C_{48}H_{38}P_{2}S_{2}Hf: C 46.63; H 2.88. Found: C 46.58; H 2.87. \(^{1}H\) NMR (395.9 MHz, MeCN/C_{6}D_{6}, 24.0 °C): \( \delta \) 6.62 - 7.68 ppm (m, 28H, Ph). The \(^{13}\)C NMR spectrum could not be obtained owing to poor solubility in any NMR solvents. In
addition, the $^{31}$P NMR spectroscopy was performed overnight. $^{31}$P($^1$H) NMR (160.3 MHz, MeCN-$d_6$, 24.6 °C): $\delta$ 54.61 ppm.

$([1,1$-$C_6$-$H_4$(Ph$_2$PS)$_2$]C$_2$)Zr (3). Toluene (20 mL) was added to a mixture of Zr(NMe$_2$)$_2$ (0.27 g, 1.0 mmol) and 1 (1.48 g, 4.0 mmol) at ambient temperature. The resulting orange solution was heated at 110 °C in a sealed flask overnight. After filtration and concentration of the filtrate (approx. 8 mL), 3 was afforded as yellow crystals. Yield: 0.38 g (42.6 %). Mp: 238 °C.

This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5

Notes and references


Instability of Metal 1,3-Benzodi(thiophosphinoyl)methandiide Complexes: Formation of Hafnium, Tin and Zirconium Complexes of 1,3-Benzodi(thiophosphinoyl)thioketone Dianionic Ligand \([1,3-C_6H_4(PhPS)_2C(S)_2^-]\)

Ya-Xiu Yang, Yongxin Li, Rakesh Ganguly, and Cheuk-Wai So*

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore

Graphical Abstract for the content page:

The reaction illustrates that the metal centre and ligand substituents are crucial for the stabilization of a C_{methandiide}=Hf bond.