Dalton Transactions

Accepted Manuscript

5

Dalton Transactions

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Two types of novel tetra-iron substituted sandwich-type arsenotungastates with supporting lanthanide pendants

Lijuan Chen, Fang Zhang, Xing Ma, Jie Luo,* and Junwei Zhao*
Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX ${ }_{5}$ DOI: 10.1039/b000000x

Two classes of novel tetra-iron substituted sandwich-type arsenotungastates (ATs) with supporting lanthanide (Ln) pendants KNa_{2} $\left[\mathrm{Ln}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\right]\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}\left(\mathrm{~B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right] \cdot 21 \mathrm{H}_{2} \mathrm{O}\left[\mathrm{Ln}=\mathrm{La}^{\text {III }}(\mathbf{1}), \mathrm{Pr}^{\text {III }}(\mathbf{2}), \mathrm{Nd}^{\text {III }}(\mathbf{3}), \mathrm{Sm}^{\text {III }}(\mathbf{4})\right]$ and $\left[\operatorname{Ln}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{2}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}(\mathrm{~L}-\mathrm{thr})_{2}(\mathrm{~B}-\beta-\right.$ $\left.\left.\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right] \cdot 20 \mathrm{H}_{2} \mathrm{O}\left[\mathrm{Ln}=\operatorname{La}^{\text {III }}(\mathbf{5}), \operatorname{Pr}^{\text {III }}(\mathbf{6}), \mathrm{Nd}^{2 \mathrm{II}}(7), \operatorname{Sm}^{\text {III }}(\mathbf{8}), \mathrm{Eu}^{\text {III }}(\mathbf{9}), \operatorname{Gd}^{\text {III }}(\mathbf{1 0}), \mathrm{Tb}^{\text {III }}(\mathbf{1 1}), \operatorname{Dy}^{\text {III }}(\mathbf{1 2}), \mathrm{Er}^{\text {III }}(\mathbf{1 3})\right]$ (L-thr = L-threonine) have been synthesized by the hydrothermal reaction of the $\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{14-}$ precursor with Fe^{3+} cations and Ln^{3+} cations in the presence 10 of L-thr or L-leucine and L-alanine and further characterized by elemental analyses, IR spectra and single-crystal X-ray diffraction. Structural analyses indicate that $\mathbf{1 - 4}$ display the inorganic 2-D sheet architecture constructed from tetra-iron sandwiched AT $\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}\left(\mathrm{~B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right]^{6-}$ fragments by bridging $\left[\mathrm{Ln}_{\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\right]^{3+} \text { cations whereas the molecular structures of the isostructural 5-13 }}\right.$ consist of an organic-inorganic hybrid tetra-iron substituted sandwich-type AT $\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}(\mathrm{~L}-\mathrm{thr})_{2}\left(\mathrm{~B}-\beta-\mathrm{AsW} \mathrm{V}_{9} \mathrm{O}_{33}\right)_{2}\right]^{6-}$ fragment and two pendant $\left[\mathrm{Ln}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]^{3+}$ cations. As far as we know, 1-4 represent the rare inorganic 2-D extended ATs based on transition-metal ${ }_{15}$ substituted sandwich-type polyoxometalate units and Ln linkers and 5-13 are the first $\mathrm{Fe}-\mathrm{Ln}$ heterometallic ATs with aminoacid ligands. The solid state photoluminescence (PL) measurements of $\mathbf{9}$ and $\mathbf{1 1}$ have been performed at room temperature. The PL emission of $\mathbf{9}$ is mainly derived from the characteristic ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{2}(\mathrm{~J}=4-0)$ transitions of the $\mathrm{Eu}^{\text {III }}$ cations whereas the PL behavior of $\mathbf{1 1}$ stems from the common contribution of the ${ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{\mathrm{J}}(\mathrm{J}=5-3)$ transitions of $\mathrm{Tb}^{\text {III }}$ ions and oxygen-to-metal $(\mathrm{O} \rightarrow \mathrm{W})$ charge-transfer transitions of AT segments. The thermogravimetric (TG) analyses of 1-4 and 6-12 have been investigated.

${ }_{20}$ Introduction

Although the class of polyoxometalates (POMs) has been known for about 200 years, intense and profound research on this field is still full of great challenge for synthetic chemists. ${ }^{1}$ It is well known that the oxygen-rich surface activity of lacunary POMs ${ }_{25}$ recommends them to function as benign inorganic multi-dentate synthons to integrate oxophile transition-metal (TM) or Ln cations, constructing a great variety of novel TM or Ln substituted POMs with potential functionalities in various fields such as catalysis, magnetism, medicine, photochemistry and ${ }_{30}$ materials science. ${ }^{2}$ Thereby, using prefabricated POM precursors to react with TM or Ln cations under different conditions has developed as the most useful assembly strategy in the design and synthesis of novel composite materials such as TM substituted POMs (TMSPs) and Ln substituted POMs (LSPs) that bear both
${ }_{35}$ features of POM and TM/Ln components. In the past two decades, the wide use of this assembly strategy directly has resulted in a mass of TMSPs and LSPs with interesting structures and properties such as sandwich-type $\left[\left(\alpha-\mathrm{XW}_{9} \mathrm{O}_{33}\right)_{2} \mathrm{M}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]^{\mathrm{n}-}(n=$ $\left.12, \mathrm{X}=\mathrm{As}^{\mathrm{W}}, \mathrm{Sb}^{\amalg}, \mathrm{M}=\mathrm{Cu}^{\mathrm{I}}, \mathrm{Zn}^{\mathrm{II}} ; n=10, \mathrm{X}=\mathrm{Se}^{\mathrm{IV}}, \mathrm{Te}^{\mathrm{IV}}, \mathrm{M}=\mathrm{Cu}^{\mathrm{II}}\right){ }^{3 \mathrm{a}}$
40 crown-shaped $\left[\mathrm{K} \subset\left\{\mathrm{Eu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\alpha-\mathrm{AsW}_{9} \mathrm{O}_{33}\right)\right\} 6\right]^{35-}$ and $[\mathrm{Cs} \subset\{\mathrm{Eu}$ $\left.\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\alpha-\mathrm{AsW}_{9} \mathrm{O}_{33}\right)\right\}_{4}\right]^{23-3 \mathrm{~b}} \quad$ tetrameric $\quad\left[\mathrm{H}_{56} \mathrm{Fe}_{28} \mathrm{P}_{8} \mathrm{~W}_{48} \mathrm{O}_{248}\right]^{28-3 \mathrm{c}}$ wheel-shaped $\left[\mathrm{Cu}_{20} \mathrm{Cl}(\mathrm{OH})_{24}\left(\mathrm{H}_{2} \mathrm{O}\right)_{12}\left(\mathrm{P}_{8} \mathrm{~W}_{48} \mathrm{O}_{184}\right)\right]^{25-3 \mathrm{~d}}$ planar $\left\{\mathrm{Mn}_{19}\right.$ $\left.(\mathrm{OH})_{12}\right\}^{26+}$ incorporated $\left[\mathrm{Mn}_{19}(\mathrm{OH})_{12}\left(\mathrm{SiW}_{10} \mathrm{O}_{37}\right)_{6}\right]^{34-},{ }^{3 \mathrm{ec}} \mathrm{Ce}_{16}$-containing $\left[\mathrm{As}_{12} \mathrm{Ce}_{16} \mathrm{~W}_{148} \mathrm{O}_{524}\left(\mathrm{H}_{2} \mathrm{O}\right)_{36}\right]^{76-3 f}$, ${ }^{\text {d }}$ decameric $\left[\mathrm{Ce}_{20} \mathrm{Ge}_{10} \mathrm{~W}_{100} \mathrm{O}_{376}(\mathrm{OH})_{4}\right.$
$\left.{ }_{45}\left(\mathrm{H}_{2} \mathrm{O}\right)_{30}\right]^{56-3 g}$, gadolinium-bridged $\left[\mathrm{Gd}_{8} \mathrm{As}_{12} \mathrm{~W}_{124} \mathrm{O}_{432}\left(\mathrm{H}_{2} \mathrm{O}\right)_{36}\right]^{60-3 h}$, saddle-shaped $\left[\mathrm{H}_{34} \mathrm{~W}_{119} \mathrm{Se}_{8} \mathrm{Fe}_{2} \mathrm{O}_{42}\right]^{54-}$, ${ }^{3 \mathrm{i}} \lambda$-shaped $\left[\mathrm{H}_{4} \mathrm{CoWO}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right.$
$\left.\left.\left(\mathrm{Se}_{2} \mathrm{~W}_{26} \mathrm{O}_{85}\right)\left(\mathrm{Se}_{2} \mathrm{~W}_{30} \mathrm{O}_{107}\right)\right)_{2}\right]^{40-3 \mathrm{j}}$ and Zr_{24}-cluster-substituted $\left[\mathrm{Zr}_{24} \mathrm{O}_{22}\right.$ $(\mathrm{OH})_{10}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{~W}_{2} \mathrm{O}_{10} \mathrm{H}_{2}\left(\mathrm{GeW}_{9} \mathrm{O}_{34}\right)_{4}\left(\mathrm{GeW}_{8} \mathrm{O}_{31}\right)_{2}\right]^{32-3 \mathrm{k}}$.

