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In this paper we present new copper(I) iodide or copper(I) thiocyanate complexes with 
hydroxymethyldiphenylphosphine (PPh2(CH2OH)) or phosphine derivative of sparfloxacin, a 3rd 
generation fluoroquinolone antibiotic agent (PPh2(CH2-Sf)) and 2,9-dimethyl-1,10-phenanthroline (dmp) 
or 2,2’-biquinoline (bq) auxiliary ligands. The synthesised complexes were fully characterised by NMR 10 

and UV-Vis spectroscopies as well as by mass spectrometry. Selected structures were additionally 
analysed using X-ray and DFT methods. All complexes proved to be stable in solution in the presence of 
water and atmospheric oxygen for several days. Cytotoxic activity of the complexes was tested against 
two cancer cell lines (CT26 - mouse colon carcinoma and A549 - human lung adenocarcinoma). 
Applying two different incubation times, the studies enabled a preliminary estimation of the dependence 15 

of selectivity and mechanism of action on the type of diimine and phosphine ligands. The results obtained 
showed that complexes with PPh2(CH2-Sf) are significantly more active than those with PPh2(CH2OH). 
On the other hand, the relative impact of diimine on cytotoxicity is less pronounced. However, the dmp 
complexes are characterised by strong inhibitory properties, while the bq ones are rather not. This 
confirms the interesting and promising biological properties of the investigated group of copper(I) 20 

complexes, which undoubtedly are worthy of further biological studies. 

 

Introduction 

The design and synthesis of new drugs is a time-consuming and 
expensive process. Launching a new drug takes at least 10 years, 25 

while the costs can reach billions of dollars. Despite a large 
number of available drugs with various properties, we still 
struggle with many diseases, adverse drug reactions and drug 
resistance.1-4 More and more often, instead of searching for new 
classes of compounds, an entirely different approach is used in 30 

the design of therapeutic substances.5 It is becoming popular to 
modify the structures that are used in medical therapeutics by 
attaching other chemical moieties thereto, responsible for their 
more-selective transport or for changing the biological 
properties.6-8 35 

 Medicinal inorganic chemistry offers additional opportunities 
for the design of therapeutic agents, not available to organic 
chemistry.9-11 A wide range of coordination numbers and 
geometries, the different redox states available, various 
thermodynamic and kinetic properties, as well as the intrinsic 40 

properties of metal ions may result a variety of reactions. 
Consequently, compounds that are very interesting from a 
medicinal point of view may be developed.12-17 The widespread 

use of cisplatin has placed coordination chemistry of metal-based 
drugs in the frontline in the fight against cancer. However, the 45 

use of this drug is limited due to its high toxicity.18 This leads, 
among others, to the exploration and synthesis of drugs that are 
based on other metal ions. Copper complexes have promising 
properties in this area.19-24 They show antitumour,23,25-26 
antibacterial,27 antiviral,28-29 antifungal30 and anti-inflammatory31 50 

activities, which make them very good candidates as drugs.  
 We present herein the synthesis, physicochemical properties 
and cytotoxicity of new copper(I) iodide and copper(I) 
thiocyanate complexes with phosphines and diimines. Previous 
studies have shown that complexes of this type have promising 55 

biological properties.23-26,32-33 The use of a phosphine ligand 
prevents oxidation and hydrolysis reactions due to a strong 
copper-phosphine interaction.25 What is also known is that 
phosphines and their complexes exhibit a high cytotoxicity and 
antibacterial and anti-inflammatory properties. 34-38 We used two 60 

diimine ligands (2,9-dimethyl-1,10-phenanthroline (dmp) and 
2,2’-biquinoline (bq)), which are characterised by their high 
steric hindrance. They therefore successfully prevent the 
tetrahedral geometry around the copper centre from flattening in 
the excited state which usually leads to oxidation from Cu(I) to 65 
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Daltonics micrOTOF–Q mass spectrometer equipped with 
electrospray ionization (ESI) source and operated in positive ion 
mode. NMR spectra were recorded on a Bruker AMX 500 
spectrometer (at 298 K) with traces of solvent as an internal 
reference for 1H (CDCl3: 7.27 ppm) and 13C spectra (CDCl3: 77.0 5 

