Dalton Transactions

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/dalton

ARTICLE

Cite this: DOI: 10.1039/x0xx00000x

Received 00th January 2012, Accepted 00th January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

Introduction

Polymorphism has long been the subject of interest over many decades not only because of its important applications in pharmaceuticals, pigments, foods, dyestuffs and so forth, but also for investigating the crystallization process, particular for the research of structure-property relationship.¹⁻³ Recently, considerable attention about polymorphism has been focused on borates because of their rich structural chemistry and many borate polymorphs with high practical value have been systematically investigated, such as α - and β -BaB₂O₄.⁴⁻⁵ Generally, the high-temperature phase (β -phase) usually features a smaller density than the low-temperature phase (α phase) due to the inherent anharmonicity of bond vibrations. Certainly, in some rare examples, the β -phase may characterize a nearly density value with the α -phase, such as α -Li₄B₂O₅ (p: 2.033) Mg/m³) and β -Li₄B₂O₅ (ρ : 2.039 Mg/m³).⁶ However, in our exploration of borate polymorphism, SrCdB₂O₅ represents a very puzzling case that the density of α - and β -SrCdB₂O₅ are 4.571 and 4.688 Mg/m³ in room temperature, respectively, revealing that the density of the high-temperature phase is obviously larger than that of the low-temperature one. Moreover, β -SrCdB₂O₅ crystallizes in a monoclinic unit cell while α -SrCdB₂O₅ is orthorhombic, which is also unusual, because a compound usually will lose symmetry elements undergoing a phase transition from high temperature to low temperature.

In this work, from the structure chemistry point of view, we analyzed their similar crystal structures of α - and β -SrCdB₂O₅, and finally discovered the underlying reasons of the unusual density phenomenon. Furthermore, to gain insight into the phase transformation of SrCdB₂O₅, polycrystalline samples of β -SrCdB₂O₅ were synthesized by traditional solid-state reaction techniques at different reaction temperatures and TG-DSC measurement of α -SrCdB₂O₅ was also carried out. A new Cd₂B₂O₅ phase was obtained by quenched experiment. Besides, the total electronic energy of α - and β -SrCdB₂O₅ based on experimental crystallographic data were also been calculated and according to the data, the low-temperature phase, namely α -SrCdB₂O₅, is metastable when compared with β -SrCdB₂O₅. For confirming this viewpoint, we also substituted the

An unusual density evolution between SrCdB₂O₅ polymorphs

Xingwen Zhang,^{a,b} Zhengyang Zhou,^c Hongping Wu,^{*a} Shilie Pan,^{*a} Chen Lei,^{a,b} Lu Liu,^{a,b} and Zhihua Yang^a

Owing to the effect of atomic vibrations, high-temperature phase usually features a relatively smaller density when compared with low-temperature phase. In this work, a new SrCdB₂O₅ phase has been discovered. According to the crystallization temperature from low to high, the new SrCdB₂O₅ phase can be regarded as the high-temperature β -SrCdB₂O₅ phase. The density of β -SrCdB₂O₅ is obviously larger than that of α -SrCdB₂O₅, meanwhile β -SrCdB₂O₅ is energy favored. This unusual density evolution phenomenon has been investigated. In addition, the Pb²⁺-doped compounds, Pb_xSr_{1-x}CdB₂O₅ (*x* = 0.125, 0.25, 0.375, 0.5), have also been investigated by powder refinement.

Sr²⁺ cation for Pb²⁺ successfully to form Pb_{0.125}Sr_{0.875}CdB₂O₅, Pb_{0.25}Sr_{0.75}CdB₂O₅, Pb_{0.375}Sr_{0.625}CdB₂O₅ and Pb_{0.5}Sr_{0.5}CdB₂O₅. The corresponding powder X-ray diffraction (XRD) patterns suggest that the Pb²⁺-doped compounds, Pb_xSr_{1-x}CdB₂O₅ (x = 0.125, 0.25, 0.375, 0.5), adopt the similar structure type of β-SrCdB₂O₅, consistent with the calculation result that β-SrCdB₂O₅ is energy favored. We also carried out some related measurements, such as IR spectrum and UV-Vis-NIR diffuse reflectance spectrum for β-SrCdB₂O₅, and some theoretical calculations, such as band structure and densities of states for β-SrCdB₂O₅. In this paper, we mainly report an unusual density and crystal symmetry behavior of SrCdB₂O₅. To proceed from this point, we did some related interesting researches. **Experimental**

