Dalton Transactions

Accepted Manuscript

5

Dalton Transactions

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Graphical abstract

The contrarotational fluxionality of $\left[3,3-\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right.$-closo-3,1,2- $\left.\mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ and related species
Robert D. Kennedy and John D. Kennedy

DFT calculations allied with experimental crystallographic and NMR results elucidate the energetics and the geometrical and ${ }^{11} \mathrm{~B}$ nuclear shielding changes in the contrarotational fluxionality of $\left[3,3-\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right.$-closo-$\left.3,1,2-\mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ and confirm the incidence and identities of two stable rotational conformers.

The contrarotational fluxionality of $\left[3,3-\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right.$-closo-3,1,2- $\left.\mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ and related species

Robert D. Kennedy ${ }^{\mathrm{a}, \mathrm{b}}$ and John D. Kennedy ${ }^{\mathrm{b}, \mathrm{c}, *}$
${ }^{\text {a }}$ Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA; Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, USA.
${ }^{\mathrm{b}}$ School of Chemistry, University of Leeds, Leeds, UK LS2 9JT.
${ }^{\mathrm{c}}$ Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, 25068 Řež u Prahy, The Czech Republic

* corresponding author; e-mail: j.d.kennedy@leeds.ac.uk

It is a privilege to be able to contribute to this Edition dedicated to the memory of Ken Wade, in celebration of his sustained and formidable contributions to chemical science, and in personal memory in particular of many friendly and stimulating discussions over the years, both relevant and irrelevant to chemical science.

Abstract

DFT calculations allied with experimental crystallographic and NMR results elucidate the energetics and the geometrical and ${ }^{11} \mathrm{~B}$ nuclear shielding changes in the contrarotational fluxionality of [3,3-($\left.\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$-closo-$\left.3,1,2-\mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ and confirm the identities of two stable rotational conformers. There is a relatively unhindered contrarotation of the $\left\{\operatorname{Pt}\left(\mathrm{PR}_{3}\right)_{2}\right\}$ and nido-shaped carbons-together $\left\{\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right\}$ entities about an axis that contains the platinum atom, with a transition from trihapto to tetrahapto to pentahapto metal-to-cluster interaction as the rotation progresses from 0° to 90°, and a reversal as it progresses in turn through to 180°, and thence through a similar cycle through to 360° for a complete rotation. The overall energy minimum is the trihapto conformation, but there is also an island of stability for the tetrahapto conformation at slightly higher energy, corresponding to experimental observation of these two configurations. The highest-energy pentahapto mode constitutes a transition state, and its energy defines the activation energy for the complete contrarotation, which is matched by activation energies derived from NMR spectroscopy. The shallow minima and small energy differences suggest that ready cluster flexibility will be expected about the minima, again in accord with subtle rotamer angle differences seen in experimental results. Nuclear magnetic shielding criteria suggest significant changes in intracluster bonding as the rotation progresses. The trihapto bonding geometry and the corresponding electronic structure are favoured over quite a substantial arc (some 40°) of the rotation, before rapid changes ensue, and then, after progression through the tetrahapto conformation, the electronics and the bonding geometry then again remain similar within the pentahapto mode for a further 40° or so of the rotational arc about this transition state.

Introduction

Half a century ago Hawthorne and co-workers discovered that the formal [nido-7,8- $\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]^{2-}$ dianion (schematic cluster structure I, nido eleven-vertex numbering scheme as in IA), often subsequently called the 'dicarbollide’ ligand, could bind to transition-element centres to generate closed icosahedral clusters of deltahedral character (schematic cluster structure II, closo twelve-vertex numbering scheme as in IIA). ${ }^{1}$

I

IA

II

IIA

The resulting 'metal dicarbollides', formally closo-3,1,2-metalladicarbaboranes, now constitute one of the most examined areas of boron-containing cage and cluster chemistry, surpassed only by that based on [closo$\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{12}$] species. ${ }^{2}$ As the area developed it became recognized that not all metal centres formed closed triangulated icosahedra when coordinated to the nido-shaped $\left\{7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right\}$ unit, ${ }^{3}$ and Colquhoun and Wallbridge subsequently described an elegant sequence of compounds in which the binding of the dicarbaborane unit to the metal centres progressed from pentahapto (as in schematic cluster structure II), through degrees of increasingly less involvement (schematic cluster structures III to VI), to a looser general association (schematic cluster structure VII), as the nature of the metal centre progressed from the centre of the transition series to the late transition elements and thence to the post-transition elements mercury (VI) and thallium (VII). ${ }^{4}$

II

V

III

VI

IV

VII

They made the point that 'any attempt to predict metallacarborane structures on the basis of electron-counting rules must take into account the electron configuration of the metal in its formal oxidation state, at least for the heavier transition and post-transition elements' - interestingly, nearly some forty years on, this and related points are still not generally appreciated [see, for example, ref 5 versus refs 6 and 7]. In the general context of 'stretching' of the $\left\{\mathrm{MC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right\}$ framework, it should be noted that an interesting alternative cluster opening is the stretching of the intercarbon distance (schematic cluster structures $\mathbf{I I} \rightarrow \mathbf{V I I I} \rightarrow \mathbf{I X}$), rather than the metal-tocarbon distances, ${ }^{8}$ and this has been addressed recently using $\left\{\mathrm{ArRuC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right\}$-based compounds as the examples. ${ }^{9}$ However, this last phenomenon is orthogonal to the work that we describe in this present paper.

II

VIII

IX

In terms of this present contribution, within the sequence of progressive opening II - VII the configuration III has attracted significant attention, with particular reference to its so-called 'slippage' away from the completely triangulated configuration II. ${ }^{10}$ For $\left[\mathrm{L}_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ and $\left[\mathrm{L}_{2} \mathrm{PdC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ species, ${ }^{11.12}$ the slipped configurations exhibited in the solid state, as determined by X-ray diffraction analyses, were rationalised some time ago in terms of a frontier orbital approach. ${ }^{12}$ Subsequently it became apparent that such species are very fluxional in solution with regard to an effective contrarotation of the $\left\{\mathrm{PtL}_{2}\right\}$ and $\left\{\mathrm{PtC}_{2} \mathrm{~B}_{10} \mathrm{H}_{11}\right\}$ moieties about an axis that approximately contains the metal atom and its antipodal cluster atom $\mathrm{B}(10)$ (simplistic illustrative diagram XA). ${ }^{13}$ The species $\left[\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ is the best examined for contrarotational fluxionality: the activation energy $\Delta \mathrm{G}^{\ddagger}$ was found to be $\leq c a .30 \mathrm{~kJ} \mathrm{~mol}^{-1}$. It is convenient to regard the contrarotation in terms relative to a quasi rotating frame of the dicarbaborane unit (schematic $\mathbf{X B}$); in this model the $\left\{\mathrm{ML}_{2}\right\}$ metal-centre unit rotates above the five-membered 'open face' of a static non-rotating $\left\{\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right\}$ entity.