ppm) and 85% H3PO4 in H2O as an external standard for 31P. The 
signals in the spectra are defined as: s = singlet (* – strongly 
broadened signal), d = doublet, dd – doublet of doublets, t = 
triplet and m = multiplet. Chemical shifts are reported in ppm and 
coupling constants are reported in Hz. Absorption spectra were 10 

recorded on a Cary 50 Bio spectrophotometer (Varian Inc., Palo 
Alto, CA) in the 800–200 nm range.  
 X-ray data were collected using a KM4–CCD diffractometer 
and graphite–monochromated MoKα radiation generated from 
Diffraction X–ray tube operated at 50 kV and 20 mA. The images 15 

were indexed, integrated, and scaled using the Oxford Diffraction 
data reduction package.68 The structure was solved by direct 
methods (SHELXS Ver. 2013/1) and refined by the full–matrix 
least–squares method on all F2 data (SHELXL Ver. 2014/7).69 
Non H atoms were included in the refinement, with anisotropic 20 

displacement parameters and the H atoms was included from 
geometry of the molecule or found in a difference Fourier map. 
The data were corrected for absorption.68 

Synthesis 

General synthetic route of the POH complexes 25 

 Diimine (dmp or bq), copper (pseudo)halide (CuI or CuNCS) 
were added in equimolar ratios to the phosphine PPh2CH2OH 
(POH 0.200 – 0.250 g). The substrates were dissolved in 20 ml 
of deaerated acethonitrile. After few minutes the cloudy solutions 
were formed, which after half an hour became clear. After 12 h of 30 

stirring the precipitates formed. They were filtered and dried 
under vacuum. The complexes are well soluble in CHCl3, DMSO 
and CH2Cl2, moderately in CH3CN, poorly in ethanol and 
methanol and insoluble in water.  
 35 

Characterisation of [CuI(dmp)POH] (1-POH): 
 Dark yellow solid. Yield: 65%, M = 614.92 g/mol. Anal. 
Calcd. for PCuIC27H25N2O: C, 52.74; H, 4.10; N, 4.56%. Found: 
C, 52.71; H, 4.11; N, 4.57%.  
NMR (CDCl3, 298 K) : 31P{ 1H} : -5.47s 1H: HPh: 7.31-7.15; H1: 40 

4.76 s* (2H);dmpH
3,8: 7.50 d (J = 8.20) (2H); dmpH

4,7: 8.22 d (J = 
8.20) (2H); dmpH

5,6: 7.79 s (2H); dmpH
15,16: 2.79 s (6H); 13C{ 1H} : 

CPh(o): 132.50 s*; CPh(m): 128.50 d (J = 7.27); CPh(p): 129.59 s; C1: 
63.10 d (J=23.63); dmpC

2,9: 159.49 s; dmpC
3,8:124.96 s; dmpC

4,7: 
136.64 s; dmpC

5,6: 124.40 s; dmpC
11,12: 143.09 s; dmpC

13,14: 127.08 s; 45 

dmpC
15,16: 26.77 s.  

MS (CHCl3): 479.1 (100% Cu(dmp)2
+); 271.0 (45.5% Cu(dmp)+); 

199.1 (13.9%, [PPh2CH2]
+); 488.0 (5.7% Cu(dmp)PPh2CH2OH+). 

Single crystals were obtained from the CH2Cl2/MeOH solution.  
Crystallographic data: 1-POH ≡ C27H25CuIN2OP, crystal size: 50 

0.45x0.32x0.20 mm, crystal system: orthorhombic, space group 
Pbca, a = 9.904(3)Å, b = 14.416(4)Å, c = 34.669(8)Å, V = 
4950(2) Å3, Dcalcd(Z = 8) = 1.650 g/cm3, θ range for data 
collection: 3.055° – 28.732°, Mo Kα radiation (λ = 0.71073 Å), 
µMo = 2.217 mm–1, reflections collected/unique 27933 / 5928 55 

[R(int) = 0.0267], final R indices [I>2σ(I)] R1 = 0.0364, wR2 = 
0.0952, R indices (all data) R1 = 0.0418, wR2 = 0.0977, GOF = 
1.056, largest diff. peak and hole: 1.997 and -0.795eÅ–3, 

data/restraints/parameters: 5928 / 0 / 301, T = 100(2)K. 
Characterisation of [CuNCS(dmp)POH] (2-POH): 60 