Reagents

Sr(NO₃)₂ (99.0%, Sinopharm Chemical Reagent Co., Ltd.), CdO (99.0%, Tianjin Bodi Chemical Co., Ltd.), PbO (99.0%, Sinopharm Chemical Reagent Co., Ltd.) and H_3BO_3 (Tianjin Baishi Chemical Co., Ltd., 99.5%) were used as received.

Crystal Growth

Small single crystals of α - and β -SrCdB₂O₅ were grown from a hightemperature solution with flux systems in air. A mixture of raw materials Sr(NO₃)₂-CdO-H₃BO₃-PbO with molar ratio (1 : 1 : 5 : 3 for α -SrCdB₂O₅, 1 : 1 : 4 : 2 for β -SrCdB₂O₅) was loaded in a Pt crucible and heated in a muffle furnace at 900 °C until the solution became transparent and clear. The homogenized solution was then cooled quickly (20 °C/h) to the crystallization temperature (750 °C for α -SrCdB₂O₅, 780 °C for β -SrCdB₂O₅), then slowly cooled (3 °C/h) to (700 °C for α -SrCdB₂O₅, 730 °C for β -SrCdB₂O₅) followed by cooling to room temperature after the furnace was powered off. Small colorless crystals of α - and β -SrCdB₂O₅ were obtained for the structure determination.

X-ray Crystallography

RSCPublishing

The single crystals of α - and β -SrCdB₂O₅ were selected and mounted on thin glass fibers of the Bruker SMART APEX II CCD diffractometer. Data were collected using monochromatic Mo K α radiation ($\lambda = 0.71073$ Å) at 296(2) K and integrated with the SAINT program.⁷ All calculations were performed with programs from the SHELXTL crystallographic software package.⁸ The structures were solved by direct methods using SHELXS-97.⁹ The final full-matrix least-squares refinement were on F_o² with data having F_o² $\geq 2\sigma$ (F_o²) and all of the atoms were refined with anisotropic thermal parameters. The structures of α - and β -SrCdB₂O₅ were checked for missing symmetry elements with *PLATON*.¹⁰ The crystal data and structure refinement are presented in Table 1. The atomic coordinates, related anisotropic displacement parameters, the bond valence calculations¹¹ for all atoms and selected bond lengths (Å) and angles (deg.) are summarized in Tables S1–S3 in the SI.

Table 1. Crystal data and structure refinement for $Pb_{0.4}Sr_{0.6}CdB_2O_5$, α - and β -SrCdB₂O₅.