In the field of POM chemistry, arsenotungstates (ATs) are a ${ }_{50}$ crucial subclass bearing enormous variety and fascinating properties and have received increasing attraction in the past several decades. ${ }^{4}$ In recent years, increasing research has been concentrated on the preparation and exploitation of novel $\mathrm{As}^{\text {III }}$ containing ATs since the lone pair of electrons on the $\mathrm{As}^{\text {II }}$ ${ }_{55}$ heteroatom does not allow the closed Keggin unit to form, which leads to some unique structures such as $\left[\mathrm{Ce}_{2} \mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{WO}\left(\mathrm{H}_{2} \mathrm{O}\right)\right.$ $\left.\left(\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right]_{2}{ }^{16-4 \mathrm{bb}}\left[\mathrm{As}_{12} \mathrm{Ce}_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{36} \mathrm{~W}_{148} \mathrm{O}_{524}\right]^{76-4 \mathrm{c}},{ }^{[}\left[\mathrm{Sn}_{(}\left(\mathrm{CH}_{3}\right)_{2}\right.$ $\left.\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right\}_{3}\left(\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right)\right]^{3-5}$, ${ }^{3}$ and $\left[\mathrm{H}_{4}\left\{\mathrm{Cu}_{9} \mathrm{As}_{6} \mathrm{O}_{15}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right\}(\alpha-\right.$ $\left.\left.\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right]^{8-5 \mathrm{~b}}$ However, investigations on reactions of the ${ }_{60}\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{14-}$ synthon as the starting material with TM or Ln cations remain less developed albeit the $\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{14-}$ precursor was discovered by Tourné et al. in 1973. ${ }^{6 a}$ Until 2001, the structure of $\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{14-}$ was determined by Kortz et al. by means of single-crystal X-ray diffraction technique, ${ }_{65}$ meantime, it was used as the precursor to generate a chairconformation AT $\left[\mathrm{As}_{6} \mathrm{~W}_{65} \mathrm{O}_{217}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\right]^{26-}$ (Fig. 1a) by virtue of controlling the pH value of the solution of $\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{14-6 \mathrm{~b}}$. Subsequently, bis-phenyltin-sandwiched $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Sn}_{2} \mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{8-}\right.$ (Fig. 1b) ${ }^{4 \mathrm{a}}$ monopalladium(II)-substituted $\left[\mathrm{Na}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{PdWO}\left(\mathrm{H}_{2} \mathrm{O}\right)(\alpha-\right.$ $\left.\left.{ }_{70} \mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right]^{10-}$ (Fig. 1c), ${ }^{6 \mathrm{c}}$ and dititanium-containing $\left[\mathrm{Ti}_{2}(\mathrm{OH})_{2} \mathrm{As}_{2} \mathrm{~W}_{19}\right.$ $\left.\mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{8-}\left(\right.$ Fig. 1d) ${ }^{6 \mathrm{~d}}$ were successively obtained by Kortz's group. In 2007 and 2008, Wang et al respectively reported a dimeric AT decorated by $3 \mathrm{~d}-4 \mathrm{f}$ heterometallic ions $\left\{\mathrm{La}^{2}\left[\mathrm{As}_{2} \mathrm{~W}_{20} \mathrm{CuO}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]\right\}^{3-}$ (Fig. 1e) ${ }^{6 \mathrm{e}}$ and a novel high-nuclear $\left\{\left(\mathrm{W}_{4} \mathrm{O}_{9}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right\}$-encapsulated AT ${ }_{75}$ aggregate $\left[\left\{\left(\mathrm{W}_{4} \mathrm{O}_{9}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right\}\left\{\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}_{2}\right]^{22-}$ (Fig. 1f). ${ }^{6 f}$ In 2010,