 Yellow solid. Yield: 49%, M = 546.10 g/mol. Anal. Calcd. for 
PCuSC28H25N3O: C, 61.58; H, 4.61; N, 7.69%. Found: C, 61.56; 
H, 4.62; N, 7.66%. NMR (CDCl3, 298 K) : 31P{ 1H} : -2.85s 1H: 
HPh: 7.32-7.14; H1: 4.61 s* (2H); dmpH

3,8: 7.49 d (J = 8.20) (2H); 

dmpH
4,7: 8.21 d (J = 8.20) (2H); dmpH

5,6: 7.75 s (2H); dmpH
15,16: 65 

2.71 s (6H); 13C{ 1H} : CPh(o): 132.32 d (J=12.72); CPh(m): 128.56 d 
(J = 8.17); CPh(p): 129.64 s; C1: 62.36 d (J=20.89); dmpC

2,9: 158.91 
s; dmpC

3,8:124.90 s; dmpC
4,7: 136.76 s; dmpC

5,6: 125.43 s; dmpC
11,12: 

142.78 s; dmpC
13,14: 126.78 s; dmpC

15,16: 26.27 s. MS (CHCl3): 
479.1 (100% Cu(dmp)2

+); 271.0 (34.1% Cu(dmp)+); 199.1 70 

(17.2%, [PPh2CH2]
+); 488.0 (7.4% Cu(dmp)PPh2CH2OH+). 

Characterisation of [CuI(bq)POH] (3-POH): 
 Burgundy solid. Yield: 59%, M = 662.97 g/mol. Anal. Calcd. 
for PCuIC31H25N2O: C, 56.16; H, 3.80; N, 4.22%. Found: C, 
56.13; H, 3.82; N, 4.21%.  75 

NMR (CDCl3, 298 K) : 31P{ 1H} : -3.01s* 1H: HPh: 7.32-7.07; H1: 
4.43 s*(2H); bqH

10: 8.34 d (J = 8.58) (1H);  bqH
9: 8.24 d (J = 8.58) 

(1H); bqH
7: 7.90 d (J = 8.01) (1H); bqH

6: 7.77 t (J=8.30) (1H); 

bqH
5: 7.59 t (J = 7.44) (1H); bqH

4: 8.86 d (J = 8.58) (1H); 13C{ 1H} 
: CPh(i): 132.84s*; CPh(o): 131.32 d (J = 9.99); CPh(m): 128.76 d (J = 80 

11.81); CPh(p): 129.54 s; C1: 63.35 s*; bqC
1: 156.23 s; bqC

10: 
119.42 s; bqC

9: 136.74 s; bqC
7: 127.64 s;bqC

6: 126.94 s; bqC
5: 

129.50 s; bqC
4: 129.92 s; bqC

3: 147.92 s; bqC
8: 128.44 s.  

MS (CHCl3): 575.1 (100% Cu(bq)2
+); 319.0 (38.8% Cu(bq)+); 

536.06 (7.8% Cu(bq)PPh2CH2OH)+); 199.1 (14.7%, [PPh2CH2]
+). 85 

Crystals were obtained from the mixture of  CH2Cl2 and MeOH 
(1:1 V:V). 
Crystallographic data: 3-POH ≡ C31H25CuIN2OP, crystal size: 
0.18x0.15x0.10 mm, crystal system: triclinic, space group P-1, a 
= 10.234(1)Å, b = 10.495(1)Å, c = 14.945(2)Å, α = 103.77(1)°, β 90 

= 91.56(2)°, γ = 118.90(2)°  V = 1345.7(3) Å3, Dcalcd(Z = 2) = 
1.636 g/cm3, θ range for data collection: 2.847° – 36.841°, Mo 
Kα radiation (λ = 0.71073 Å), µMo = 2.046 mm–1, reflections 
collected/unique 22538 / 10413 [R(int) = 0.0772], final R indices 
[I>2σ(I)] R1 = 0.0709, wR2 = 0.1154, R indices (all data) R1 = 95 

0.1289, wR2 = 0.1357, GOF = 1.025, largest diff. peak and hole: 
1.167 and -0.917eÅ–3, data/restraints/parameters: 10413 / 0 / 335, 
T = 100(2)K. 
Characterisation of [CuNCS(bq)POH] (4-POH): 
 Dark Burgundy solid. Yield: 61%, M = 594.15 g/mol. Anal. 100 