Formula	α -SrCdB ₂ O ₅	β -SrCdB ₂ O ₅	Pb _{0.4} Sr _{0.6} CdB ₂ O ₅	
fw	301.64	301.64	349.48	
Crystal	Orthorhombic	Monoclinic	Monoclinic	
system				
Space group	Pbca	C2/c	C2/c	
Z	8	8	8	
a (Å)	11.9454(19)	7.6343(8)	7.597(14)	
b (Å)	5.7798(9)	10.1827(10)	10.280(18)	
<i>c</i> (Å)	12.698(2)	11.1385(12)	11.28(2)	
β (deg)	90	99.228(7)	98.96(2)	
$V(Å^3)$	876.7(2)	854.68(15)	870(3)	
ρ (calcd)	4.571	4.688	5.289	
(Mg/m^3)				
<i>F</i> (000)	1088	1088	1220	
$\mu (\text{mm}^{-1})$	16.933	17.369	17.023	
θ (deg.)	3.21-35.08	3.36-34.97	3.36-27.45	
Index range	$-19 \le h \le 19$	$-11 \le h \le 12$	$-9 \le h \le 9$	
	$-9 \le k \le 9$	$-16 \le k \le 16$	$-12 \le k \le 13$	
	$-19 \le l \le 20$	$-17 \le l \le 17$	$-14 \le l \le 10$	
$R_{\rm int}$	0.0703	0.0564	0.0394	
Completeness	99.1 %	99.2 %	98.7 %	
to θ				
R_l/wR_2 (I >	0.0366/0.0995	0.0268/0.0478	0.0249/ 0.0512	
$2\sigma(I))^{[a]}$				
R_1/wR_2 (all	0.0553/0.1077	0.0436/0.0521	0.0283/ 0.0526	
data) ^[a]				
GOF on F ²	1.131	1.045	1.048	
Largest diff.	2.864 and	1.374 and	1.167 and	
peak and hole	-2.654	-1.016	-1.158	
(e Å ⁻³)				
$[a]$ R ₁ - $\Sigma \mathbf{F} _{-} \mathbf{F} / \Sigma \mathbf{F} $ and \mathbf{w} R ₂ - $[\Sigma w (\mathbf{F}^2 - \mathbf{F}^2)^2 / \Sigma w \mathbf{F}^4 ^{1/2}$ for				

$$F_{o}^{2} > 2\sigma(F_{o}^{2})$$

Powder X-ray Diffraction

Powder X-ray diffraction (XRD) analysis of α - and β -SrCdB₂O₅ were performed at room temperature in the angular range of 10° < 2θ < 70° with a scan step width of 0.02° and fixed counting time of 1 s/step with a Bruker D2 PHASER diffractometer equipped with a diffracted beam monochromator set for Cu K α radiation (λ = 1.5418 Å). Powder XRD data of Pb_xSr_{1-x}CdB₂O₅ (x = 0.125, 0.25, 0.375, 0.5) were also obtained at room temperature using the Bruker D2 PHASER diffracted beam monochromator set for Cu K α radiation (λ = 1.5418 Å). The powder XRD patterns were analyzed using the Rietveld method with the Jana2006 program.¹² The structural refinements of the solid

solutions were performed in the space group C2/c (No. 15) with a starting model using the single crystal data of β -SrCdB₂O₅. We did not observe any crystallographic ordering between the Pb²⁺ and Sr²⁺ cations. Therefore, for Pb_xSr_{1-x}CdB₂O₅ (x = 0.125, 0.25, 0.375, 0.5), the Pb²⁺ and Sr²⁺ were statistically disordered over the two unique Sr²⁺ sites in β -SrCdB₂O₅. By doing so, the resulting formulae are in good agreement with the stoichiometry (see the Powder XRD patterns). The crystallographic data and refinement results for Pb_xSr_{1-x}CdB₂O₅ (x = 0.125, 0.25, 0.375, 0.5) are summarized in Table 2.

Thermal Analysis

Thermal analysis of α -SrCdB₂O₅ was carried out on a simultaneous NETZSCH STA 449C thermal analyzer instrument with a heating rate of 5 °C/min. The measurement range extended from 35 to 1000 °C in an atmosphere of flowing N₂.

IR Spectroscopy

The IR absorption spectrum was recorded on a Shimadzu IR Affinity-1 Fourier transform IR spectrometer to analyze the presence of functional groups in β -SrCdB₂O₅. The sample was mixed thoroughly with dried KBr (1 mg of the sample, 100 mg of KBr). The spectrum was collected in the range from 400 to 4000 cm⁻¹ with a resolution of 2 cm⁻¹.