Kortz and co-workers addressed a mono- $\mathrm{Y}^{\mathrm{III}}$-containing derivative of 19-tungsto-2-arsenate $\quad\left[\mathrm{Yb}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{~K}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{10-} \quad$ (Fig. $1 \mathrm{~g}) .{ }^{6 \mathrm{~g}}$ In 2010-2012, Boskovic et al. synthesized a family of polynuclear Ln substituted ATs $\left[\mathrm{Nd}_{3} \mathrm{As}_{4} \mathrm{~W}_{41} \mathrm{O}_{141} \mathrm{OH}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}\right]^{16-}$ (Fig. $51 \mathrm{~h}),{ }^{6 \mathrm{~h}} \quad\left[\mathrm{Dy}_{4} \mathrm{As}_{2} \mathrm{~W}_{22} \mathrm{O}_{76}\left(\mathrm{H}_{2} \mathrm{O}\right)_{19}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}_{2}\right)_{2}\right]^{2-},{ }^{6 \mathrm{~h}} \quad\left[\mathrm{Ln}_{4} \mathrm{As}_{5} \mathrm{~W}_{40} \mathrm{O}_{144}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}(\mathrm{gly})_{2}\right]^{21-}\left(\mathrm{Ln}=\mathrm{Gd}^{\text {III }}, \mathrm{Tb}^{\text {III }}, \mathrm{Dy}^{\text {III }}, \mathrm{Ho}^{\text {III }}, \mathrm{Y}^{\text {III }}\right)$ (Fig. 1i) ${ }^{6 \mathrm{i}}$ $\left[\mathrm{Tb}_{8}(\text { pic })_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{22}\left(\mathrm{~B}-\beta-\mathrm{AsW}_{8} \mathrm{O}_{30}\right)_{4}\left(\mathrm{WO}_{2}(\text { pic })\right)_{6}\right]^{12-} \quad$ (Fig. 1 j$),{ }^{6 \mathrm{j}, \mathrm{k}}$ $\left[\mathrm{Eu}_{8}(\text { pic })_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{22}\left(\mathrm{~B}-\beta-\mathrm{AsW}_{8} \mathrm{O}_{30}\right)_{4}\left(\mathrm{WO}_{2}(\mathrm{pic})\right)_{6}\right]^{12-6 \mathrm{k}}$ and $\left[\mathrm{Tb}_{2}\right.$ (pic) $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{~B}-\beta-\mathrm{AsW}_{8} \mathrm{O}_{30}\right)_{2}\left(\mathrm{WO}_{2}(\text { pic })\right)_{3}\right]^{10-}$ (Fig. 1k) ${ }^{6 \mathrm{j}, \mathrm{k}}$ by controlling 10 the pH value of the $\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{14-}$ and Ln system in the conventional aqueous solution and deeply probed the single-molecule magnet behavior of $\left[\mathrm{Dy}_{4} \mathrm{As}_{5} \mathrm{~W}_{40} \mathrm{O}_{144}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}(\mathrm{gly})_{2}\right]^{21-6 \mathrm{i}}$, and the sensitization of lanthanoid luminescence by organic and inorganic ligands in $\left[\mathrm{Tb}_{8}(\text { pic })_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{22}\left(\mathrm{~B}-\beta-\mathrm{AsW}_{8} \mathrm{O}_{30}\right)_{4}\left(\mathrm{WO}_{2}(\mathrm{pic})\right)_{6}\right]^{12-6 \mathrm{j}}$ and ${ }_{15}\left[\mathrm{Eu}_{8}(\mathrm{pic})_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{22}\left(\mathrm{~B}-\beta-\mathrm{AsW}_{8} \mathrm{O}_{30}\right)_{4}\left(\mathrm{WO}_{2}(\mathrm{pic})\right)_{6}\right]^{12-6 \mathrm{k}}$ In 2014, Han et al. communicated an organic-inorganic AT hybrid [$\left.\mathrm{Ni}(\text { phen })_{3}\right]_{4}$ $\left[\mathrm{As}_{2} \mathrm{~W}_{18} \mathrm{O}_{60}\right]\left\{\left[\mathrm{Ni}(\text { phen })_{2}\right]\left[\mathrm{H}_{2} \mathrm{As}_{2} \mathrm{~W}_{18} \mathrm{O}_{60}\right]\right\} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ (Fig. 11) by means of the hydrothermal reaction technique. ${ }^{61}$ However, investigations on the system containing divacant $\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{14}$ precursor, ${ }_{20} \mathrm{TM}$ and Ln cations are sporadic, ${ }^{6 \mathrm{e}}$ which provides us great interest and an excellent opportunity.

Fig. 1 The relevant ATs prepared by the $\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{14-}$ precursor.

Recently, the designed synthesis and intensive exploration of 25 novel hybrid materials through the modification of POMs by heterometal components has become an emerging field for the significance of discovering new materials with latent applications in bimetallic catalysis and magnetism as well as their intriguing architectures and topologies. ${ }^{7}$ Although some phosphotungstate, ${ }_{30}$ germanotungstate and silicontungstate-based TM-Ln heterometallic derivatives (TLHDs) have been reported, ${ }^{8}$ AT-based TLHDs remain largely unexplored. ${ }^{9}$ In 2004, the first class of AT-based TLHDs
$\left[\mathrm{Ln}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left\{\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}_{2} \mathrm{As}_{4} \mathrm{~W}_{40} \mathrm{O}_{140}\right]^{21-} .\left(\mathrm{Ln}=\mathrm{Y}^{\text {III }}, \mathrm{Ce}^{\text {III }}, \operatorname{Pr}^{\text {III }}, \mathrm{Nd}^{\text {III }}\right.$, $\left.\mathrm{Sm}^{\text {III }}, \mathrm{Eu}^{\text {III }}, \mathrm{Gd}^{\text {III }}\right)$ were isolated by the reaction of $\left[\mathrm{As}_{4} \mathrm{~W}_{40} \mathrm{O}_{140}\right]^{28-}$ 35 with Ni^{2+} and Ln^{3+} ions $\mathrm{pH}=4.5$ by Xue et al. ${ }^{9 \mathrm{a}}$ In 2007 , Müller and co-workers made a sandwich-type AT-based TLHD [((VO) $)_{2} \mathrm{Dy}$ $\left.\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{~K}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right)\left(\alpha-\mathrm{B}-\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right]^{8-}$ from the self-assembly of $\mathrm{Na}_{2} \mathrm{WO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{As}_{2} \mathrm{O}_{3}, \mathrm{VOSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{DyCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. ${ }^{9 \mathrm{~b}}$ In 2008, Wang's group synthesized a cryptand-shaped $\left[\mathrm{K} \subset\left\{\mathrm{FeCe}\left(\mathrm{AsW}_{10} \mathrm{O}_{38}\right)\right.\right.$ $\left.\left.{ }_{40}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right\}_{3}\right]^{14-}$ using a simple one-pot procedure. ${ }^{9}$ In 2012, we prepared four types of 1-D or 2-D organic-inorganic hybrids assembled by ATs and $\mathrm{Cu}^{\text {III }}-\mathrm{Ln}^{\text {IIIIV }}$ heterometals by the hydrothermal reaction of the $\left[\mathrm{A}-\alpha-\mathrm{AsW}_{9} \mathrm{O}_{34}\right]^{9-}$ precursor with copper and Ln cations in the presence of organoamines. ${ }^{9 \mathrm{~d}}$ In the past year, we ${ }_{45}$ extended our study from the As^{V}-containing system to from the As ${ }^{\text {III }}$-containing system and utilized $\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{14}$ as the precursor to react with TM and Ln cations in the presence of aminoacid ligands to construct novel AT-based TLHDs based on the fact that this precursor can transform to $\left[\mathrm{B}-\alpha-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]^{9-}$ (Fig. ${ }_{50} 2 \mathrm{a}$), ${ }^{4 \mathrm{a}, 6 \mathrm{~b}-6 \mathrm{~d}} \quad\left[\mathrm{~B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]^{9-}$ (Fig. 2d), ${ }^{6 \mathrm{~b}} \quad\left[\mathrm{~B}-\beta-\mathrm{AsW}_{8} \mathrm{O}_{30}\right]^{9-}$ (Fig. 2c), ${ }^{6 \mathrm{~h}, 6 \mathrm{j}, 6 \mathrm{k}}\left[\mathrm{As}_{2} \mathrm{~W}_{18} \mathrm{O}_{60}\right]^{6-}$ (Fig. 2d), ${ }^{61}$ and $\left[\mathrm{As}_{2} \mathrm{~W}_{21} \mathrm{O}_{69}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{6-}$ (Fig. 2e) ${ }^{10}$ fragments in the reaction process and aminoacid ligands have flexible carboxyl and amino coordination sites and allow various coordination modes. On the base of these considerations, we obtained 55 two kinds of novel tetra- $\mathrm{Fe}^{\text {III }}$ sandwiched ATs with supporting Ln pendants $\quad \mathrm{KNa}_{2}\left[\operatorname{Ln}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\right]\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}\left(\mathrm{~B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right] \cdot 21 \mathrm{H}_{2} \mathrm{O}$ $\left[\operatorname{Ln}=\operatorname{La}^{\text {III }}(\mathbf{1}), \operatorname{Pr}^{\text {III }}\right.$ (2), $\mathrm{Nd}^{\text {III }}(\mathbf{3}), \operatorname{Sm}^{\text {III }}$ (4) $]$ and $\left[\operatorname{Ln}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{2}\left[\mathrm{Fe}_{4}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}(\mathrm{~L}-\mathrm{thr})_{2}\left(\mathrm{~B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right] \cdot 20 \mathrm{H}_{2} \mathrm{O} \quad\left[\mathrm{Ln}=\mathrm{La}^{\text {III }} \quad\right.$ (5), $\operatorname{Pr}^{\text {III }}(\mathbf{6})$, $\operatorname{Nd}^{\text {III }}$ (7), $\left.\operatorname{Sm}^{\text {III }}(\mathbf{8}), \operatorname{Eu}^{\text {III }}(9), \operatorname{Gd}^{\text {III }}(\mathbf{1 0}), \mathrm{Tb}^{\text {III }}(11), \mathrm{Dy}^{\text {III }}(12), \operatorname{Er}^{\text {III }}(\mathbf{1 3})\right]$
${ }_{60}$ (L-thr = L-threonine). Notably, 1-4 stand for the scarce inorganic 2-D extended ATs based on sandwich-type TMSP units and Ln linkers while 5-13 are on behalf of the first $\mathrm{Fe}-\mathrm{Ln}$ heterometallic ATs with aminoacid ligands.