Calcd. for PCuSC32H25N3O: C, 64.68; H, 4.24; N, 7.07%. Found: 
C, 64.65; H, 4.25; N, 7.05%. 
NMR (CDCl3, 298 K) : 31P{ 1H} : -3.19s* 1H: HPh: 7.25-6.89 
(10H); H1: 4.73 s* (2H); bqH

10: 8.20 s* (2H);  bqH
9: 8.07 s*(2H); 

bqH
7: 7.60 s* (3H); bqH

6: 7.60 s* (3H); bqH
5: 7.51 s* (2H); bqH

4: 105 

8.77s* (2H); 13C{ 1H} : CPh(o): 132.47 s*; CPh(m): 128.05 d (J = 
8.17); CPh(p): 128.72 s; C1: 63.35 s*; bqC

10: 118.96 s; bqC
9: 137.93 

s; bqC
7: 127.30 s; bqC

5: 129.43 s; bqC
4: 130.64 s; bqC

3: 146.16 s; 

bqC
8: 128.36 s.  

MS (CHCl3): 575.1 (100% Cu(bq)2
+); 319.0 (18.2% Cu(bq)+); 110 

536.06 (7.9% Cu(bq)PPh2CH2OH)+); 199.1 (11.9%, [PPh2CH2]
+). 

 
Preparation of the PSf complexes - general method. 
 Phosphine (PSf 0.200 – 0.250 g), diimine (dmp or bq) and 
copper (pseudo)halide (CuI or CuNCS) in equimolar ratios were 115 

dissolved in 25 ml of deaerated CH3CN:CHCl3 (4:1 V:V), 
initially forming cloudy solutions. Over some time, the solutions 

Page 7 of 11 Dalton Transactions

D
al

to
n

Tr
an

sa
ct

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



 

8  |  Journal Name, [year], [vol], 00–00 This journal is © The Royal Society of Chemistry [year] 

became clear. They were stirred in the dark and the solid 
complexes precipitated out after 14 h. They are well soluble in 
DMSO, moderately in CHCl3, CH2Cl2 and CH3CN, slightly in 
methanol and ethanol, insoluble in water. 
 5 

Characterisation of [CuI(dmp)PPh2CH2Sf] (1-PSf): 
 Dark yellow solid. Yield: 62%, M = 989.31 g/mol. Anal. 
Calcd. for PCuIC46H45F2N6O3: C, 55.85; H, 4.58; N, 8.50%. 
Found: C, 55.82; H, 4.60; N, 8.48%.  
NMR (CDCl3, 298 K) : 31P{ 1H} : -11.93s*, -28.42s*; 1H: HPh: 10 

7.87-7.15; H1: 3.92 d (J = 5.05) (2H); H2,6 : 3.08 m (3H); H3,5: 
3.36 d (J = 13.61) (2H); H7,8: 0.91 d (J = 6.22) (3H); H13: 6.49 s* 
(2H); H19: 8.65 s (1H); H21: 3.92 m (2H); H22: 1.23 m (4H); H22: 
1.12 d (J = 6.22) (10H); H23: 14.53 s* (1H); dmpH

3,8: 7.55 d (J = 
8.16) (2H); dmpH

4,7: 8.25 d (J = 8.16) (2H); dmpH
5,6: 7.83 s (2H); 15 

dmpH
15,16: 2.81 s (5H); 13C{ 1H} : CPh(i): 133.37 d (J = 15.44); 

CPh(o): 132.71 d (J = 12.71); CPh(m): 128.48 d (J = 9.08); CPh(p): 
129.52 s; C1: 51.22 s*; C2,6: 54.19 d (J = 7.27); C3,5: 57.59 s*; 
C7,8: 19.21 s; C12: 136.55 dd (J = 238.5, J = 5.9); C13: 134.48 dd 
(J = 10.9,  J = 1.8); C14: 105.97 d (J = 5.45); C15: 128.13 dd (J = 20 

5.9, J = 2.27); C16: 139.98 dd (J = 237.0, J = 5.45); C17: 180.13 s; 
C18: 106.71 s; C19: 149.32 s; C21: 40.37 d (J = 14.53); C22: 9.03 d 
(J = 8.17); C23: 166.61 s; dmpC