UV-Vis-NIR Diffuse Reflectance Spectrum

UV-Vis-NIR diffuse reflectance spectrum of β -SrCdB₂O₅ was measured at room temperature with a Shimadzu SolidSpec-3700DUV spectrophotometer. Data were collected in the wavelength range 190–2600 nm. And the reflectance spectrum was converted to absorbance with the Kubelka–Munk function.¹³

Numerical Calculation Details

The electronic structure of β -SrCdB₂O₅ was calculated using the *ab initio* density functional theory (DFT) method implemented in the CASTEP package.¹⁴ The Perdew-Burke-Emzerhoff (PBE) functional within the generalized gradient approximation (GGA) was employed for exchange-correlation potential.¹⁵ Plane-wave cutoff for a norm-conserving pseudopotential is 750 eV. The Monkhorst–Pack grid¹⁶ was set by 2 × 2 × 1 in the Brillouinzone of the unit cell. Norm-conserving pseudopotentials (NCP) was employed.¹⁷

Results and discussion

Crystals of α - and β -SrCdB₂O₅ were synthesized by spontaneous crystallization with the flux method in the SrO-CdO-B₂O₃ system. Their crystal data and structure refinement are listed in Table 1. a-SrCdB₂O₅ has been reported before.¹⁸ α - and β -SrCdB₂O₅ crystallize in orthorhombic space group *Pbca* and monoclinic space group C2/c, respectively. Both of them can be described as different Sr-O layers that stack one over another and the Cd and B atoms are located between adjacent layers, forming the final crystal structures, as shown in Figure S1 in the SI. Detailedly, both of the α - and β -SrCdB₂O₅ structures are built up of SrO₈, CdO₆ and isolated B₂O₅ groups. The theoretical density of α - and β -SrCdB₂O₅ are 4.571 and 4.688 Mg/m³, respectively. The experimental density which were measured by pycnometer method are 4.2(1) and 4.5(1) Mg/m³, respectively. In spite of a obvious difference between experimental value and theoretical value, the measurement result still can prove that the density of β -SrCdB₂O₅ is larger than that of α -SrCdB₂O₅. In order to investigate the unusual density phenomenon, we should pay particular attention to the structure chemistry of α - and β -SrCdB₂O₅

to find their similarity, difference and relationship. Firstly, the

isolated B₂O₅ groups in them have different dihedral angles (59.4(2)° in α -SrCdB₂O₅ and 42.7(2)° in β -SrCdB₂O₅), as shown in Figure 1. Meanwhile, the distortions of SrO₈ and CdO₆ polyhedra in α - and β -SrCdB₂O₅ are distinct revealed by the magnitudes of dipole moments (Table S4 in the SI). Furthermore,

Figure 1. The isolated B₂O₅ groups in α -SrCdB₂O₅ (a) and β -SrCdB₂O₅ (b).

Figure 2. The structures of (a) α -SrCdB₂O₅ and (b) β -SrCdB₂O₅. The boron atoms are removed for clarity.

Figure 3. The Sr-O layer in (a) α -SrCdB₂O₅ and (b) β -SrCdB₂O₅. The terminal oxygen atoms are removed for clarity.

the most significant difference between α - and β -SrCdB₂O₅ is the Sr-O layer, as shown in Figure 2. There are four-membered [Sr₄O₄] rings on *ac* plane in α -SrCdB₂O₅ while six-membered [Sr₆O₆] rings in β -SrCdB₂O₅, as shown in Figure 3. However, though the [Sr-O] rings are different between them, the [Sr₆O₆] rings in β -SrCdB₂O₅ could be derived from the [Sr₄O₄] rings in α -SrCdB₂O₅ by splitting the O5 atoms into two oxygen atoms. Moreover, the Sr-O layer is

planar in β -SrCdB₂O₅ while buckled in α -SrCdB₂O₅, as shown in Figure 2. We deem that the different dihedral angles of B₂O₅ groups in α - and β -SrCdB₂O₅ result in different Sr-O layers and crystal structures. As shown in Figure 2, the distance between the Sr-O layers in α -SrCdB₂O₅ (6.329 Å) is longer than that in β -SrCdB₂O₅ (5.497 Å). This is the direct reason why α -SrCdB₂O₅ possesses a smaller density than β -SrCdB₂O₅.

Figure 4. Powder XRD patterns showing the influence of reaction temperature on polymorph transformation of SrCdB₂O₅.