${ }_{65}$ Fig. 2 The different AT fragments derived from the transformation of the $\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{14}$ precursor.

Experimental

Materials and physical measurements

The precursor $\mathrm{K}_{14}\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ was synthesized according to the published procedure by Kortz et al., ${ }^{6 b}$ and the purity was s confirmed by IR spectroscopy. All other reagents were of at least analytical grade without further purification. C, H and N analyses were performed on a Perkin-Elmer 2400-II CHNS/O analyzer. Inductively coupled plasma atomic emission spectrometry (ICPAES) was carried out on a Perkin-Elmer Optima 2000 ICP-AES 10 spectrometer. IR spectra were recorded on a Nicolet 170 SXFT-IR spectrometer in a KBr pellet in the range $400-4000 \mathrm{~cm}^{-1}$. TG analyses were performed under a N_{2} atmosphere on a Mettler-Toledo TGA/SDTA 851^{e} instrument with a heating rate of $10^{\circ} \mathrm{C} \cdot \mathrm{min}^{-1}$ from 25 to $800^{\circ} \mathrm{C}$. PL spectra and lifetime were recorded using a FLS 980
${ }_{15}$ Edinburgh analytical instrument furnished by a 450 W xenon lamp and a $\mu \mathrm{F} 900 \mathrm{H}$ high-energy microsecond flash lamp as the excitation sources.