2,9: 159.46 s; dmpC
3,8:124.93 s; 

dmpC
4,7: 136.56 s; dmpC

5,6: 125.37 s; dmpC
11,12: 143.07 s; dmpC

13,14: 
127.06 s; dmpC

15,16: 26.75 s. MS (CHCl3): 479.1 (100% 25 

Cu(dmp)2
+); 271.0 (32.5% Cu(dmp)+); 861.26 (6.78% 

Cu(dmp)PPh2CH2C19H21F2N4O3)
+); 199.1 (3.8%, [PPh2CH2]

+); 
279.2 (56% [C13H10N2F203]

+); 393.2 (7.6% [C19H23F2N4O3]
+); 

405.2 (1.1% [C20H25F2N4O3]
+); 473.4 (19.2%); 529.5 (13.4% 

[OPPhCH2C19H21F2N4O3]
+). 30 

Crystals of the mixed system 1-POH·1-PSf suitable for X-ray 
analysis were obtained after 2 months by slow diffusion of 
diethyl ether into dichloromethane solution of 1-PSf.  
Crystallographic data: 1-POH·1-PSf ≡ C73H70Cu2I2N8O4P2, 
crystal size: 0.12x0.10x0.05 mm, crystal system: monoclinic, 35 

space group C 2/c, a = 48.920(3)Å, b = 10.128(1)Å, c = 
34.906(2)Å, β = 116.38(1)°, V = 15494(2) Å3, Dcalcd(Z = 8) = 
1.375 g/cm3, θ range for data collection: 2.848° – 36.986°, Mo 
Kα radiation (λ = 0.71073 Å), µMo = 1.441 mm–1, reflections 
collected/unique 64786 / 23137 [R(int) = 0.1823], final R indices 40 

[I>2σ(I)] R1 = 0.0981, wR2 = 0.1825, R indices (all data) R1 = 
0.2750*, wR2 = 0.2562*, GOF = 1.008, largest diff. peak and 
hole: 0.777 and -0.687 eÅ–3, data/restraints/parameters: 
23137/0/845, T = 100(2)K. (*The crystal structure shows a three-
dimensional structure with large open channels. Most probably, 45 

these channels were filled with solvent molecules (diethyl ether 
and dichloromethane), which during the preparation of the 
crystal for measurements evaporated. This led to a noticeable 
disorder of the structure, therefore, to refine the structure, the 
PLATON/SQUEEZE procedure was used.70,71) 50 

Characterisation of [CuNCS(dmp)PPh2CH2Sf] (2-PSf): 
 Yellow solid. Yield: 51%, Molar mass: 920.51 g/mol. Anal. 
Calcd. for PCuSC47H45F2N7O3: C, 61.36; H, 4.93; N, 10.66%. 
Found: C, 61.34; H, 4.94; N, 10.64%.  
NMR (CDCl3, 298 K) : 31P{ 1H} : -8.76s*, -31.32s*; 1H: HPh: 55 

7.49-7.18; H1: 3.92 d (J = 6.68) (2H); H2,6 : 3.01 m (4H); H3,5: 
3.33 d (J = 12.02) (2H); H7,8: 0.88 d (J = 6.29) (6H); H13: 6.47 s* 
(2H); H19: 8.62 s (2H); H21: 3.93 m (2H); H22: 1.23 m (4H); H22: 
1.11 d (J = 6.29) (5H); H23: 14.61 s* (1H); dmpH

3,8: 7.50 d (J = 

8.39) (2H); dmpH
4,7: 8.19 d (J = 8.20) (2H); dmpH

5,6: 7.74 s (2H); 60 

dmpH
15,16: 2.76 s (5H); 13C{ 1H} : CPh(i): 133.21 d (J = 17.26); 

CPh(o): 132.36 d (J = 12.71); CPh(m): 128.59 d (J = 8.17); CPh(p): 
129.65 s; C1: 51.25 s*; C2,6: 54.32 d (J = 9.08); C3,5: 57.47 t (J = 
3.63); C7,8: 19.26 s; C12: 136.15 dd (J = 237.5, J = 5.9); C13: 
134.39 dd (J = 10.45,  J = 4.09); C14: 106.01 d (J = 5.45); C15: 65 