Table 2. Summary of the crystallographic data and refinement results for $Pb_xSr_{1-x}CdB_2O_5$ (x = 0.125, 0.25, 0.375, 0.5).

105 a 105 101 1 0 101 1 0 203 (0 011 20, 0120, 010) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
х	<i>x</i> = 0.125	<i>x</i> = 0.25	x = 0.375	<i>x</i> = 0.5		
fw	316.59	331.55	346.49	361.44		
Space	C2/c	C2/c	C2/c	C2/c		
group						
a (Å)	7.61871(14)	7.59760(16)	7.57839(16)	7.5552(3)		
b (Å)	10.1893(2)	10.2002(2)	10.2213(2)	10.2370(5)		
c (Å)	11.1634(2)	11.1885(2)	11.2313(3)	11.2710(5)		
β (deg)	99.1688(11)	99.1163(12)	99.1016(12)	99.0988(14)		
$V(Å^3)$	855.53(3)	856.13(3)	859.04(3)	860.76(7)		
$R_{\rm p}$	0.0332	0.0303	0.0367	0.0308		
$Rw_{\rm p}$	0.0452	0.0424	0.0479	0.0435		
-						

To gain insight into the phase transition of SrCdB₂O₅, the following experiments and measurements were carried out. (1) Polycrystalline samples of β -SrCdB₂O₅ were synthesized by traditional solid-state reaction techniques at different reaction temperatures (710-920 °C) to observe the phase transformation. The phase purity of the resultant solid was confirmed by powder XRD. When the temperature was higher than 740 °C, pure β -SrCdB₂O₅ phase was obtained, and the powder XRD patterns between 710-740 °C are shown in Figure 4. When the temperature was 710 °C, the powder XRD pattern suggests that it is pure α -SrCdB₂O₅ phase. Afterwards, the polycrystalline samples which were synthesized at 720 and 730 °C were a mixture of α - and β -SrCdB₂O₅. When the temperature was raised to 920 °C, the powders melted. According to the result of solid-state reactions, the phase transformation occurred between 710-740 °C. (2) The TG-DSC of pure α -SrCdB₂O₅ phase was then measured (Figure S2 in the SI). The DSC curve exhibits only one obvious endothermic peak at 921 °C upon heating to 1000 °C. There is no weight loss on the TG curve. This result reaffirms that 921 °C is the melting temperature which is consistent with our results of the powder XRD patterns. Furthermore, the powder samples of β -SrCdB₂O₅ after melting have been characterized by the powder XRD. Firstly, we prepared two samples of β -SrCdB₂O₅, namely Samples 1 and 2. Afterwards, different cooling rates were adopted after the

Samples 1 and 2 melt at 1000 °C for 10 h. For Sample 1, the temperature was decreased from 1000 to 800 °C at a rate of 2 °C/h, and allowed to cool to room temperature after the furnace was turned off. Powder XRD of Sample 1 revealed that the product is mainly β -SrCdB₂O₅ (Figure S3 in the SI). For Sample 2, the melted β -SrCdB₂O₅ powder was directly quenched in ice-water mixture. Powder XRD pattern of Sample 2 revealed that the main product is a new phase mixed with some Sr₂B₂O₅. Subsequently, the new phase was identified as a new polymorph of Cd₂B₂O₅. The characterization of the new Cd₂B₂O₅ phase is underway and will be published elsewhere.

Figure 5. Profile fit to the powder XRD patterns of $Pb_xSr_{1-x}CdB_2O_5$ (x = 0.125, 0.25, 0.375, 0.5). The symbol • represents the observed value, solid line represents the calculated value; the marks below the diffraction patterns are the calculated reflection positions, and the difference curve is shown at the bottom of the figure.

Figure 6. Variation of the lattice parameters as a function of the lead occupancy for $Pb_xSr_{1-x}CdB_2O_5$ (x = 0.125, 0.25, 0.375, 0.5) in the *a*-axis (a), the *b*-axis (b), the *c*-axis (c), and the volume (d).