Preparations of 1-11

$\mathbf{K N a}_{2}\left\{\mathbf{L a}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathbf{1 0}}\left(\mathbf{B}-\boldsymbol{\beta}-\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right]\right\} \cdot \mathbf{2 1 \mathrm { H } _ { 2 } \mathrm { O }} \quad$ (1). ${ }_{20} \mathrm{~K}_{14}\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right](0.264 \mathrm{~g}, 0.050 \mathrm{mmol}), \mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.108 \mathrm{~g}$, $0.399 \mathrm{mmol}), \mathrm{LaCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.077 \mathrm{~g}, 0.217 \mathrm{mmol})$, L-leucine (0.056 $\mathrm{g}, 0.427 \mathrm{mmol})$, L-alanine ($0.046 \mathrm{~g}, 0.517 \mathrm{mmol}$) and $\mathrm{NaCl}(0.105 \mathrm{~g}$, 179.7 mmol) were successively added to 7 mL of water under stirring ($\mathrm{pH}=2.19$). The resulting suspension mixture was continuously
${ }_{25}$ stirred for 3 h , transferred to a 25 mL Teflon-lined steel autoclave, heated at $100{ }^{\circ} \mathrm{C}$ for 5 days and then cooled to room temperature. Eventually, light yellow virgate crystals of 1 were obtained by filtering, washed with distilled water and then dried at room temperature. Yield: $c a .18 \%$ (based on $\mathrm{K}_{14}\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$). Anal.
${ }_{30}$ calcd. (Found \%) for $\mathrm{H}_{76} \mathrm{As}_{2} \mathrm{Fe}_{4} \mathrm{KNa}_{2} \mathrm{LaO}_{104} \mathrm{~W}_{18}$ (1): H 1.36 (1.48), Na 0.81 (0.70), K 0.69 (0.81), Fe 3.96 (3.89), La 2.46 (2.60), W 58.60 (59.51). IR (KBr, cm^{-1}): 3407 (s , 1633 (s$), 1459$ (m), 1395 (m), 1354 (m), 960 (s), 881 (s), 802 (vs), 662 ((s), 519 (m), 479 (w), 418 (w) (Fig. S1).
$\mathrm{KNa}_{2}\left\{\operatorname{Pr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}\left(\mathrm{~B}-\boldsymbol{\beta}-\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right\}\right\} \cdot \mathbf{2 1 H}_{\mathbf{2}} \mathrm{O} \quad$ (2). ${ }_{35} \mathrm{~K}_{14}\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right](0.264 \mathrm{~g}, 0.050 \mathrm{mmol}), \mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.108 \mathrm{~g}$, $0.399 \mathrm{mmol}), \operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.075 \mathrm{~g}, 0.172 \mathrm{mmol})$, L-leucine $(0.058 \mathrm{~g}, 0.443 \mathrm{mmol})$, L-alanine $(0.046 \mathrm{~g}, 0.517 \mathrm{mmol})$ and NaCl $(0.105 \mathrm{~g}, 179.7 \mathrm{mmol})$ were successively added to 7 mL of water under stirring ($\mathrm{pH}=2.17$). The resulting suspension mixture was
${ }_{40}$ continuously stirred for 3 h , transferred to a 25 mL Teflon-lined steel autoclave, heated at $100^{\circ} \mathrm{C}$ for 5 days and then cooled to room temperature. Eventually, light yellow virgate crystals of 2 were obtained by filtering, washed with distilled water and then dried at room temperature. Yield: $c a .25 \%$ (based on $\mathrm{K}_{14}\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$).
${ }_{45}$ Anal. calcd. (Found \%) for $\mathrm{H}_{76} \mathrm{As}_{2} \mathrm{Fe}_{4} \mathrm{KNa}_{2} \mathrm{PrO}_{104} \mathrm{~W}_{18}$ (2): H 1.36 (1.52), Na 0.81 (0.66), K 0.69 (0.88), Fe 3.95 (4.19), Pr 2.49 (2.65), W 58.58 (59.47). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3422 (s), 1633 (s$), 1466$ (m), 1388 (m), $1354(\mathrm{~m}), 963(\mathrm{~s}), 885(\mathrm{~s}), 815(\mathrm{vs}), 659(\mathrm{~s}), 521(\mathrm{~m}), 476(\mathrm{w}), 420(\mathrm{w})$ (Fig. S1).
${ }_{50} \quad \mathbf{K N a}_{2}\left\{\mathbf{N d}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathbf{1 0}}\left(\mathbf{B}-\boldsymbol{\beta}-\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right]\right\} \cdot \mathbf{2 1 H}_{2} \mathrm{O} \quad$ (3). $\mathrm{K}_{14}\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right](0.264 \mathrm{~g}, 0.050 \mathrm{mmol}), \mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.108 \mathrm{~g}$, $0.399 \mathrm{mmol}), \mathrm{NdCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.073 \mathrm{~g}, 0.204 \mathrm{mmol})$, L-leucine (0.058 $\mathrm{g}, 0.443 \mathrm{mmol})$, L-alanine ($0.046 \mathrm{~g}, 0.517 \mathrm{mmol}$) and $\mathrm{NaCl}(0.105 \mathrm{~g}$, 179.7 mmol) were successively added to 7 mL of water under stirring
${ }_{55}(\mathrm{pH}=2.21)$. The resulting suspension mixture was continuously stirred for 3 h , transferred to a 25 mL Teflon-lined steel autoclave, heated at $100{ }^{\circ} \mathrm{C}$ for 5 days and then cooled to room temperature. Eventually, light yellow virgate crystals of $\mathbf{3}$ were obtained by filtering, washed with distilled water and then dried at room ${ }_{60}$ temperature. Yield: $c a .20 \%$ (based on $\mathrm{K}_{14}\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$). Anal. calcd. (Found \%) for $\mathrm{H}_{76} \mathrm{As}_{2} \mathrm{Fe}_{4} \mathrm{KNa}_{2} \mathrm{NdO}_{104} \mathrm{~W}_{18}$ (3): H 1.36 (1.51), Na 0.81 (0.62), K 0.69 (0.91), Fe 3.95 (4.16), Nd 2.55 (2.68), W 58.56 (59.57). IR (KBr, cm^{-1}): 3411 (s$), 1627$ (s$), 1467(\mathrm{~m}), 1398(\mathrm{~m})$, 1352 (m), 968 (s), 883 (s$), 805$ (vs), 672 (s$), 512$ (m), 485 (w), 430 ${ }_{65}$ (w) (Fig. S1).
$\mathrm{KNa}_{2}\left\{\operatorname{Sm}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathbf{1 0}}\left(\mathrm{B}-\boldsymbol{\beta}-\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right]\right\} \cdot \mathbf{2 1 \mathrm { H } _ { 2 } \mathrm { O }}$ $\mathrm{K}_{14}\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right](0.264 \mathrm{~g}, 0.050 \mathrm{mmol}), \mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.106 \mathrm{~g}$, $0.392 \mathrm{mmol}), \mathrm{SmCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.077 \mathrm{~g}, 0.211 \mathrm{mmol})$, L-leucine (0.058 $\mathrm{g}, 0.443 \mathrm{mmol})$, L-alanine ($0.046 \mathrm{~g}, 0.517 \mathrm{mmol}$) and $\mathrm{NaCl}(0.105 \mathrm{~g}$, 70 179.7 mmol) were successively added to 7 mL of water under stirring ($\mathrm{pH}=2.21$). The resulting suspension mixture was continuously stirred for 3 h , transferred to a 25 mL Teflon-lined steel autoclave, heated at $100{ }^{\circ} \mathrm{C}$ for 5 days and then cooled to room temperature. Eventually, light yellow virgate crystals of 4 were obtained by 75 filtering, washed with distilled water and then dried at room temperature. Yield: ca. 23% (based on $\mathrm{K}_{14}\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$). Anal. calcd. (Found \%) for $\mathrm{H}_{76} \mathrm{As}_{2} \mathrm{Fe}_{4} \mathrm{KNa}_{2} \mathrm{SmO}_{104} \mathrm{~W}_{18}$ (4): H 1.35 (1.57), Na 0.81 (0.68), K 0.69 (0.88), Fe 3.95 (4.10), Sm 2.66 (2.78), W 58.48 (59.47). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3433 (s$), 1636(\mathrm{~s}), 1460(\mathrm{~m}), 1391(\mathrm{~m})$, 80 1353 (m), 960 (s$), 872$ (s), 812 (vs), 658 (s), 518 (m), 479 (w), 429 (w) (Fig. S1).
$\left[\mathrm{La}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{2}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}(\mathrm{~L}-\mathrm{thr})_{2}\right]\left[\mathrm{B}-\boldsymbol{\beta}-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]_{2} \cdot \mathbf{2 0 H}_{2} \mathrm{O} \quad$ (5). $\mathrm{K}_{14}\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right](0.263 \mathrm{~g}, 0.049 \mathrm{mmol}), \mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.103 \mathrm{~g}$, $0.381 \mathrm{mmol}), \mathrm{LaCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.072 \mathrm{~g}, 0.204 \mathrm{mmol})$ and L-thr $(0.053 \mathrm{~g}$, ${ }_{85} 0.445 \mathrm{mmol}$) were successively added to 7 mL of water under stirring and the pH value of the mixture was carefully adjusted with a dilute NaOH solution $\left(2 \mathrm{~mol} \cdot \mathrm{~L}^{-1}\right)$ to 2.24 . The resulting suspension mixture was continuously stirred for 3 h , sealed in a 25 mL Teflon-lined steel autoclave, kept at $100{ }^{\circ} \mathrm{C}$ for 5 days and then cooled to room ${ }_{90}$ temperature. Light yellow flaky crystals of 5 were obtained by filtering, washed with distilled water and then dried at room temperature. Yield: ca. $22 \% \mathrm{~K}_{14}\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$. Anal. calcd. (Found \%) for $\mathrm{C}_{8} \mathrm{H}_{106} \mathrm{As}_{2} \mathrm{La}_{2} \mathrm{Fe}_{4} \mathrm{~N}_{2} \mathrm{O}_{116} \mathrm{~W}_{18}(\mathbf{5})$: C 1.59 (1.81), H 1.77 (2.05), N 0.46 (0.68), Fe 3.69 (3.81), La 4.59 (4.83), W 54.72 (54.94). IR (KBr, $\left.{ }_{95} \mathrm{~cm}^{-1}\right): 3425(\mathrm{~s}), 1627(\mathrm{~s}), 1502(\mathrm{~m}), 1400(\mathrm{~m}), 1352(\mathrm{~m}), 961(\mathrm{~s}), 897$ (s), $811(\mathrm{vs}), 676(\mathrm{~s}), 514(\mathrm{~m}), 484(\mathrm{w}), 433(\mathrm{w})$ (Fig. S1).
$\left[\operatorname{Pr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{2}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}(\mathrm{~L}-\mathrm{thr})_{2}\right]\left[\mathrm{B}-\mathrm{\beta}-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]_{2} \cdot \mathbf{2 0 H}_{2} \mathrm{O} \quad$ (6). The synthetic procedure was identical to 5 , but we used $\mathrm{PrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ $(0.070 \mathrm{~g}, 0.197 \mathrm{mmol})$ instead of $\mathrm{LaCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Light yellow flaky 100 crystals were collected. Yield: $c a$. 21% (based on $\mathrm{K}_{14}\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$). Anal. calcd. (Found \%) for $\mathrm{C}_{8} \mathrm{H}_{106} \mathrm{As}_{2} \mathrm{Pr}_{2} \mathrm{Fe}_{4} \mathrm{~N}_{2} \mathrm{O}_{116} \mathrm{~W}_{18}(6)$: C 1.59 (1.83), H 1.77 (2.05), N 0.46 (0.69), Fe 3.69 (3.92), Pr 4.66 (4.87), W 59.69 (59.91). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3417 (s$), 1623$ (s), 1494 (m), 1388 (m), 1352 (m), 957 (s$), 893$ (s$), 807$ (vs), 672 (s$), 518(\mathrm{~m}), 480$ 105 (w), 433 (w) (Fig. S1).
$\left[\mathrm{Nd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8} \mathrm{l}_{2}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}(\mathrm{~L}-\mathrm{thr})_{2}\right]\left[\mathrm{B}-\boldsymbol{\beta}-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]_{2} \cdot \mathbf{2 0 H}_{2} \mathrm{O} \quad\right.$ (7). The synthetic procedure was identical to 5 , but we used $\mathrm{NdCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ $(0.075 \mathrm{~g}, 0.209 \mathrm{mmol})$ instead of $\mathrm{LaCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Light yellow flaky crystals were collected. Yield: ca. 23% (based on $\mathrm{K}_{14}\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\right.$ $\left.{ }_{110}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$). Anal. calcd. (Found \%) for $\mathrm{C}_{8} \mathrm{H}_{106} \mathrm{As}_{2} \mathrm{Nd}_{2} \mathrm{Fe}_{4} \mathrm{~N}_{2} \mathrm{O}_{116} \mathrm{~W}_{18}(7)$: C 1.59 (1.88), H 1.76 (2.02), N 0.46 (0.67), Fe 3.69 (3.91), Nd 4.76

Table 1 X-ray diffraction crystallographic data and structure refinements for 1-13.