128.16 dd (J = 5.91, J = 2.27); C16: 138.27 dd (J = 236.3, J = 
5.90); C17: 180.15 s; C18: 106.75 s; C19: 149.35 s; C21: 40.41 dd (J 
= 14.53, 5.45); C22: 9.05 dd (J = 7.72, J = 2.27); C23: 166.63 s; 

dmpC
2,9: 158.99 s; dmpC

3,8:124.92 s; dmpC
4,7: 136.61 s; dmpC

5,6: 
124.92 s; dmpC

11,12: 142.90 s; dmpC
13,14: 126.97 s; dmpC

15,16: 26.27 70 

s. MS (CHCl3): 479.1 (100% Cu(dmp)2
+); 271.0 (41.8% 

Cu(dmp)+); 861.26 (4.78% Cu(dmp)PPh2CH2C19H21F2N4O3)
+); 

199.1 (5.1%, [PPh2CH2]
+); 279.2 (34.1% [C13H10N2F203]

+); 393.2 
(8.1.6% [C19H23F2N4O3]

+); 405.2 (3.2% [C20H25F2N4O3]
+); 473.4 

(14.2%); 529.5 (9.1% [OPPhCH2C19H21F2N4O3]
+). 75 

Characterisation of [CuI(bq)PPh2CH2Sf] (3-PSf): 
 Burgundy solid. Yield: 55%, Molar mass: 1036.35 g/mol. 
Anal. Calcd. for PCuIC46H45F2N6O3: C, 57.89; H, 4.37; N, 
8.10%. Found: C, 57.86; H, 4.39; N, 8.08%.  
NMR (CDCl3, 298 K) : 31P{ 1H} : -10.48s*, -35.12 s*; 1H: HPh: 80 

7.36-6.93; H1: 3.92 d (J = 3.43) (2H); H2,6 : 3.09 m (4H); H3,5: 
3.33 d (J = 12.02) (2H); H7,8: 0.81 d (J = 5.72) (4H); H13: 6.46 s* 
(3H); H19: 8.63 s (2H); H21: 3.92 m (2H); H22: 1.21 m (4H); H22: 
1.11 d (J = 6.29) (4H); H23: 14.60 s* (1H); bqH

10: 8.15 s* (1H); 

bqH
9: 7.89 s* (2H); bqH

6,7: 7.49 m (6H); bqH
5: 7.57 m (4H); bqH

4: 85 

8.92 (1H) s*; 13C{ 1H} : CPh(i): not observed ; CPh(o): 133.51 d (J = 
18.17); CPh(m): 128.55 d (J = 7.27); CPh(p): 128.38 s; C1: 51.24 s*; 
C2,6: 54.53 d (J = 9.99); C3,5: 57.71 s*; C7,8: 19.34 s; C11: not 

observed; C12: 136.59 dd (J = 237.5, J = 5.9); C13: 134.48 dd (J = 
13.63,  J = 10.9); C14: 106.01 d (J = 5.45); C15: 128.16 dd (J = 90 

5.9, J = 2.27); C16: 140.01 dd (J = 236.6, J = 5.0); C17: 180.16 s; 
C18: 106.76 s; C19: 149.39 s; C21: 40.32 d (J = 14.53); C22: 9.07 d 
(J = 7.27); C23: 166.66 s; bqC

10: 119.36 s; bqC
1: not observed s; 

bqC
9: 137.34 s; bqC

7: 129.51 s; bqC
6:128.70 s; bqC

5: 130.59 s; bqC
4: 

131.02 s; bqC
3: 146.13 s; bqC

8: 129.66 s.  95 

MS (CHCl3): 575.1 (100% Cu(bq)2
+); 319.0 (46.5% Cu(bq)+); 

909.26 (3.58% Cu(bq)PPh2CH2C19H21F2N4O3)
+); 199.1 (3.8%, 

[PPh2CH2]
+); 279.2 (56% [C13H10N2F203]

+); 393.2 (7.6% 
[C19H23F2N4O3]

+); 405.2 (1.1% [C20H25F2N4O3]
+); 473.4 (19.2%); 

529.5 (13.4% [OPPhCH2C19H21F2N4O3]
+). 100 

Characterisation of [CuNCS(bq)PPh2CH2Sf] (4-PSf): 
 Dark burgundy solid. Yield: 47%, Molar mass: 968.53 g/mol. 
Anal. Calcd. for PCuSC47H45F2N7O3: C, 63.24; H, 4.68; N, 
10.12%. Found: C, 63.22; H, 4.60; N, 10.11%.  
NMR (CDCl3, 298 K) : 31P{ 1H} : -7.43s*, -28.69s*; 1H: HPh: 105 