Interest was added when it became apparent that different compounds exhibited significantly different contrarotamer rotation angles in the solid state, ${ }^{14}$ and, further, that the species $\left[\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ exhibits two very different contrarotamers in the same solid-state crystal structure (Figure 1 below). ${ }^{15}$ Additionally, it was also apparent that the As_{2} analogue $\left[\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{PtAs}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}\right]$ also has a very low-energy rotational fluxionality in solution and, further, in the solid-state, effectively exhibits five different rotamers. ${ }^{15,16}$ It was proposed that a mechanism for the rotation of the $\left\{\operatorname{Pt}\left(\mathrm{PR}_{3}\right)_{2}\right\}$ units above the faces of the nido-shaped eleven-vertex heteroborane units involved changes in effective metal-to-heteroborane hapticity among η^{3} trihapto, η^{4} tetrahapto and η^{5} pentahapto. ${ }^{15}$ The earlier frontier molecular-orbital approach on the dicarbametallaborane species did not deal with the relative energetics and dealt principally with the parallel configuration, ${ }^{12}$ and in view of the observed rotational fluxionalities and the subsequently discovered tendency to exhibit more than one observable rotamer, we thought it informative to examine the energetics of the rotational phenomenon by DFT calculation, and to similarly examine for the nature of any concomitant change in carbaborane-to-metal hapticity as the rotation progresses. At this point, in the more general context of computational studies of contrarotational
processes involving the $\left\{\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right\}$ ligand unit, the seminal pioneering work of Bühl and coworkers on (nonslipped) transition-element bis(dicarbollide) species should be well noted. ${ }^{17}$

Results and Discussion

The two uppermost diagrams of Figure 1 show the experimentally observed conformation for $\left[\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{Pt}\right.$ $\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right],{ }^{12}$ and the corresponding conformation for one of the rotational isomers observed in the solid-state structure of $\left[\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right] .{ }^{15}$ These approximate to a 'parallel' configuration, so-called because in the ideal case it was supposed that the $\mathrm{P}-\mathrm{P}$ vector might parallel the intercarbon vector; this conformation has generally been regarded as the more stable, and formed the basis for the original frontier orbital considerations that were invoked to rationalise this observed configuration. ${ }^{12}$ The lower diagram shows the second of the two conformations subsequently seen in the solid state structure of $\left[\left(\mathrm{PMe}_{2} \mathrm{Ph}_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]\right.$, the 'diagonal' conformation.

Figure 1. Projections of the crystallographically determined molecular structures of (top left) $\left[\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ [data from ref. 12], (top right) one of the two independent molecules in the crystal structure of $\left[\left(\mathrm{PMe}_{2} \mathrm{Ph}_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]\right.$, which show the 'parallel' conformation, and (bottom) the second independent [($\left.\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}$] molecule [data from ref 15], which shows the 'diagonal' conformation. Hydrogen atoms, P-organyl groups, and the lower six $\{\mathrm{BH}($ exo $)\}$ units are omitted for clarity. Distances from platinum to carbon or boron are given next to the relevant carbon or boron atom and distances between carbon and / or boron atoms are given adjacent to the relevant connector.

Initial calculations were carried out for the model compound $\left[\left(\mathrm{PH}_{3}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$. The PBE hybrid functional in Gaussian03 was used, ${ }^{18}$ with the $6-31 \mathrm{G}(\mathrm{d})$ basis sets for C, H, B and P, and the Stuttgart-Dresden ECP plus double-zeta basis set for Pt. The initial starting $\left\{\mathrm{P}_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right\}$ geometry was taken from the single-crystal result for $\left[\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$, and calculations were carried out for a succession of constrained angles of rotation, taking increments of 5°, the rotational angle being defined as the dihedral angle between the $\mathrm{Pt}-\mathrm{P}_{\mathrm{A}}$ and $\mathrm{B}(6)-$ $\mathrm{B}(10)$ vectors. This angle approximately relates to the angle $\boldsymbol{\theta}$ in schematic structure $\mathbf{X I}$. The energetic results are in Figure 2, which also shows the variation of the complementary dihedral angle between the $\mathrm{Pt}-\mathrm{P}_{\mathrm{B}}$ and $B(6)-B(10)$ vectors. Two aspects arise out of the use of the incremental method of calculation and the use of the dihedral angle constraint for this. First, the curve is not symmetrical about 90°, the minimum being in fact at $c a$. 84°. This is because there is cluster flexing and in addition the dihedral angle does not map directly onto the simplistic projection angle $\boldsymbol{\theta}$ of schematic structure $\mathbf{X I}$, in that, for example, $\mathbf{B}(10)$ is not in the plane defined by P-Pt-P. Second, the plot of the complementary dihedral angle should in principle be linear, but is clearly not so; this arises because of $\mathrm{Pt}-\mathrm{PH}_{3}$ rotamer considerations, which result in structural 'flips' as the PH_{3} groups pass through positions that eclipse the BH and CH positions on the pentagonal frontier face of the $\left\{\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right\}$ unit; these steric considerations also seem associated with a tendency to have stable 'diagonal' conformations (e.g. bottom diagram in Figure 1) at approximately 50° and 130° as mentioned below.

Figure 2. Plots of (red trace) calculated molecular energies a versus the constrained contrarotation angle based on $\mathrm{B}(6)$ -$\mathrm{B}(10)-\mathrm{Pt}-\mathrm{P}_{\mathrm{A}}$ for the model compound $\left[\left(\mathrm{PH}_{3}\right) \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ and (blue trace) the complementary rotation angle based on $\mathrm{B}(6)-$ $\mathrm{B}(10)-\mathrm{Pt}-\mathrm{P}_{\mathrm{B}}$ in the resulting calculated structures.