Furthermore, the total electronic energy calculation was performed for both compounds. As shown in Table S5 in the SI, the calculation based on experimental crystallographic data gives a slightly lower total energy for the high-temperature phase, confirming β -SrCdB₂O₅ is energetically more favoured. The difference between the two polymorphs is about 2.124 kJ/mol. Therefore, we speculated that the Pb²⁺-doped compounds, Pb_xSr_{1-x}CdB₂O₅, may prefer to adopt the structure type of β -SrCdB₂O₅ rather than α -SrCdB₂O₅. Inspired by this viewpoint, we substituted the Sr²⁺ cation for Pb²⁺ up to x = 0.5successfully to form Pb_{0.125}Sr_{0.875}CdB₂O₅, Pb_{0.25}Sr_{0.75}CdB₂O₅,

Pb_{0.375}Sr_{0.625}CdB₂O₅ and Pb_{0.5}Sr_{0.5}CdB₂O₅ in this work. The structures of Pb²⁺-doped compounds were refined with the Rietveld method (Jana2006).¹² The final refinement yielded Rp and Rwp within a reasonable value range. Figure 5 shows the profile fit of the diffraction pattern and the crystallographic data are given in Table 2. As can be seen in Figure 6, the cell volume of Pb_xSr_{1-x}CdB₂O₅ increases with an increasing amount of Pb^{2+} on the Sr^{2+} sites. However, the unit cell changes are anisotropic: while the refined unit cell parameters a continuously decrease, those of b and c slightly increase (see Figure 6 and Table 2). When *x* is higher than 0.5, it can not keep the kind of crystal structure of β -SrCdB₂O₅ due to the Pb²⁺ volume effect. Moreover, we also obtained the single crystal of Pb_{0.4}Sr_{0.6}CdB₂O₅ (see Table 1). As to the reason why Pb²⁺-doped compound, Pb_xSr_{1-x}CdB₂O₅, can adopt the structure of hightemperature phase, Wang's empirical formula¹⁹ gives us some enlightenments:

$$\rho = -0.480 \log |\Delta x| + 0.240 (\pm 0.030) \quad \rho = (Z_M^* e^2 / R_M) / (Z_M^* e^2 / R_M)$$

Here, *x*, M, M' and $Z^* e^{2}/R$ represent electronegativity, the Sr²⁺ cation, the Pb²⁺ cation, and effective ionic potential, respectively. The Sr²⁺ and Pb²⁺ cations can meet the requirements of this empirical formula. The result of this experiment suggests that β -SrCdB₂O₅ may be more stable than α -SrCdB₂O₅ and Pb²⁺-doped can affect the stability of β -SrCdB₂O₅.

IR absorption spectrum for β -SrCdB₂O₅ was measured and the result is presented in Figure S4 in the SI. Referring to the literatures,²⁰ the peaks at 1381, 1215 and 1124 cm⁻¹ can be assigned to the asymmetric stretching vibrations of BO₃, while the peaks located at 978 and 804 cm⁻¹ are likely to be from the symmetric stretching vibrations of BO₃. The peaks at 744, 696, 611 and 482 cm⁻¹ are attributed to bending vibrations. IR spectrum indicates that only BO₃ groups are included in β -SrCdB₂O₅.

The UV-Vis-NIR diffuse reflectance spectrum for β -SrCdB₂O₅ is deposited in Figure S5 in the SI. Absorption (K/S) data were calculated from the following Kubelka-Munk function¹³: $F(R) = \frac{(1-R)^2}{R} = \frac{K}{R}$

2R S R represents the reflectance, K the absorption, and S the scattering factor. The minimum in the second-derivative curves of the Kubelka–Munk function are taken as the maximum of the absorption bands. We can observe that the absorption edge of β -SrCdB₂O₅ is at about 311 nm (i.e. 3.98 eV).