	1	2	3	4	5	6
Empirical formula	$\mathrm{H}_{76} \mathrm{As}_{2} \mathrm{Fe}_{4} \mathrm{KNa}_{2}$	$\mathrm{C}_{8} \mathrm{H}_{106} \mathrm{As}_{2} \mathrm{La}_{2} \mathrm{Fe}_{4} \mathrm{~N}_{2}$	$\mathrm{C}_{8} \mathrm{H}_{106} \mathrm{As}_{2} \mathrm{Pr}_{2} \mathrm{Fe}_{4} \mathrm{~N}_{2}$			
	$\mathrm{LaO}_{104} \mathrm{~W}_{18}$	$\mathrm{PrO}_{104} \mathrm{~W}_{18}$	$\mathrm{NdO}_{104} \mathrm{~W}_{18}$	$\mathrm{SmO}_{104} \mathrm{~W}_{18}$	$\mathrm{O}_{116} \mathrm{~W}_{18}$	$\mathrm{O}_{116} \mathrm{~W}_{18}$
Formula weight	5647.14	5649.14	5652.29	5658.58	6047.31	6051.31
Crystal system	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic
Space group	$P-1$	$P-1$	$P-1$	$P-1$	$P-1$	$P-1$
a, \AA	12.650(10)	12.7027(13)	12.7021(14)	12.671(5)	12.6669(13)	12.6523(18)
b, Å	13.180(10)	13.2756(14)	13.2675(14)	13.247(5)	13.5788(13)	13.5456(19)
c, \AA	15.709(12)	15.6850(17)	15.6418(17)	15.610(6)	16.3488(17)	16.272(2)
α, deg	79.285(14)	78.960(2)	78.908(2)	78.699(6)	107.303(2)	107.169(2)
β, deg	89.130(15)	89.022(2)	88.859(2)	88.927(6)	99.720(2)	99.786(2)
γ, deg	65.290(12)	65.272(2)	65.171(2)	65.208(6)	96.736(2)	96.861(2)
V, \AA^{-3}	2332(3)	2352.2(4)	2342.2(4)	2326.6(16)	2604.0(5)	2582.7(6)
Z	1	1	1	1	1	1
μ, mm^{-1}	24.026	23.885	24.021	24.255	21.889	22.185
$F(000)$	2508	2510	2510	2513	2712	2716
$T, \mathrm{~K}$	296(2)	296(2)	296(2)	296(2)	296(2)	296(2)
Limiting indices	$-14 \leq h \leq 15$	$-15 \leq h \leq 15$				
	$-15 \leq k \leq 15$	$-16 \leq k \leq 8$	$-9 \leq k \leq 16$			
	$-18 \leq l \leq 16$	$-18 \leq l \leq 18$	$-18 \leq l \leq 13$	$-14 \leq l \leq 18$	$-18 \leq l \leq 19$	$-19 \leq l \leq 19$
No. of reflections collected	11198	11716	11222	11716	13131	12556
No. of independent reflections	7882	8104	7942	8031	8975	8830
$R_{\text {int }}$	0.0506	0.0359	0.0349	0.0403	0.0413	0.0416
Data / restrains / parameters	7882 / 133 / 582	8104 / $31 / 582$	7942 / 79 / 577	8031 / 7 / 582	8975 / 24 / 656	8830 / 79 / 656
GOFon F^{2}	1.039	1.025	1.067	1.020	1.005	1.023
Final R indices	$R_{1}=0.0738$	$R_{1}=0.0443$	$R_{1}=0.0599$	$R_{1}=0.0458$	$R_{1}=0.0483$	$R_{1}=0.0586$
[$1>2 \sigma(I)$]	$w R_{2}=0.2009$	$w R_{2}=0.1228$	$w R_{2}=0.1658$	$w R_{2}=0.1196$	$w R_{2}=0.1196$	$w R_{2}=0.1604$
R indices (all data)	$R_{1}=0.1072$	$R_{1}=0.0524$	$R_{1}=0.0737$	$R_{1}=0.0530$	$R_{1}=0.0563$	$R_{1}=0.0699$
	$w R_{2}=0.2301$	$w R_{2}=0.1281$	$w R_{2}=0.1738$	$w R_{2}=0.1242$	$w R_{2}=0.1238$	$w R_{2}=0.1682$
Largest diff. peak and hole, $\mathrm{e} \cdot \AA^{-3}$	3.940, -5.195	3.972, -2.459	3.960, -3.374	3.005, -2.694	2.138, -3.669	4.557, -4.440
7	8	9	10	11	12	13
$\mathrm{C}_{8} \mathrm{H}_{106} \mathrm{As}_{2} \mathrm{Nd}_{2} \mathrm{Fe}_{4} \mathrm{~N}_{2}$	$\mathrm{C}_{8} \mathrm{H}_{106} \mathrm{As}_{2} \mathrm{Sm}_{2} \mathrm{Fe}_{4}$	$\mathrm{C}_{8} \mathrm{H}_{106} \mathrm{As}_{2} \mathrm{Eu}_{2} \mathrm{Fe}_{4}$	$\mathrm{C}_{8} \mathrm{H}_{106} \mathrm{As}_{2} \mathrm{Gd}_{2} \mathrm{Fe}_{4}$	$\mathrm{C}_{8} \mathrm{H}_{106} \mathrm{As}_{2} \mathrm{~Tb}_{2} \mathrm{Fe}_{4}$	$\mathrm{C}_{8} \mathrm{H}_{106} \mathrm{As}_{2} \mathrm{Dy}_{2} \mathrm{Fe}_{4} \mathrm{~N}_{2}$	$\mathrm{C}_{8} \mathrm{H}_{106} \mathrm{As}_{2} \mathrm{Er}_{2} \mathrm{Fe}_{4} \mathrm{~N}_{2}$
$\mathrm{O}_{116} \mathrm{~W}_{18}$	$\mathrm{N}_{2} \mathrm{O}_{116} \mathrm{~W}_{18}$	$\mathrm{N}_{2} \mathrm{O}_{116} \mathrm{~W}_{18}$	$\mathrm{N}_{2} \mathrm{O}_{116} \mathrm{~W}_{18}$	$\mathrm{N}_{2} \mathrm{O}_{116} \mathrm{~W}_{18}$	$\mathrm{O}_{116} \mathrm{~W}_{18}$	$\mathrm{O}_{116} \mathrm{~W}_{18}$
6057.79	6070.19	6073.41	6083.99	6087.33	6094.49	6104.01
Triclinic						
$P-1$						
12.6668(10)	12.6577(16)	12.6292(14)	12.6230(7)	12.6063(13)	12.6307(11)	12.5799(9)
13.5691(11)	13.5693(17)	13.5134(15)	13.5118(8)	13.4464(14)	13.5293(11)	13.4462(10)
16.3027(13)	16.278(2)	16.1999(18)	16.1922(9)	16.0241(17)	16.1950(14)	16.0508(12)
107.1270(10)	107.165(2)	106.993(2)	106.7890(10)	106.473(2)	106.8530(10)	106.5070(10)
99.7630(10)	99.801(2)	99.753(2)	99.7550(10)	99.828(2)	99.7760(10)	99.7760(10)
96.8760(10)	96.896(2)	97.011(2)	97.1520(10)	97.290(2)	97.1530(10)	97.3250(10)
2595.8(4)	2588.9(6)	2562.3(5)	2561.4(3)	2522.0(5)	2565.5(4)	2520.2(3)
1	1	1	1	1	1	1
22.134	22.325	22.635	22.713	23.155	22.840	23.434
2717	2722	2724	2726	2728	2730	2734
296(2)	296(2)	296(2)	296(2)	296(2)	296(2)	296(2)
$-15 \leq h \leq 15$	$-15 \leq h \leq 14$	$-14 \leq h \leq 15$	$-14 \leq h \leq 15$	$-14 \leq h \leq 14$	$-14 \leq h \leq 15$	$-13 \leq h \leq 14$
$-16 \leq k \leq 12$	$-16 \leq k \leq 8$	$-16 \leq k \leq 15$	$-16 \leq k \leq 15$	$-11 \leq k \leq 15$	$-16 \leq k \leq 15$	$-15 \leq k \leq 15$
$-17 \leq l \leq 19$	$-17 \leq l \leq 19$	$-19 \leq l \leq 15$	$-19 \leq l \leq 10$	$-19 \leq l \leq 18$	$-19 \leq l \leq 14$	$-18 \leq l \leq 19$
13219	12546	12504	12855	12412	12802	12430
8997	8797	8691	8773	8575	8740	8566
0.0379	0.0453	0.0372	0.0379	0.0358	0.0328	0.0478
8997 / 73 / 655	8797 / 120 / 656	8691 / 186 / 651	8773 / $37 / 655$	8575 / 96 / 654	8740 /37 / 654	8566 /192 / 654
1.027	1.023	1.048	1.024	1.039	1.039	1.038
$R_{1}=0.0502$	$R_{1}=0.0602$	$R_{1}=0.0681$	$R_{1}=0.0507$	$R_{1}=0.0569$	$R_{1}=0.0489$	$R_{1}=0.0709$
$w R_{2}=0.1235$	$w R_{2}=0.1578$	$w R_{2}=0.1836$	$w R_{2}=0.1292$	$w R_{2}=0.1459$	$w R_{2}=0.1233$	$w R_{2}=0.1867$
$R_{1}=0.0572$	$R_{1}=0.0718$	$R_{1}=0.0739$	$R_{1}=0.0589$	$R_{1}=0.0641$	$R_{1}=0.0543$	$R_{1}=0.0778$
$w R_{2}=0.1273$	$w R_{2}=0.1656$	$w R_{2}=0.1890$	$w R_{2}=0.1341$	$w R_{2}=0.1507$	$w R_{2}=0.1265$	$w R_{2}=0.1932$
2.884, -3.923	4.027, -4.951	4.385, -5.703	2.473, -4.361	3.563, -5.720	2.647, -4.784	4.397, -5.990