The plot clearly demonstrates a global minimum energy; this corresponds to a rotational angle of 84°. This approximates to the 'parallel' conformations exhibited in the solid state by $\left[\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]\left(73^{\circ}\right)$ and also by one of the two independent molecules in the crystal structure of $\left[\left(\mathrm{PMe}_{2} \mathrm{Ph}_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]\right.$ (78 ${ }^{\circ}$) (Figure 1, uppermost diagrams). It also clearly shows a maximum value at $0^{\circ} / 180^{\circ}$, which would correspond to a contrarotational transition state in which one of the PH_{3} ligands eclipses the $\mathrm{BH}(8)$ position and the other is over the middle of the $\mathrm{C}(1)-\mathrm{C}(2)$ vector - a 'perpendicular' conformation. This global maximum is at $37 \mathrm{~kJ} \mathrm{~mol}^{-1}$ above the global minimum, and would correspond to an activation energy $\Delta \mathrm{G}^{\ddagger}$ of this value for a rotational process. This is somewhat greater than the maximum value of $c a .30 \mathrm{~kJ} \mathrm{~mol}^{-1}$ inferred from solution studies on the $\left[\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ analogue, ${ }^{13,15}$ however, this calculated value is for an isolated 'gas-phase' species, as opposed to the experimental result from solution state in a polar solvent, and there will also be differential electronic and steric effects arising from $\mathrm{PMe}_{2} \mathrm{Ph}$ versus PH_{3}.

For this model $\left[\left(\mathrm{PH}_{3}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ system there are no intermediate-energy minima at rotational angles around ca. 50° and 130°, contrary to expectations for a 'diagonal' conformer equivalent to that observed for the second conformer in the crystal structure of $\left[\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ (Figure 1, bottom diagram). There are, however, weak inflexion points on the plot at these approximate angles, at about $25 \mathrm{~kJ} \mathrm{~mol}^{-1}$ above the global minimum. These presumably result from an unfulfilled tendency to favour such a configuration, a tendency possibly helped by an imminent mini-barrier as the PH_{3} groups approach the steric step of eclipsing the carbaborane $\{\mathrm{CH}\}$ positons. This tendency is obviously better fulfilled for $\left[\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$, as evidenced by the diagonal conformer actually present in the solid state for this species. Again, electronic differences between PH_{3} and $\mathrm{PMe}_{2} \mathrm{Ph}$ will be of importance, as well as crystal-packing effects within the solid-state crystal of $\left[\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$; here it is noted that intermolecular interactions and differential electronic ligand effects have been shown to be of high significance in dictating rotamer angles in closely related solid-state palladium systems. ${ }^{14}$

Compared to PH_{3}, steric effects are greater and electronic effects different for increasingly bulkier PMe_{3} and $\mathrm{PMe}_{2} \mathrm{Ph}$. $\left[\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ has not yet been reported, but we used it as the most convenient progressive model for triorganylphosphine ligands. For reasons of computational and time economy resulting from limitations of available hardware, extensive optimisations were not feasible for [$\left.\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$, and, also, a full 180° sequence, in which $\mathrm{Pt}-\mathrm{PMe}_{3}$ rotamers and inter-ligand meshing are involved, was not conducted. For [$\left.\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$, rather, we focused on the 'perpendicular' transition state, the global-minimum 'parallel' conformation, and the points around the 'diagonal' configuration at a rotational angle of $c a .45^{\circ}$. The highestenergy perpendicular conformer, which would constitute the transition state for any contrarotation, was found at a rotation angle of 2°, and the global minimum occurred at 84°. This transition-state conformation was 33 kJ mol^{-1} above the energetic minimum, some $4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ less than the $37 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$ calculated for the PH_{3} species. Extrapolation to more bulky $\mathrm{PMe}_{2} \mathrm{Ph}$ would thence suggest a value less than $30 \mathrm{~kJ} \mathrm{~mol}^{-1}$, which would be consistent with the solution-state experimental observations.

Figure 3. Projections of the molecular structures associated with the calculated energy minima for $\left[\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$: (left) the lower energy 'parallel' minimum, and (right) the second 'diagonal' minimum at $c a .18 \mathrm{~kJ} \mathrm{~mol}^{-1}$ to higher energy. Hydrogen atoms, P-organyl groups, and the lower six $\{\mathrm{BH}(e x o)\}$ units are omitted for clarity. It can be seen that the two rotamers closely resemble those found experimentally in the crystal structure of $\left[\left(\mathrm{PMe}_{2} \mathrm{Ph}_{2}\right) \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ (Figure 1 above). Distances from platinum to carbon or boron are given next to the relevant carbon or boron atom and distances between carbon and / or boron atoms are given adjacent to the relevant connector.

For $\left[\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ the calculations also revealed a very shallow 'diagonal' minimum at 42°, with an energy $18 \mathrm{~kJ} \mathrm{~mol}^{-1}$ above the lowest-energy 84° conformer. Projections of the calculated parallel and diagonal minimum-energy structures are in Figure 3, and it can be seen that these closely resemble the corresponding experimentally found parallel and diagonal minima in $\left[\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ [Figure 1 (lower)].

Calculations that we have been able to conduct for this latter more complex $\mathrm{PMe}_{2} \mathrm{Ph}$ species itself, now with phenyl as well as methyl group rotamers involved, have been necessarily more limited because of computational time constraints. Again we concentrated on the areas around the parallel, diagonal and perpendicular conformations. The molecular structures of the resulting three configurations are illustrated in Figure 4. The parallel configuration calculated out as the fully unconstrained global minimum, and a transition state corresponding to the rotational pathway was located at 0°. This was at $30.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$ above the global minimum, i.e. less than that calculated for the PMe_{3} case, and in accord with the upper limit of $c a .30 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for the rotational barrier found experimentally for the $\mathrm{PMe}_{2} \mathrm{Ph}$ compound. For the diagonal conformation, we located a local minimum at $42^{\circ} / 129^{\circ}$, confirmed by frequency calculations; this is at $+8.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ above the global minimum 'parallel' conformation. In view of the small energy differences and shallow potential wells, it is probable that solid-state packing will have a significant influence on dictating the precise angles to be observed in crystal structures.