7.33-7.01; H1: 3.92s* (4H); H2,6 : 3.08 m (3H); H3,5: 3.33 d (J = 
11.06) (4H); H7,8: 0.85 d (J = 6.10) (3H);  H13: 6.47 s* (2H); H19: 
8.61 s (1H); H21: 3.92 m (4H); H22: 1.22 m (3H); H22: 1.11 d (J = 
6.29) (3H); H23: 14.69 s* (1H); bqH

10: 8.12 s* (2H); bqH
9: 7.62 s* 

(3H); bqH
6,7: 7.44 m (2H); bqH

5: 7.50 m (3H); bqH
4: 8.65 s* (2H); 110 

13C{ 1H} : CPh(i): 133.22 d (J = 16.35); CPh(o): 132.50 d (J = 
13.63); CPh(m): 128.47 d (J = 9.08); CPh(p): 128.60 s; C1: 51.25 s*; 
C2,6: 54.47 d (J = 4.54); C3,5: 57.76 t (J = 3.18); C7,8: 19.39 s; C11: 
not observed; C12: 136.02 dd (J = 237.0, J = 5.40); C13: not observed; C14: 
106.71 s*; C15: 128.16 dd (J = 6.36, J = 2.73); C16: 139.35 dd (J = 115 

236.5, J = 5.90); C17: 180.23 s; C18: 106.79 s; C19: 149.42 s; C21: 
40.39 dd (J = 14.53; J = 0.91); C22: 9.08 d (J = 8.17); C23: 166.72 
s; bqC

1: not observed; bqC
10: 118.89 s; bqC

9: 136.98 s; bqC
7: 129.16 s; 

Page 8 of 11Dalton Transactions

D
al

to
n

Tr
an

sa
ct

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



 

This journal is © The Royal Society of Chemistry [year] Journal Name, [year], [vol], 00–00  |  9 

bqC
6: 127.44 s; bqC

5: 130.10 s; bqC
4: 130.70 s; bqC

3: 146.51 s; bqC
8: 

129.566 s.  
MS (CHCl3): 575.1 (100% Cu(bq)2

+); 319.0 (37.2% Cu(bq)+); 
909.26 (4.17% Cu(bq)PPh2CH2C19H21F2N4O3)

+); 199.1 (6.3%, 
[PPh2CH2]

+); 279.2 (37.9% [C13H10N2F2O3]
+); 393.2 (3.1% 5 

[C19H23F2N4O3]
+); 405.2 (3.1% [C20H25F2N4O3]

+); 473.4 (21.5%); 
529.5 (7.34% [OPPhCH2C19H21F2N4O3]

+). 

DFT studies 

DFT calculations were performed using the Gaussian 09 
(Rev.D.01) package.57 We employed the standalone functional of 10 

Truhlar and Zhao72 (M06). The basis sets employed were 6-
31G(d) for geometry optimization and 6-311+G(2d,p) for single-
point calculations, except iodine atom, for which 6-311G(d,p) 
basis set73 was used in both cases. The structures were optimized 
in the gas phase. Minima of energy were characterised as such by 15 

computation of the harmonic vibrational frequencies. Atomic 
charges were calculated using the fit to the electrostatic potential 
at points selected according to the Merz-Singh-Kollman 
scheme.74 

Cytotoxicity studies 20 

Cell cultures: 
 CT26 cell line (mouse colon carcinoma, morphology: fibroblast, 
ATCC: CRL-2638) and A549 cell line (human lung 
adenocarcinoma, morphology: epithelial, ATCC: CCL-185) were 
obtained from professor Luis G. Arnaut group (Chemistry 25 

Department, University of Coimbra, Portugal). Cells were 
cultured in Dulbecco’s Modified Eagle Medium (DMEM) 
without phenol red, supplemented with 10% fetal bovine serum 
(FBS) and with 1% streptomycin/penicillin. Cultures were 
incubated at 37°C in a humidified atmosphere containing 5% CO2 30 