To gain further insights on the electronic structures and optical properties of β -SrCdB₂O₅, theoretical calculations based on DFT methods were performed.¹⁵ The band structure of β -SrCdB₂O₅ is shown in Figure S6 in the SI. It can be seen that β -SrCdB₂O₅ is a direct gap crystal with the value 3.81 eV at G point which is consistent with the experimental value (3.98 eV) well. The total and partial densities of states (DOS and PDOS) are shown in Figure S7 in the SI. The wide region spanning over -20 to -14 eV is from kernel orbitals. One can see that the top of the VB and the bottom of the CB are mainly from the basic boron–oxygen and Cd–O structural units which indicate that the linear optical effects are primarily due to B-O and Cd–O groups.

Conclusion

In summary, an unusual phenomenon that the density of hightemperature phase (β -SrCdB₂O₅) is obviously larger than that of the low-temperature phase (α -SrCdB₂O₅) has been investigated in detail. In the view of structure chemistry, we explain the reasons of this density phenomenon. We think that the different dihedral angles of B₂O₅ groups in α - and β -SrCdB₂O₅ result in different Sr-O layers and crystal structures. The direct reason why α -SrCdB₂O₅ possesses a smaller density than β -SrCdB₂O₅ is that the distance between the Sr-O layers in α -SrCdB₂O₅ (6.329 Å) is longer than that in β -SrCdB₂O₅ (5.497 Å). The phase transformation between α - and β -SrCdB₂O₅ was investigated by traditional solid-state reaction techniques and TG-DSC measurement. Furthermore, the comparison of total electronic energy between α - and β -SrCdB₂O₅ motivated us to substitute the Sr²⁺ cation for Pb²⁺ up to x = 0.5 successfully and the results suggest that Pb²⁺-doped can affect the stability of the high-temperature polymorph of SrCdB₂O₅. In addition, first-principles electronic structure calculation shows that the calculated band gap of β -SrCdB₂O₅ is in good agreement with the experimental one estimated from UV-Vis-NIR absorption spectrum.

Acknowledgements

This work is supported by the "Western Light Foundation" Program of Chinese Academy of Sciences (Grant No. XBBS201214), the "National Natural Science Foundation of China" (Grant Nos. U1303392, 51425206, U1129301), 973 Program of China (Grant No. 2014CB648400), the Xinjiang International Science & Technology Cooperation Program (20146001), the Funds for Creative Cross & Cooperation Teams of CAS, the Special Fund for Xinjiang Key Laboratories (Grant No. 2014KL009).

Notes and references

^{*a*} Key Laboratory of Functional Materials and Devices for Special Environments of CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices; Xinjiang Technical Institute of Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi 830011, China. E-mail: <u>wuhp@ms.xjb.ac.cn</u> (Hongping Wu); <u>slpan@ms.xjb.ac.cn</u> (Shilie Pan)

^b University of Chinese Academy of Sciences, Beijing 100049, China.

Fax: (86)-991-3838957; Tel: (86)-991-3674558.

^c College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

† Electronic Supplementary Information (ESI) available: CSD-428209 for β-SrCdB₂O₅ Crystal data (CIF file); Checkcif; Atomic coordinates, related anisotropic displacement parameters, the bond valence calculation for all atoms; selected bond lengths (Å) and angles (deg.) for α- and β-SrCdB₂O₅; the magnitudes of dipole moments and total energy calculated for α- and β-SrCdB₂O₅; TG-DSC curves of α-SrCdB₂O₅; calculated XRD patterns and the before and after melting XRD patterns of β-SrCdB₂O₅; the IR spectrum, the UV-Vis-NIR diffuse reflectance spectrum, the band structure and the total and partial densities of states for β-SrCdB₂O₅. See DOI: 10.1039/b000000x/