Figure 4. Representations of the calculated 'gas phase' molecular structures for $\left[\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$. Top, the global minimum 'parallel' conformation; centre, the $42^{\circ} / 129^{\circ}$ 'diagonal' conformation at a relative energy of $+8.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$; bottom, the 'perpendicular' transition state at $+30.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Overall, the surmise about this rotational behaviour derived from experiment, for example in reference 15 , is now more quantitatively supported, viz. there is a relatively low-energy rotational process progressing smoothly through the parallel, diagonal, and perpendicular conformations. The lowest-energy configuration is the 'parallel' one, and the highest-energy 'perpendicular' configuration dictates the rotational energy barrier. There is also a region of stability around the 'diagonal' configuration of intermediate energy, a few $\mathrm{kJ} \mathrm{mol}^{-1}$ above the parallel configuration, and packing forces dictate that this is also sometimes observed in the solid state.

The surmise also proposed a switching among various carbaborane-to-metal hapticities as the rotation progressed . ${ }^{15}$ Our results also provide insight into this. Available calculated and experimental interatomic distances and angles for the $\mathrm{PH}_{3}, \mathrm{PMe}_{3}, \mathrm{PEt}_{3}$ and $\mathrm{PMe}_{2} \mathrm{Ph}$ systems are given in the supplementary data (Tables S1-S3), and salient calculated values for $\left[\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ as representative are in Table 1. Inspection shows that the 84° global minimum is clearly η^{3} trihapto, essentially consistent with the 'classically' slipped and experimentally well-substantiated configuration represented in III above, with the Pt-C distances at $2.705 \AA$ much longer than the Pt-B distances of 2.235 and $2.265 \AA$. Upon swinging round to the 'diagonal' 42° conformer at the higher minimum, the hapticity now approximates closely to η^{4} tetrahapto, with one longer $\mathrm{Pt}-$ C distance at $2.532 \AA$, and the other much shorter at $2.274 \AA$ and within the range of the three Pt-B distances of $2.257,2.275$ and $2.326 \AA$. For the highest-energy near-symmetrical perpendicular configuration, for which frequency calculations confirmed its nature as the rotational transition state, the two $\mathrm{Pt}-\mathrm{C}$ distances of $2.328 \AA$ and $2.339 \AA$ are very close to those of $\mathrm{Pt}-\mathrm{B}(4)$ and $\mathrm{Pt}-\mathrm{B}(7)$ at $2.349 \AA$ and $2.350 \AA$, and $\mathrm{Pt}-\mathrm{B}(8)$ is a little
shorter at $2.241 \AA$: this latter $\mathrm{Pt}-\mathrm{C}$ and $\mathrm{Pt}-\mathrm{B}$ grouping within a close range of $c a .0 .2 \AA$ can clearly be regarded as η^{5} pentahapto.

As expected there is also general cluster flexing as the rotation progresses, with, for example, the intercarbon distances at $1.499,1.586$ and $1.674 \AA$, and the P-Pt-P angles at $104.5^{\circ}, 97.8^{\circ}$ and 100.25°, respectively for the parallel energy minimum, the diagonal energy minimum and the perpendicular high-energy transition state. With regard to such cluster distortions associated with the slippage, the convex 'fold angle' of the frontier $\{C(1) C(2) B(7) B(8) B(4)\}$ face receives considerable attention in earlier structural descriptions. ${ }^{12,19}$ Thus, for the parallel conformation, the $\mathrm{C}(1)$ and $\mathrm{C}(2)$ atoms are considerably below the mean $\{\mathrm{C}(1) \mathrm{C}(2) \mathrm{B}(7) \mathrm{B}(8) \mathrm{B}(4)\}$ plane: the fold angle found by experiment for the originally described $\operatorname{Pt}\left(\mathrm{PEt}_{3}\right)_{2}$ species is $+8.96 \pm 0.02^{\circ}$. That for the similar parallel configuration in the crystal of the $\mathrm{Pt}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ species is similar at $+10.0 \pm 2.0^{\circ}$. These foldings are matched by the values for the calculated minima for the $\mathrm{PH}_{3}, \mathrm{PMe}_{3}$ and $\mathrm{PMe}_{2} \mathrm{Ph}$ species at $+14.003^{\circ},+12.765^{\circ}$ and $+11.860^{\circ}$ respectively. The PH_{3} and PMe_{3} values are possibly larger because they represent true 'parallel' structures, whereas the $\mathrm{PMe}_{2} \mathrm{Ph}$ minimum is skewed way from that ideal. When the rotation progresses towards the diagonal the simple fold concept cannot be applied because of the marked asymmetry inherent in the twist. Thus, at the 'diagonal' minima, both experimentally and by calculation, carbon atoms $\mathrm{C}(1)$ and $\mathrm{C}(2)$ position themselves above and below the mean plane in the ranges +0.042 to +0.050 and -0.064 to $-0.069 \AA$ respectively, boron atoms $\mathrm{B}(4)$ and $\mathrm{B}(8)$ similarly relate to the mean plane in ranges +0.054 to +0.063 and -0.026 to $-0.039 \AA$ respectively, whereas $\mathrm{B}(7)$ is approximately coincident with the mean plane. In these diagonal structures the disposition of the carbon and boron atoms in the $\{C(1) C(2) B(7) B(8) B(4)\}$ frontier face resembles the 'twist' conformation of cyclopentane. The full quarter-rotation to the symmetrical perpendicular transition state results in an essentially planar $\{C(1) C(2) B(7) B(8) B(4)\}$ frontier face, with a slight concave fold angle of $<-2^{\circ}$ for all three calculated structures. Overall, corresponding matchings between experimental and calculated geometries also occur for the folding of the 'lower girdle'
$\{\mathrm{B}(5) \mathrm{B}(6) \mathrm{B}(11) \mathrm{B}(12) \mathrm{B}(9)\}$ unit. ${ }^{19}$

Table 1. Selected interatomic distances (in \AA) and angles (in ${ }^{\circ}$), as calculated for the lowest-energy 'parallel', the intermediate-energy 'diagonal', and the highest-energy 'perpendicular' conformations of the triorganylphosphine model compound $\left[\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$.