(standard conditions). Cells were passaged at preconfluent 
density, using a solution containing 0.05% trypsin and 0.5 mM 
EDTA. 
MTT assay:  
The MTT assay (MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-35 

diphenyltetrazolium bromide) was carried out as described 
previously to measure cell viability.65 Ten thousand cells in 200 
μL of growth media were seeded in the wells of a 96-well plate. 
After 24 h, 200 μL of various concentrations of POH, OPOH, 1-
POH, 2-POH, 3-POH, 4-POH, 1-PSf, 2-PSf, 3-PSf, 4-PSf, 40 

dmp, bq, CuI, CuNCS (0.1; 0.05; 0.01 and 0.001 mM) were 
added and incubated for 4 or 24 h at 37°C in a CO2 incubator. 
The compounds were predissolved in DMSO and diluted in the 
respective medium with 1% FBS. In the first case, at the 4th hour 
of incubation, the contents of the plate were pipetted out 45 

carefully, cells were washed with PBS, and fresh relevant 
medium was added. Cells were incubated in standard conditions 
for 24 h and after that time MTT assay was carried out. In the 
second approach, after 24 h of incubation with tested compounds 
cells viability was assessed by MTT test. Surviving fraction was 50 

calculated as described elsewhere.65 The viability was calculated 
with regard to the untreated cells control. The IC50 values were 
determined using Hill equation (Origin 9.0).64 All experiments 
were replicated twice with triplicate. 
Fluorescence microscopy: 55 

 Viable and dead cells were detected by staining with fluorescein 
diacetate (FDA, 5 mg/L) and propidium iodide (PI, 5 mg/L) for 

20 min and examined using fluorescence inverted microscope 
(Olympus IX51, Japan) with an excitation filter of 470/20 nm. 
Photographs of cells after treatment with the tested compounds 60 

were taken under magnification 20×. 

Conclusions 

We synthesised eight new complexes of copper(I) iodide and 
copper(I) thiocyanate with two diimines (dmp or bq) and 
phosphine ligands: hydroxymethyldiphenylphosphine 65 

(PPh2(CH2OH), POH) or phosphine derivative of sparfloxacin, 
a 3rd generation fluoroquinolone antibiotic (PPh2(CH2-Sf), PSf). 
Spectroscopic studies showed that all the complexes are stable in 
solutions for several days, also in the presence of water and 
oxygen. Analysis of NMR spectra showed that PSf binds to the 70 

copper(I) ion in a different pattern than other phosphine ligands 
we have obtained so far. For complexes described in this work 
two signals appeared on 31P{1H} NMR spectrum in contrast to 
previously synthesised compounds,26,34,36,65 where only one 
phosphorus signal was observed. This can only be explained by 75 

the high lability of the PSf complexes caused by this ligand’s 
great steric requirements, which are related to the presence of the 
–CH3 groups on the piperazine ring.  
 An analysis of the 1-PSf structure showed that, contrary to 
HSf55-56 and OPSf34, the methyl groups on the piperazine ring 80 

occupy the axial positions. Such conformation of the ring reduces 
the size of the entire ligand and probably facilitates the 
coordination process. DFT studies supported this explication. 
Unlike in the case of the free ligand, the structure of the 1-PSf 
molecule with the discussed methyl groups in axial positions (1-85 

PSf-ax) was characterised by a slightly lower energy than the 
structure with the -CH3 groups in equatorial positions (1-PSf-eq). 
 Cytotoxic activity of the complexes and employed ligands was 
tested against two cancer lines (CT26 - mouse colon carcinoma 
and A549 - human lung adenocarcinoma). The studies, which 90 

applied two different approaches (4 and 24 h incubation times), 
enabled preliminary estimation of the influence of diimine and 
phosphine ligands on the selectivity and mechanism of action. 
We have found that the type of phosphine ligand had a decisive 
impact on the cytotoxic properties of the studied coordination 95 

compounds. The PSf complexes were much more active than the 
POH ones. This was undoubtedly related to the presence of the -
Sf fragment. Although sparfloxacin, as a free molecule, was 
characterised by a small cytotoxic effect, its attachment to the 
copper(I) complex via -CH2PPh2 moiety, highly elevated the 100 

cytotoxicity. It should be emphasised that the type of diimine 
ligand significantly affected the overall action mechanism. 
However, other factors related to the cell cycles or cell aging 
cannot be excluded,23,34 which needs further investigation.  
 Proven stability in the air and water, and the high cytotoxicity 105 

of the PSf complexes presented herein indicate their potential 
usefulness in the development of new anticancer agents. 
However, further, mechanistic studies are required. Work on the 
transport into tumour cells and the mechanism of cell death will 
be presented in our next paper. 110 
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