(4.88), W 54.62 (54.84). IR (KBr, cm^{-1}): 3405 (s), 1633 (s), 1499 (m), 1398 (m), 1352 (m), 960 (s), 897 (s), 810 (vs), 685 (s), 524 (m), 485 (w), 426 (w) (Fig. S1).
$\left[\mathrm{Sm}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathbf{8}}\right]_{\mathbf{2}}\left[\mathrm{Fe}_{\mathbf{4}}\left(\mathrm{H}_{\mathbf{2}} \mathrm{O}\right)_{\mathbf{8}}(\mathrm{L}-\mathrm{thr})_{\mathbf{2}}\right]\left[\mathrm{B}-\boldsymbol{\beta}-\mathrm{AsW}_{\mathbf{9}} \mathrm{O}_{33}\right]_{\mathbf{2}} \cdot \mathbf{2 0 H}_{\mathbf{2}} \mathrm{O}$ (8). ${ }_{5}$ The synthetic procedure was identical to 5 , but we used $\mathrm{SmCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ $(0.074 \mathrm{~g}, 0.203 \mathrm{mmol})$ instead of $\mathrm{LaCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Light yellow flaky
crystals were collected. Yield: ca. 21% (based on $\mathrm{K}_{14}\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$). Anal. calcd. (Found \%) for $\mathrm{C}_{8} \mathrm{H}_{106} \mathrm{As}_{2} \mathrm{Sm}_{2} \mathrm{Fe}_{4} \mathrm{~N}_{2} \mathrm{O}_{116} \mathrm{~W}_{18}(\mathbf{8})$: C 1.58 (1.79), H 1.76 (2.03), N 0.46 (0.68), Fe 3.68 (3.89), Sm 4.95 (5.12), W 54.51 (54.72). IR (KBr, cm^{-1}): 3417 (s), 1625 (s), 1502 (m), 51386 (m), 1350 (m), 961 (s), 895 (s), 810 (vs), 677 (s), 514 (m), 480 (w), 432 (w) (Fig. S1).
$\left[\mathrm{Eu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{2}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}(\mathrm{~L}-\mathrm{thr})_{2}\right]\left[\mathrm{B}-\boldsymbol{\beta}-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]_{2} \cdot 20 \mathrm{H}_{2} \mathrm{O}$ (9). The synthetic procedure was identical to $\mathbf{5}$, but we used $\mathrm{Eu}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.096 \mathrm{~g}, 0.215 \mathrm{mmol})$ instead of $\mathrm{LaCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Light 10 yellow flaky crystals were separated. Yield: ca. 30% (based on $\mathrm{K}_{14}\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$). Anal. calcd. (Found \%) for $\mathrm{C}_{8} \mathrm{H}_{106} \mathrm{As}_{2} \mathrm{Eu}_{2} \mathrm{Fe}_{4}$ $\mathrm{N}_{2} \mathrm{O}_{116} \mathrm{~W}_{18}$ (9): C 1.58 (1.84), H 1.76 (2.01), N 0.46 (0.69), Fe 3.68 (3.87), Eu 5.00 (5.19), W 54.48 (54.71). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3409 (s), 1629 (s), 1502 (m), 1386 (m), 1359 (m), 961 (s), 897 (s), 802 (vs), ${ }_{15} 685$ (s), 522 (m), 478 (w), 433 (w) (Fig. S1).
$\left[\mathbf{G d}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{2}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}(\mathrm{~L}-\mathrm{thr})_{2}\right]\left[\mathrm{B}-\boldsymbol{\beta}-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]_{2} \cdot \mathbf{2 0 H}_{2} \mathrm{O}$ (10). $\mathbf{8}$ was prepared according to the method of $\mathbf{5}$, but $\mathrm{GdCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.076$ $\mathrm{g}, 0.204 \mathrm{mmol}$) was used instead of $\mathrm{LaCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Light yellow flaky crystals were afforded. Yield: ca. 25% (based on $\mathrm{K}_{14}\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\right.$
$\left.20\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$). Anal. calcd. (Found \%) for $\mathrm{C}_{8} \mathrm{H}_{106} \mathrm{As}_{2} \mathrm{Gd}_{2} \mathrm{Fe}_{4} \mathrm{~N}_{2} \mathrm{O}_{116} \mathrm{~W}_{18}$ (10): C 1.56 (1.83), H 1.76 (2.02), N 0.46 (0.68), Fe 3.67 (3.88), Gd 5.17 (5.39), W 54.39 (54.61). IR (KBr, cm^{-1}): 3419 (s), 1631 (s), 1500 (m), 1384 (m), 1353 (m), 962 (s), 891 (s), 804 (vs), 677 (s), 522 (m), 478 (w), 433 (w) (Fig. S1).
${ }_{25} \quad\left[\mathbf{T b}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathbf{9}}\right]_{\mathbf{2}}\left[\mathrm{Fe}_{\mathbf{4}}\left(\mathrm{H}_{\mathbf{2}} \mathrm{O}\right)_{\mathbf{8}}(\mathrm{L}-\mathrm{thr})_{\mathbf{2}}\right]\left[\mathrm{B}-\boldsymbol{\beta}-\mathrm{AsW}_{\mathbf{9}} \mathrm{O}_{\mathbf{3 3}}\right]_{\mathbf{2}} \cdot \mathbf{2 0 H}_{\mathbf{2}} \mathrm{O}$ (11). The synthetic procedure was identical to 5 , but we used $\mathrm{TbCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ($0.071 \mathrm{~g}, 0.190 \mathrm{mmol}$) instead of $\mathrm{LaCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Light yellow flaky crystals were collected. Yield: ca. 22% (based on $\mathrm{K}_{14}\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$). Anal. calcd. (Found \%) for $\mathrm{C}_{8} \mathrm{H}_{106} \mathrm{As}_{2} \mathrm{~Tb}_{2} \mathrm{Fe}_{4} \mathrm{~N}_{2} \mathrm{O}_{116} \mathrm{~W}_{18}$ (11):
${ }_{30} \mathrm{C} 1.58$ (1.81), H 1.76 (2.04), N 0.46 (0.66), Fe 3.67 (3.89), Tb 5.22 (5.42), W 54.36 (54.57). IR (KBr, cm^{-1}): 3402 (s), 1623 (s), 1498 (m), 1396 (m), 1352 (m), 969 (s), 898 (s), 815 (vs), 676 (s), 518 (m), 478 (w), 420 (w) (Fig. S1).
$\left[\mathrm{Dy}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{2}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}(\mathrm{~L}-\mathrm{thr})_{2}\right]\left[\mathrm{B}-\boldsymbol{\beta}-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]_{2} \cdot \mathbf{2 0 H}_{2} \mathrm{O}$ (12).
35 The synthetic procedure was identical to $\mathbf{5}$, but we used $\mathrm{Dy}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.098 \mathrm{~g}, 0.215 \mathrm{mmol})$ instead of $\mathrm{LaCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Light yellow flaky crystals were collected. Yield: ca. 22% (based on $\mathrm{K}_{14}\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$). Anal. calcd. (Found \%) for $\mathrm{C}_{8} \mathrm{H}_{106} \mathrm{As}_{2} \mathrm{Dy}_{2} \mathrm{Fe}_{4}$ $\mathrm{N}_{2} \mathrm{O}_{116} \mathrm{~W}_{18}$ (12): C 1.58 (1.82), H 1.75 (1.96), N 0.46 (0.68), Fe 3.67 ${ }_{40}$ (3.88), Dy 5.33 (5.54), W 54.30 (54.52). IR (KBr, cm^{-1}): 3421 (s), 1621 (s), 1499 (w), 1399 (w), 1341 (w), 951 (s), 802 (s), 678 (w), 647 (m), 513 (w), 477 (w), 433 (w) (Fig. S1).
$\left[\mathbf{E r}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{2}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}(\mathrm{~L}-\mathrm{thr})_{2}\right]\left[\mathrm{B}-\boldsymbol{\beta}-\mathrm{AsW} \mathbf{9}_{9} \mathrm{O}_{33}\right]_{2} \cdot \mathbf{2 0 H}_{2} \mathrm{O}$ (13). The synthetic procedure was identical to $\mathbf{5}$, but we used ${ }_{45} \mathrm{Er}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.098 \mathrm{~g}, 0.213 \mathrm{mmol})$ instead of $\mathrm{LaCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Light yellow flaky crystals were collected. Yield: ca. 22\% (based on $\mathrm{K}_{14}\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$). Anal. calcd. (Found \%) for $\mathrm{C}_{8} \mathrm{H}_{106} \mathrm{As}_{2} \mathrm{Er}_{2} \mathrm{Fe}_{4}$ $\mathrm{N}_{2} \mathrm{O}_{116} \mathrm{~W}_{18}$ (13): C 1.57 (1.83), H 1.75 (1.97), N 0.46 (0.67), Fe 3.66 (3.87), Er 5.48 (5.69), W 54.21 (54.43). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3421 (s),
${ }_{50} 1621$ (s), 1499 (w), 1399 (w), 1341 (w), 951 (s), 802 (s), 678 (w), 647 (m), 513 (w), 477 (w), 433 (w) (Fig. S1).