Dimension	Parallel $84^{\circ} / 84^{\circ}$	Diagonal $42^{\circ} / 141^{\circ}$	Perpendicular $\mathbf{2}^{\circ} / \mathbf{1 7 9}^{\circ}$
Dihedral angle 1	84.469	42.006	2.37
Dihedral angle 2	84.393	141.266	179.49
$\operatorname{Pt}(3)-\mathrm{C}(1)$	2.705	2.274	2.328
$\operatorname{Pt}(3)-\mathrm{C}(2)$	2.705	2.532	2.339
$\operatorname{Pt}(3)-\mathrm{B}(4)$	2.265	2.275	2.349
$\operatorname{Pt}(3)-\mathrm{B}(7)$	2.265	2.326	2.350
$\operatorname{Pt}(3)-\mathrm{B}(8)$	2.235	2.257	2.241
$\mathrm{C}(1)-\mathrm{C}(2)$	1.499	1.586	1.674
$\mathrm{C}(2)-\mathrm{B}(7)$	1.764	1.664	1.659
$\mathrm{~B}(7)-\mathrm{B}(8)$	1.812	1.890	1.860
$\mathrm{~B}(8)-\mathrm{B}(4)$	1.812	1.798	1.854
$\mathrm{~B}(4)-\mathrm{C}(1)$	1.764	1.750	1.662
$\operatorname{Pt}(3)-\mathrm{P}_{\mathrm{A}}$	2.294	2.310	2.325
$\operatorname{Pt}(3)-\mathrm{P}_{\mathrm{B}}$	2.294	2.261	2.236
$\mathrm{Angle} \mathrm{P}-\mathrm{Pt}-\mathrm{P}$	104.493	97.799	100.25

It is of interest to examine for the angular domains in which these hapticities may persist and at which points they may change during the course of the rotation. A plot of relevant interatomic distances versus rotational angle for the model compound $\left[\left(\mathrm{PH}_{3}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ is in Figure 4; this deals with the first quarter-rotation, this will be mirrored for the second quarter-rotation, and the resulting half-rotation behaviour will be duplicated for the full rotation (see Supplementary Data, Figure S5). Computational economy precluded the much more timeconsuming calculations that would be needed for full quarter-rotations of the triorganylphosphine congeners $\left[\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ and $\left[\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$. Immediately apparent from the $\mathrm{Pt}-\mathrm{C}$ and $\mathrm{Pt}-\mathrm{B}$ distance behaviour in Figure 4 and Supplementary Figure S5 is a long trihapto domain centred around the central 84° minimum-energy point, i.e. there is little geometrical bonding change in this system within the rotational arc of ca. 50° between about 65° and 115°. Either side there is a steep change towards a specific and precise coming together of the three $\mathrm{Pt}-\mathrm{B}$ and one of the $\mathrm{Pt}-\mathrm{C}$ distances for the tetrahapto point at about 45° and 135°; thence there is a more gradual transition as the second $\mathrm{Pt}-\mathrm{C}$ distance shortens to match its sibling, with the resulting pentahapto mode thence also quite well defined in that the $\mathrm{Pt}-\mathrm{C}$ and $\mathrm{Pt}-\mathrm{B}$ distances are within ca. $0.2 \AA$ of each other over a rotational arc of about 40°. Comparison with the energy profile of Figure 2 above correlates the central trihapto bonding plateau with an energy change of about $10-15 \mathrm{~kJ} \mathrm{~mol}^{-1}$ through zero back up to $10-15$ $\mathrm{kJ} \mathrm{mol}^{-1}$ across the 50° rotational arc, and then the more rapid change into quite substantial geometrical changes through tetrahapto to pentahapto as the energy increases further.

Figure 5. Plot of calculated interatomic distances versus rotational angle for the model species $\left[\left(\mathrm{PH}_{3}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$. The long central plateau which corresponds to the trihapto parallel conformation is clear ($<c a .110^{\circ}$ in this plot), and, interestingly, the tetrahapto points for the diagonal conformation are very well delineated in that the four relevant $\mathrm{Pt}-\mathrm{C}$ and $\mathrm{Pt}-\mathrm{B}$ distances are near-identical at the $c a .135^{\circ}$ crossover angle. The close grouping of all five $\mathrm{Pt}-\mathrm{C}$ and $\mathrm{Pt}-\mathrm{B}$ distances around the
pentahapto perpendicular conformation is also very apparent. The diagram represents a quarter-rotation; the behaviour will be mirrored to represent a half-rotation, and the whole repeated to complete 360° rotation (Supplementary Data Figure S5).

It is also of interest to surmise whether the different conformations are associated with significantly different intracluster bonding.* Nuclear magnetic shieldings are intimately dependent upon molecular orbital structure,

Abstract

* Footnote: a reviewer has suggested that 'the low rotational barrier is related to the relatively small separation in HOMOs derived from the e_{1} degenerate set of the parent $\left\{\mathrm{B}_{11} \mathrm{H}_{11}\right\}$ anion.'

and thence significant changes in cluster electronics will be manifest in significant changes in cluster nuclear magnetic shielding properties. Conversely, and irrespective of the at present formidable task of determining which particular molecular-orbital changes may be dominant in dictating the observed changes in nuclear shieldings, significant changes in cluster nuclear magnetic shielding properties will give indication of significant changes in bonding. This approach has been applied successfully to a number of platinaboranes and platinacarboranes, for example systems based on formally closo-structured eleven-vertex [1,1-($\left.\mathrm{PR}_{3}\right)_{2}-1,2,3-$ $\mathrm{PtC}_{2} \mathrm{~B}_{8} \mathrm{H}_{10}$] species. ${ }^{20}$ For this present work, initial nuclear magnetic shielding calculations were carried out for the conformations of $\left[\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ implicit in Figure 4, using the GIAO technique and the 6$311+G(2 d, p)$ basis sets for C, H, B and P, and the SDD basis set for Pt as found in Gaussian 03 package. ${ }^{18}$ The calculated boron nuclear magnetic shieldings for $\left[\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$, expressed here in terms of ${ }^{11} \mathrm{~B}$ NMR chemicals shifts $\delta\left({ }^{11} \mathrm{~B}\right) / \mathrm{ppm}$, for the trihapto, tetrahapto and pentahapto conformations of $\left[\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$, together with the experimentally determined ${ }^{11} \mathrm{~B}$ NMR chemical shift values $\delta\left({ }^{11} \mathrm{~B}\right)$ are given in Table 2, and are represented graphically in Figure 6 to aid visual comparison.

