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Turning a “useless” ligand into a “useful” ligand: a 
magneto-structural study of an unusual family of CuII 
wheels derived from functionalised phenolic oximes 

Jamie M. Frost,a Robert J. Stirling,a Sergio Sanz,a Nidhi Vyas,b                             
Gary S. Nichol,a Gopalan Rajaramanb* and Euan K. Brechina*  

While the phenolic oximes (R-saoH2) are well known for producing monometallic complexes of the type 
[MII(R-saoH)2] with CuII ions in near quantitative yield, their derivatisation opens the door to much more 
varied and interesting coordination chemistry. Here we show that combining the complimentary 
diethanolamine and phenolic oxime moieties into one organic framework (H4L1 and H4L2) allows for the 
preparation and isolation of an unusual family of [CuII]n wheels, including saddle-shaped, single-
stranded [CuII

8] wheels of general formula [Cu8(HL1)4(X)4]
n[Y] (when n = 0, X = Cl−, NO3

−, AcO−, N3
−; 

when n = 2+ X = (OAc)2/(2,2’-bpy)2 and Y = [BF4]2) and [Cu8(HL2)4(X)4] (X = Cl−, Br−), a rectangular 
[Cu6(HL1)4] wheel, and a heterometallic [Cu4Na2(HL1)2(H2L1)2] hexagon. Magnetic studies show very 
strong antiferromagnetic exchange between neighbouring metal ions, leading to diamagnetic ground 
states in all cases. DFT studies reveal that the magnitude of the exchange constants are correlated to the 
Cu-N-O-Cu dihedral angles, which in turn are correlated to the planarity/puckering of the [CuII]n rings.  

Introduction 

          In the early days of molecular magnetism low nuclearity 
complexes containing CuII ions were the focus of intense research 
effort by synthetic chemists and theoreticians.1-5 The ease of 
synthesis of new compounds permitted the facile preparation of 
families of related molecules, providing simple (s = ½) model 
systems with which to test emerging theories and propose new 
experiments.1 In 1952 Bleaney and Bowers published a study of the 
magnetic properties of copper (II) acetate monohydrate,2 and some 
twenty three years later Hatfield and Hodgson published a magneto-
structural correlation (MSC) demonstrating the linear relationship 
between the strength of the magnetic exchange interaction, J, and the 
Cu-O-Cu bridging angle in an extended family of bis(μ-
hydroxido)copper(II) dimers.3,4 The first pre-designed construction 
of a molecule containing ferromagnetically coupled metal ions then 
followed in 1978 with the molecule [CuVO(fsa)2en] (where 
(fsa)2en4- is the bi-chelating ligand derived from the Schiff-base 
bis(2’-hydroxy-3’-carboxybenzilidene)-1,2-diaminoethane) in which 
the magnetic orbitals on the constituent metal ions were rigorously 
orthogonal.5  The modern era has seen researchers turning their 
attention to increasingly more complex systems to examine, for 
example, spin frustration effects in Archimedean and Platonic solids 
such as CuII cuboctahedra,6 and spin-electric coupling in 
antiferromagnetic [CuII

3] triangles resulting from the interplay 
between exchange, spin-orbit coupling and spin chirality.7  

 

 

Figure  1  The  pre‐organisation  of  phenolic  oximes  for  the  formation  of                       

[CuII(R‐saoH)2] species. 

In the sixty or so years since the initial magnetic study of 
[Cu(OAc)2·H2O]2 numerous different ligand types have been 
employed to construct molecules containing multiple CuII ions.8 
However, one ligand type which can be almost entirely excluded 
from this list are the phenolic oximes (R-saoH2), since they have 
been shown to have an overwhelming propensity to form 
mononuclear complexes of the type [Cu(R-saoH)2] in near 
quantitative yields.9 Indeed their remarkable selectivity for copper in 
the 2+ oxidation state has been exploited in industrial 
hydrometallurgy, with almost a quarter of the world’s copper 
production involving salicylaldoxime-based ligands.9 This peculiar 
selectivity can be ascribed to the tendency of the ligands to form 
hydrogen bonded head-to-tail dimers mediated via intermolecular 
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interactions between the oximic hydrogen atom on one unit and the 
phenolic oxygen atom of its neighbour (Figure 1). The resulting 
pseudo-macrocylcic cavity facilitates metal complexation, and 
selectivity for CuII arises from the goodness-of-fit of this metal 
cation with the cavity.10  

Given the above, it is perhaps unsurprising that a search of the CSD 
reveals that there is only one example of a polymetallic CuII cage 
containing two or more metal ions stabilised solely by phenolic 
oximes.11 The complex, [Cu6(L3-2H)3(μ3-O)(μ3-OH)](PF6)3, 
describes two [CuII

3O] triangles linked by three “double-headed” 
phenolic oximes, and forms when the ligand : metal ratio employed 
in the reaction mixture is low; i.e. when the metal ions are present in 
excess.11 Perhaps the historical observation of a lack of variety in the 
coordination chemistry of CuII with phenolic oximes has prevented 
others from investigating the chemistry further, but the formation of 
the hexametallic CuII