- J. J. Zhang, Z. H. Zhang, W. G. Zhang, Q. X. Zheng, Sun Y. X., C. Q. Zhang, X. T. Tao, *Chem. Mater.* 2011, 23, 3752; W. G. Zhang, X. T. Tao, C. Q. Zhang, H. J. Zhang, M. H. Jiang, *Cryst. Growth Des.* 2009. 9, 263.
- K. M. Ok, P. S. Halasyamani, *Angew.Chem. Int. Ed.* 2004, **43**, 5489; K. M. Ok, P. S. Halasyamani, *Inorg. Chem.* 2005, **44**, 9353.
- 3 S. R. Vippagunta, H. G. Brittain, D. J. W. Grant, *Adv. Drug. Delivery. Rev.* 2001, 48, 3; H. G. Brittain, *J. Pharm. Sci.* 2007, 96, 705.
- 4 C. T. Chen, Y. C. Wu, A. D. Jiang, B. C. Wu, G. M. You, *Sci. Sin. B* 1985, **28**, 235.
- 5 S. F. Wu, G. F. Wang, J. L. Xie, X. Q. Wu, Y. F. Zhang, X. Lin, J. Cryst. Growth 2002, 245, 84.
- 6 M. He, H. Okudera, A. Simon, J. Kohler, S. F. Jin, X. L. Chen, J. Solid State Chem. 2013, 197, 466.

- 7 SAINT-Plus, version 6.02A; Bruker Analytical X-ray Instruments, Inc.: Madison, WI, 2000.
- 8 G. M. Sheldrick, SHELXTL, version 6.14; Bruker Analytical X-ray Instruments, Inc.: Madison, WI, 2003.
- 9 G. M. Sheldrick, SHELXS-97, Program for X-ray Crystal Structure Solution; University of Göttingen: Göttingen, Germany, 1997.
- 10 A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7.
- N.E. Brese, M. Okeeffe, *Acta Crystallogr.* B 1991, **47**, 192; I. D. Brown, D. Altermatt, *Acta Crystallogr.* B 1985, **41**, 244.
- 12 V. Petricek, M. Dusek, Palatinus L. Jana2006 Program, 2006.
- 13 P. Kubelka, F. Z. Munk, Tech. Phys. 1931, 12, 593; J. Tauc, Mater. Res. Bull. 1970, 5, 721.
- 14 S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, M. C. Payne, Z. Kristallogr. 2005, 220, 567.
- 15 D. M. Ceperley, B. J. Alder, *Phys. Rev. Lett.* 1980, **45**, 566; J. P. Perdew, A. Zunger, *Phys. Rev. B* 1981, **23**, 5048.
- 16 H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
- M. H. Lee, Ph.D. Thesis, The University of Cambridge, 1996; J. Lin, A. Qteish, M. Payne and V. Heine, *Phys. Rev. B* 1993, **47**, 4174; A. M. Rappe, K. M. Rabe, E. Kaxiras, J. D. Joannopoulos, *Phys. Rev. B* 1990, **41**, 1227.
- 18 J. Cao, J. Y. Gao, S. L. Pan, H. W. Yu, W. W. Zhao, Z. H. Yang, *Inorg. Chim. Acta* 2012, **392**, 459.
- 19 G. F. Wang, J. Inorg. Mater. (Chinese) 1991, 6, 326.
- Y. Yang, S. L. Pan, J. Han, X. L. Hou, Z. X. Zhou, W. W. Zhao, Z. H. Chen, M. Zhang, *Cryst. Growth Des.* 2011, **11**, 3912; L. Wang, S. L. Pan, L. X. Chang, J. Y. Hu, H. W. Yu, *Inorg. Chem.* 2012, **51** 1852; Y. J. Wang, S. L. Pan, X. L. Tian, Z. X. Zhou, G. Liu, J. Wang, D. Z. Jia, *Inorg. Chem.* 2009, **48**, 7800.

Graphical Abstract

An unusual density evolution between SrCdB₂O₅ polymorphs

A new SrCdB₂O₅ phase (β - SrCdB₂O₅) has been discovered and an unusual phenomenon that the density of high-temperature phase (β -SrCdB₂O₅) is obviously larger than that of the low-temperature phase (α -SrCdB₂O₅) has been investigated in detail. Furthermore, the Pb²⁺-doped compounds, Pb_xSr_{1-x}CdB₂O₅ (x = 0.125, 0.25, 0.375, 0.5), have also been investigated by powder refinement.