Table 2. Calculated boron nuclear magnetic shieldings, expressed as ${ }^{11} \mathrm{~B}$ NMR chemical shifts $\delta\left({ }^{11} \mathrm{~B}\right) / \mathrm{ppm}$, for the trihapto, tetrahapto and pentahapto conformations of $\left[\left(\mathrm{PMe}_{2} \mathrm{Ph}_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]\right.$ and the experimentally determined ${ }^{11} \mathrm{~B}$ NMR chemical shift values $\delta\left({ }^{11} \mathrm{~B}\right)$ for $\left[\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ (data from reference 15).

assignment	trihapto	tetrahapto	pentahapto	mean of trihapto and tetrahapto	observed
B(4)		-15.9	-13.7		
$\mathrm{B}(4,7)$	-22.6	-17.1	-12.6	-19.1	-20.8
B(7)		-18.4	-11.5		
B(5)		-28.7	-27.3		
B $(5,11)$	-8,5	-23.4	-27.7	-16.0	-14.5
B(11)		-18.1	-28.0		
B(6)	-27.6	-23.8	-23.8	-25.7	-20.8
B(8)	+14.3	-4.1	-13.0	+5.1	+5.7
B(9)		-0.7	-14.8		
B $(9,12)$	-9.9	-12.3	-12.5	-11.1	-9.9
B(12)		-23.9	-10.2		
B(10)	-9.8	-13.0	-10.5	-10.4	-9.2

It can be seen from the calculated values that there are substantial differences in the cluster shielding pattern among the three conformations (Figure 6, upper three diagrams). For the tetrahapto compared to the trihapto configurations the differences are principally for the $B(8)$ position adjacent (α) to the metal atom and for the $B(5,11)$ positions β to the metal atom, which both show shifts of some 20 ppm to higher shielding; concurrently there is a significant reduction in shielding at the $B(4,7)$ positons α to the platinum centre, with the shieldings of other positions showing only minor changes. Differences on progression from the tetrahapto to the pentahapto are not so marked, but there are again significant further increases in shieldings for the $B(8)$ and $B(5,11)$ positions; with the reduction in shielding at $\mathrm{B}(4,7)$ now more modest; again the other positons are little changed. These results may imply principal bonding changes involving molecular orbitals mainly involving the $\{\mathrm{Pt}(3) \mathrm{B}(4) \mathrm{B}(7) \mathrm{B}(8) \mathrm{B}(5) \mathrm{B}(11)\}$ cluster domain as the rotation proceeds. None of these three individual shielding patterns maps well onto the experimentally determined ${ }^{11} \mathrm{~B}$ chemical shift values for $\left[\left(\mathrm{PMe}_{2} \mathrm{Ph}_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]\right.$ (Figure 6, bottom diagram), the principal differences being again at the $\alpha \mathrm{B}(8)$, the $\alpha \mathrm{B}(4,7)$ and the $\beta \mathrm{B}(5,11)$ sites just mentioned. Interestingly, however, a remarkably good match to the observed ${ }^{11} \mathrm{~B}$ NMR spectrum is given by a mean of the calculated trihapto and tetrahapto values (penultimate diagram in Figure 6), which may imply that electronic and solution effects may make the trihapto and tetrahapto much closer in energy than the $8.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ calculated for the gas phase species, so that a time-average of the two is seen in solution, although this supposition has a number of the caveats.

[Figure 6 near here]

In accord with the supposition that changes in nuclear shieldings reflect changes in bonding, it was thence of further interest to examine at which stages along the rotational axis the significant changes in boron nuclear shielding and thence the significant changes in intracluster electronic bonding occur, and thence to see how this maps on to the changes in geometry through the trihapto and tetrahapto structures to the pentahapto transition state. The calculational time requirements were prohibitively large for the many incremental values required adequately to establish the nuclear magnetic shielding changes over the necessary quarter-rotation for 63-atom $\left[\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$, and so calculations were performed for the simpler model 31-atom species $\left[\left(\mathrm{PH}_{3}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ with 18 fewer non-hydrogen atoms. Confidence in that this would be representative of the triorganophosphine analogues derives from comparisons of the calculated shieldings within the trihapto 'parallel' mode for the $\mathrm{PH}_{3}, \mathrm{PMe}_{3}$ and $\mathrm{PMe}_{2} \mathrm{Ph}$ species as illustrated in Figure 7. It can be seen that the general shielding behavioural pattern is very similar for all three compounds. Corresponding comparisons for each of the tetrahapto and pentahapto modes are correspondingly also very similar (Supplementary information).
[Figure 7 near here]

Figure 8 plots the variation with rotational angle of the calculated boron nuclear magnetic shieldings for the model compound $\left[\left(\mathrm{PH}_{3}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ for the first quarter-rotation. Figure S 5 in the supplementary data shows the plot schematically extended for the full rotation by reflection and duplication. It can be seen from these two Figures that the nuclear magnetic shielding at the $\mathrm{B}(6)$ and $\mathrm{B}(10)$ positions β and γ to the metal centre show little significant change across the rotation. By contrast, the $B(8)$ position adjacent (α) to the metal centre shows the biggest change, and the changes for the β-positioned $\mathrm{B}(5,11)$ and $\mathrm{B}(9,12)$ nuclei are also significant.

Interestingly, the $\mathrm{B}(4,7)$ positions α to the metal centre do not show such a large variation, but the changes are nevertheless noticeable. The two positions within each of the $\mathrm{B}(5,11)$ and $\mathrm{B}(9,12)$ pairs also show significant differential behaviour as the rotation moves towards asymmetric diagonal tetrahapto from the symmetrical parallel trihapto and perpendicular pentahapto conformations. There are two striking parallels with the structural variations seen in Figure 5 above, in that there are substantial areas of arc of about 40° or so around both the energy-minimum parallel and the energy-maximum perpendicular conformations, in each of which many of the shieldings are little changed, suggesting a constancy of electronic structure for much of the cluster over each of these quite extensive rotational arcs. There are then substantial changes over the 30° or so of arc separating these two domains as the rotation passes through the diagonal conformation, implying concomitant rapid changes in cluster electronics in this region corresponding to the rapid structural changes represented in Figure 5. For this PH_{3} model, there is no marked plateau of stability corresponding to the diagonal conformation, although there are deviations from monotonic behaviour around the relevant $40^{\circ} / 140^{\circ}$ points, best seen in the partial plateau character of the $B(9), B(10)$ and $B(12)$ nuclear shieldings at these rotational angles; we would expect plateau behaviour to be manifested more strongly in the PMe_{3} and $\mathrm{PMe}_{2} \mathrm{Ph}$ compounds which exhibit structural energetic minima in that area. Within each of the parallel and the perpendicular conformational regions, comparison among Figures 2, 5 and 8 suggests that electronic aspects of bonding, as well as the geometrical aspects, do not change very much during energetic changes about $15 \mathrm{~kJ} \mathrm{~mol}^{-1}$ or so.