6 species is clear evidence that more interesting 
structures remain undiscovered. Indeed the [CuII

3O(oxime)3] 
triangles of the hexametallic cage are entirely analogous to the 
building blocks previously observed for MnIII, FeIII and CrIII; all of 
which present more varied and more interesting structural and 
physical chemistry.12 In order to address this “misperception” and to 
prove that polymetallic cages of CuII can be built with this ligand 
type, we have adopted a synthetic approach which has already 
proven successful in Mn chemistry.13 While both salicylaldoxime 
and diethanolamine have very limited track records in CuII chemistry 
(a CSD search for the latter also returns only monometallic 
complexes) their combination into one single organic structural 
framework has the potential to transform the coordination abilities of 
both. Herein we show that this complimentary ligand approach to 
constructing novel polymetallic cluster compounds works rather 
well, by presenting the synthesis, structures and magnetic behaviour 
of a large and unusual family of CuII-based wheels constructed using 
the pro-ligands H4L1 and H4L2 (Figure 2). 

 
Figure  2  Generalised  molecular  structure  of  the  pro‐ligands  H4L1  (R  =  Me)                    

and H4L2 (R = Et).   

Experimental 

Materials and physical measurements 

All manipulations were performed under aerobic conditions 
using materials as received (reagent grade). The ligand H4L1 
{1-(3-((bis(2-hydroxyethyl)amino)methyl)-2-hydroxy-5-
methyl) phenyl)ethanone oxime} was synthesised according to 
published procedures.13a The synthesis of H4L2 {1-(3-((bis(2-

hydroxyethyl)amino)methyl)-2-hydroxy-5-methyl) 
propiophenoneoxime} was achieved by adapting the literature 
preparation of H4L1 (see the ESI for full details). Variable 
temperature, solid-state direct current (dc) magnetic 
susceptibility data down to 4.5 K were collected on a Quantum 
Design MPMS-XL SQUID magnetometer equipped with a 7 T 
dc magnet. Diamagnetic corrections were applied to the 
observed paramagnetic susceptibilities using Pascal’s constants. 

Synthesis 

[Cu8(HL1)4(Cl)4] (1): CuCl2·2H2O (85.24 mg, 0.5 mmol) and 
H4L1 (140 mg, 0.5 mmol) were dissolved in a solvent mixture        
of MeOH/MeCN (1:1, 25 mL). After 5 minutes of stirring, NEt3 
(0.3 mL, 2.1 mmol) was added and the solution stirred for a 
further 3 h. Large green, block-like X-ray quality crystals were 
subsequently obtained by slow diffusion of  diethyl ether into 
the filtered mother liquor, over a period of 7 days. Elemental 
analysis (%) calculated (found) for 1: C 38.06 (37.98), H 4.57 
(4.36), N 6.12 (5.91)                                                                                       
 
[Cu8(HL1)4(NO3)4] (2): Cu(NO3)2·3H2O (121 mg, 0.5 mmol) 
and H4L1 (140 mg, 0.5 mmol) were dissolved in a solvent 
mixture of MeOH/MeCN (1:1, 25 mL). After 5 minutes of 
stirring, NEt3 (0.3 mL, 2.1 mmol) was added and the solution 
stirred for a further 3 h. Green, block-like X-ray quality crystals                  
were subsequently obtained by slow diffusion of THF into the 
filtered mother liquor, over a period of 10 days. Elemental 
analysis (%) calculated (found) for dried 2: C 37.13 (36.99), H 
4.23 (3.98), N 8.50 (8.41)                                                                               
 
[Cu8(HL1)4(OAc)4] (3): Cu(OAc)2·H2O (90.54 mg, 0.5 mmol), 
H4L1 (140 mg, 0.5 mmol) were dissolved in a solvent mixture 
of MeOH/MeCN (1:1, 25 mL). After 5 minutes of stirring, NEt3 
(0.3 mL, 2.1mmol) was added and the solution stirred for a 
further 3 h. Green, block-like X-ray quality crystals                  
were subsequently obtained by slow diffusion of  diethyl ether 
into the filtered mother liquor, over a period of 7 days. 
Elemental analysis (%) calculated (found) for dried 3: C 40.99 
(40.87), H 5.38 (4.94), N 5.54 (5.11)           
 
[Cu8(HL1)4(OAc)2(2,2’-bpy)2](BF4)2 (4): A mixture of 
Cu(BF4)2 (118.6 mg, 0.5 mmol), CH3COOH (0.30 mg, 0.5 
mmol) H4L1 (140 mg, 0.5 mmol) and 2,2’-bipyridine (78.09 
mg, 0.5 mmol) were dissolved in a solvent mixture of  
MeOH/MeCN (1:1, 25 mL). After 5 minutes of stirring, NEt3 
(0.3 mL, 2.1 mmol) was added and the solution stirred for a 
further 3 hours. Green, block-like X-ray quality crystals                  
were subsequently obtained by slow diffusion of  diethyl ether 
into the filtered mother liquor, over a period of 7 days. 
Elemental analysis (%) calculated (found) for dried 4: C 44.21 
(44.16), H 5.32 (5.24), N 6.87 (6.80)  
 
[Cu8(HL1)4(N3)4] (5): Cu(NO3)2·3H2O (60 mg, 0.25 mmol), 
H4L1 (70 mg, 0.25 mmol) and KN3 (40 mg, 0.5 mmol) were 
dissolved in a solvent mixture of MeOH/MeCN (1:1, 25 mL). 
After 5 minutes of stirring NEt3 (0.15 mL, 1.05 mmol) was 
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been identified as potential candidates for quantum information 
processing.29  

 
Figure 7 Summarising the effect changes in CuX2 starting material has on product 

formation with H4L1/2  

Magnetochemistry 

DC magnetic susceptibility 
 
Dc magnetic susceptibility measurements were collected for 
complexes 1, 2, 8 and 9, in the T = 300 – 5 K temperature range in 
an applied field of B = 0.1 T. The data are plotted in Figure 8 as the 
χMT versus T products. Complexes 1 and 2 are representative 
examples of the two structurally different Cu8 wheels, with 8 and 9 
being the Cu6 and Cu4Na2 wheels, respectively. The data for all four 
complexes is rather similar – showing a rapid decrease in χMT with 
decreasing temperature, indicative of the presence of very strong 
antiferromagnetic interactions between neighbouring CuII ions, 
resulting in diamagnetic ground states (at T = 110-220 K) in all 
cases. We have used the programme ITO-MAGFIT30 which makes 
use of irreducible tensor operator algebra31 to block-diaganolise the 
spin-Hamiltonian in order to model the experimental data. In all 
cases the g-values of the Cu(II) ions were fixed to g = 2.2. The 
resulting best-fit curves obtained in this way are shown as solid 
black lines in Figure 8 with the corresponding best-fit parameters 
listed in Table 1. A schematic of the models employed is shown in 
Figure 9. For the Cu8 clusters best-fit J-values reveal that the 
exchange through the Cu-O/NO-Cu bridge is very large and negative 
(J1 = -457 and -302 cm-1 for 1 and 2 respectively), with the exchange 
through the Cu-O-Cu bridge also antiferromagnetic but smaller in 
magnitude (J2 = -20.1 and -38.9 cm-1 for 1 and 2 respectively). The 
differences can be correlated to subtle differences in structure: a) the 
Cu-O-N-Cu dihedral angles are flatter in 1 (~19, 20, 21, 25o) than in 

2 (~23, 23, 24, 24o); b) the Cu-O-Cu angles in 1 are typically larger 
than 2 (~115-118o versus 110-118o). The former would be expected 
to make J2 larger in 1, and the latter make J1 larger in 2, as observed. 
For complex 8, the best fit of the experimental data is afforded by a 
3J model, accounting for the single alkoxide bridge (J1) and the two 
NO/O bridges which display markedly different bridging angles 
(48.17, 37.47; J2 and J3). The best fit parameters obtained were J1 = -
107, J2 = -239 and J3 = -260 cm-1. This fit however is not unique and 
we were able to obtain several satisfactory fits using a 2J model (See 
Table 1). Nevertheless, the parameters of the 3J best fit are 
consistent with those obtained for 1 and 2 in which J(O/NO) > J(O) 
and with the larger torsion angle mediating weaker antiferromagnetic 
exchange. Complex 9 describes a wheel comprising two simple, 
non-interacting Cu(II) dimers in which we assume negligible 
interaction through the Cu-Na-Cu bridge. This model affords a best 
fit J2 = -271 cm-1. The exchange is again antiferromagnetic in nature, 
but somewhat larger than observed for 1, 2 and 8. A literature search 
reveals only three examples of dimers which feature Cu-O/NO-Cu 
moieties, but on which no magnetic studies have been reported.32 
There are several examples of polymetallic Cu systems featuring Cu-
O/NO-Cu bridging motifs,33 and all show the interaction to be 
strongly antiferromagnetic. The magnitude of the exchange 
interaction in purely alkoxo-bridged Cu(II) dimers varies 
enormously and is dependent on the Cu-O-Cu angle, but in general 
they tend to be  strongly antiferromagnetic with J lying in the region 
-200 to -1000 cm-1.34

 A similar pattern is seen in purely oximato 
bridged Cu(II) dimers, where J ranges from -361 cm-1 to -880 cm-1,35 
although in the vast majority of cases J appears to lie in the region -
600 to -800 cm-1. In order to investigate the origin and magnitude of 
the exchange interactions seen in complexes 1, 2, 8 and 9 further we 
have turned to theory, and now discuss a computational DFT study. 

 
Figure  8  The  magnetic  susceptibility  data,  as χMT,  versus  T  at  B  =  0.1T  for 
complexes 1 (red), 2 (green), 8 (blue) and 9 (magenta). The solid black  lines are 

fits of the experimental data. The best  fit 3J model  is shown  for 8. See text  for 

details. 
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