Conclusions

The above findings for the formally closo $\left[3,3-\left(\mathrm{PR}_{3}\right)_{2}-3,1,2-\mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ twelve-vertex systems confirm the previous supposition of a relatively unhindered contrarotation of the $\left\{\mathrm{Pt}^{\left.\left(\mathrm{PR}_{3}\right)_{2}\right\} \text { and nido-shaped carbons- }}\right.$ together $\left\{\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right\}$ entities about an axis approximately defined by the $\operatorname{Pt}(3)-\mathrm{B}(10)$ vector, with a transition from trihapto to tetrahapto to pentahapto metal-to-cluster interaction (schematics $\mathbf{X X X} \rightarrow \mathbf{X X X I I} \rightarrow \mathbf{X X X I I}$ respectively) as the rotation progresses from 0° to 90°, and a reversal as it progresses in turn through to 180°, and thence through a similar cycle through to 360° for a complete rotation. The overall energy minimum is the trihapto mode $\mathbf{X X X}$, but there is also an island of stability for the diagonal tetrahapto mode $\mathbf{X X X I}$ at slightly higher energy, corresponding to experimental observation of these two configurations. The highest-energy pentahapto mode XXXII constitutes a transition state, and its energy defines the activation energy for the complete contrarotation. The shallow minima and small energy differences suggest that ready cluster flexibility will be expected about the minima, induced by solvent effects in solution or packing effects in the solid state, again in accord with subtle rotamer angle differences seen when experimental results are compared. Nuclear magnetic shielding criteria suggest significant changes in intracluster bonding as the rotation progresses. The trihapto bonding geometry $\mathbf{X X X}$ and the corresponding electronic structure are favoured over quite a substantial arc (some 40° or so) of the rotation, before rapid changes ensue, and then, after progression through diagonal tetrahapto conformation XXXI, the electronics and, to some extent, the bonding geometry, then again remain similar within the pentahapto mode XXXII for a further 40° or so of the rotational arc about this rotational transition state.

XXX a

XXXI a

XXXI b

XXXII a

Experimental

All calculations were performed using the PBE hybrid functional (keyword PBE1PBE) method implemented in Gaussian 03, using the 6-31G(d) basis set for C, H, B and P, and the Stuttgart-Dresden ECP plus double zeta (SDD) basis set for Pt^{18} It has been reported that this functional provides accurate geometries for third-row transition metal elements. ${ }^{21}$ Geometry optimizations were run without symmetry constraints, using regular convergence criteria. Vibrational frequencies were calculated to verify that the relevant stationary points were minima or transition states. The natures of the transition states were determined via the vibration analyses and concomitant visualization of the imaginary frequencies. Energies have zero-point energy corrections, with a scale factor of 0.9727. ${ }^{22}$ Nuclear magnetic shielding calculations (GIAO method) were performed using the 6$311+G(2 d, p)$ basis set for C, H, B and P, and the Stuttgart-Dresden ECP plus double zeta (SDD) basis set for Pt. The nuclear shieldings were initially presented as ${ }^{11} \mathrm{~B}$ NMR chemical shifts relative to $D_{2 h} \mathrm{~B}_{2} \mathrm{H}_{6}$ (optimized at the PBE1PBE $6-31 \mathrm{G}(\mathrm{d})$ level, GIAO NMR calculations performed at the PBE1PBE $6-311+\mathrm{G}(2 \mathrm{~d}, \mathrm{p})$ level), which has a calculated shielding tensor of 86.5889 relative to the conventional ${ }^{11} \mathrm{~B}$ NMR chemical shift standard taken as $\left[\mathrm{BF}_{3}\left(\mathrm{OEt}_{2}\right)\right]$ at a nominal +16.6 ppm .

Supplementary information

Comparative line-diagram plots of calculated boron nuclear shieldings of $\left[\left(\mathrm{PH}_{3}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$, $\left[\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$, and $\left[\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right] ; 360^{\circ}$ compilation plots of variation of calculated interatomic distances and calculated nuclear magnetic shieldings with contrarotational angle for $\left[\left(\mathrm{PH}_{3}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$; Tables of selected calculated and nuclear shieldings; Tables of selected calculated interatomic distances; Full citation for reference XX. (Gaussian)

Acknowledgements

Contribution no 129 from the Řež-Leeds Anglo-Czech Polyhedral Collaboration (ACPC). JDK thanks Professors S. Marsden, B. Štíbr and J. Bludská for their good offices.

References

1. M. F. Hawthorne, D. C. Young and P. A. Wegner, J. Am. Chem. Soc., 1965, 87, 1818; M. F. Hawthorne and T. D. Andrews, J. Am. Chem. Soc., 1965, 87, 2496; M. F. Hawthorne and R. L. Pilling, J. Am. Chem. Soc., 1965, 87, 3987; M. F. Hawthorne and T. D. Andrews, Chem. Commun., 1965, 443.
2. R. N. Grimes, Carboranes, Second Edition., 2011, Academic Press, London, New York, Amsterdam, and other cities.; ISBN 978-0-12-374170-7
3. R. M. Wing, J. Amer. Chem. Soc., 1967, 89, 5599; and 1968, 90, 4828; L. F. Warren and M. F. Hawthorne, J. Amer. Chem. Soc., 1968, 90, 4823.
4. H. M. Colquhoun, T. J. Greenhough and M. G. H. Wallbridge, J. Chem. Soc., Chem. Commun., 1977, 737; J. Chem. Soc., Dalton Trans., 1979, 619.
5. A. J. Welch, Chem. Commun., 2013, 3615.
6. See, for example, J. Bould and R. Macías, J. Organomet. Chem., 2014, 761, 120.
7. J. D. Kennedy, Disobedient Skeletons, Chapter Three in The Borane-Carborane-Carbocation Continuum, Ed. J. Casanova, Wiley, New York, 1998, pp 85-116; ISBN: 0-471-18075-0
8. See, for example, L. S. Alekseev, F. M. Dolgushin and I. T. Chizhevsky, J. Organomet. Chem., 2008, 693, 3331; L. S. Alekseev, A. V. Safronov, F. M. Dolgushin, A. A. Korlyukov, I. A. Godovikov and I.
T. Chizhevsky, J. Organomet. Chem., 2009, 6941727.
9. J. Bould and J. D. Kennedy, J. Organomet. Chem., 2014, 749, 163.
10. See, for example, M. F. Hawthorne and K. P. Callahan, Adv. Organomet. Chem., 1976, 14, 145.
11. P. A. Wegner, Inorg. Chem., 1975, 14, 212; H. M. Colquhoun T. J. Greenhough and M. G. H. Wallbridge, J. Chem. Soc., Chem. Commun., 1976. 1019; W. E Carrol, M. Green, F. G. A. Stone and A. J. Welch, J. Chem. Soc., Dalton Trans., 1975, 2263; A. J. Welch, J. Chem. Soc., Dalton Trans., 1975, 1473; D. M. P. Mingos, J. Chem. Soc., Dalton Trans., 1977, 602.
12. D. M. P. Mingos, M. L. Forsyth and A. J. Welch, J. Chem. Soc., Chem. Commun., 1977, 605; J. Chem. Soc., Dalton Trans., 1978, 1363.
13. D. O’Connell, T. R. Spalding, G. Ferguson, J. F. Gallagher and J. D. Kennedy, J. Organomet. Chem., 1995, 503, C12.
14. See, for example, G. Ferguson, J. F. Gallagher, J. D. Kennedy, D. O’Connell, J. C. Patterson and T. R. Spalding, Acta Crystallogr., Sect. C, 2005, C61, m393, and references therein.
15. G. Ferguson, J. F. Gallagher, Yi Wei, D. P. O’Connell, J. C. Patterson, T. R. Spalding, J. D. Kennedy, R. Macías and B. Štíbr, J. Chem. Soc., Dalton Trans., 1996, 3323.
16. M. McGrath, T. R. Spalding, X. L. R. Fontaine, J. D. Kennedy and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1991, 3223.
17. M. Bühl, D. Hnyk and J. Macháček, Chem. Eur. J., 2005, 11, 4109; M. Bühl, J. Holub, D. Hnyk and J. Macháček, Organometallics, 2006, 25, 2173
18. Gaussian 03, Revision B.04, Frisch, M. J; Pople, J. A; et al., Gaussian, Inc., Wallingford, CT, USA, 2004. For full citation, see supplementary supporting data.
19. H. M. Colquhoun, T. J. Greenhough and M. G. H. Wallbridge, J. Chem. Soc., Dalton Trans., 1985, 761.
20. J. D. Kennedy, B. Štíbr, M. Thornton-Pett, and T. Jelínek, Inorg. Chem., 1991, 30, 4481; J. D. Kennedy, B. Štíbr, T. Jelínek, X. L. R. Fontaine, and M. Thornton-Pett, Collect. Czech. Chem. Commun., 1993, 58, 2090; J. Bould, X. L. R. Fontaine, I. Cisařová and J. D. Kennedy, Organometallics, F. G. A. Stone Memorial Edition, 2012, 31, 2691.
21. M. Bühl, C. Reimann, D. A. Pantazis, T. Bredow and F. Neese, J. Chem. Theory Comput. 2008, 4, 1449.
22. Y. Tantirungrotechai, K. Phanasant, S. Roddecha, P. Surawatanawong, V. Sutthikhum, J. Limtrakul, .J. Mol. Struct. Theochem. 2006, 760, 189.

Figure 6. Representations of the boron nuclear magnetic shieldings, expressed as ${ }^{11} \mathrm{~B}$ NMR chemical shifts $\delta\left({ }^{11} \mathrm{~B}\right)$, and relative intensities, as calculated for the trihapto, tetrahapto and pentahapto conformations of $\left[\left(\mathrm{PH}_{3}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ (upper three diagrams), the mean of the trihapto and tetrahapto values (fourth diagram), and the experimentally determined ${ }^{11} \mathrm{~B}$ NMR chemical shift values $\delta\left({ }^{11} \mathrm{~B}\right)$ for $\left[\left(\mathrm{PMe}_{2} \mathrm{Ph}_{2}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ (bottom diagram; data from reference 15). The calculated values are averaged across the idealised $\{\operatorname{Pt}(3) \mathrm{B}(8) \mathrm{B}(6) \mathrm{B}(10)\}$ plane to reflect that the fluxionality gives time-averaged effective mirror plane symmetry on the NMR timescale.

Figure 7. Representations of the boron nuclear magnetic shieldings, expressed as ${ }^{11} \mathrm{~B}$ NMR chemical shifts $\delta\left({ }^{11} \mathrm{~B}\right)$, and relative intensities, as calculated for the trihapto 'parallel' conformations of $\left[\left(\mathrm{PH}_{3}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ (top diagram) $\left[\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ (middle diagram) and $\left[\left(\mathrm{PMe}_{2} \mathrm{Ph}_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]\right.$ (lower diagram). Each of the $(4,7),(5,11)$ and $(9,12)$ pairs is averaged and combined to reflect that they would be exchanging positions by libration across the notional $\operatorname{Pt}(3) \mathrm{B}(6) \mathrm{B}(8) \mathrm{B}(10)$ plane. See deposited supplementary data S 2 , S 3 and S 4 for the non-averaged plot, and for equivalent plots for the diagonal and perpendicular conformations.

Figure 8 Variation with rotational angle of the calculated boron nuclear magnetic shieldings for the model compound $\left[\left(\mathrm{PH}_{3}\right)_{2} \mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$, expressed as boron NMR chemical shift values $\delta\left({ }^{11} \mathrm{~B}\right) / \mathrm{ppm}$. For economy, calculations were performed only for the 84° effective quarter-rotation. The behaviour will combine with its mirror to give a half rotation, and the combination repeated to represent a complete 360° rotation (supplementary data, Figure S5).