X-ray crystallography

Single-crystal X-ray crystallographic analyses of 1-13 were performed on a Bruker APEX-II CCD sealed tube diffractometer at ${ }_{55} 296(2) \mathrm{K}$ with graphite monochromated Mo $\mathrm{K} \alpha$ radiation ($\lambda=$ $0.71073 \AA$). Their structures were determined using direct methods and difference Fourier techniques by the SHELXTL-97 program package. ${ }^{11}$ Lorentz polarization and empirical absorption corrections
were applied. All the non-H atoms were anisotropically refined ${ }_{60}$ except for some O, C and N atoms and some water molecules, (details are seen in ESI). In $\mathbf{1 - 4}$, the K^{+}and Ln^{3+} cations are disordered with the site occupancy of 0.5 , which are determined according to the mass percentages of K^{+}and Ln^{3+} cations from inductively coupled plasma atomic emission spectrometry and their ${ }_{65}$ magnitude of anisotropic displacement parameters. Similar phenomena can be observed in some references. ${ }^{12 a, b}$ Notably, the structures of 5-13 contain chiral L-thr ligands, theoretically their structures should be chiral. However, their structures are pseudocentrosymmetric, i.e. most of the structure fits space group $P-1$, 70 therefore, their structures were solved and refined in centrosymmetric space group $P-1$. Such phenomena are rather common. ${ }^{12 \mathrm{c}}$ An attempt to refine the structures of $\mathbf{5 - 1 3}$ in $P-1$ show the disorder around the chiral centre of L-thr (because we impose inversion on a chiral entity), as a result, $\mathrm{C} 1, \mathrm{C} 2, \mathrm{~N} 1, \mathrm{O} 35$ and O 36 atoms on L-thr are disordered 75 over two positions. In addition, some coordination water molecules on Ln^{3+} cations in 5-13 are disordered over two positions. $\mathrm{C} 1, \mathrm{C} 2$, $\mathrm{N} 1, \mathrm{O} 35$ and O36 atoms are refined isotropically. H atoms associated with C and N atoms were placed in calculated positions using a riding model and were refined isotropically using the default SHELXTL
${ }^{80}$ parameters. No H atoms associated with water molecules were located in the difference Fourier maps. Crystallographic data and structural refinement parameters for $\mathbf{1 - 1 3}$ are summarized in Table 1. The crystal structure details for $\mathbf{1 - 4}$ can be obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein${ }_{85}$ Leopoldshafen, Germany (fax: (+49)7247-808-666; e-mail: crystdata@fiz-karlsruhe.de) on quoting the depository numbers ICSD 429481, 429193, 429194 and 429482 for 1, 2, 3 and 4. Crystallographic data for 5-13 reported in this paper have been deposited in the Cambridge Crystallographic Data Centre with ${ }_{90}$ CCDC 1048556-1048564 for 5-13. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Results and discussion

Syntheses

Fig. 3 The formation processes of $\mathbf{1 - 1 3}$. (a) The precursor $\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{14}$; (b) The removing $\left\{\mathrm{WO}_{6}\right\}$ octahedron; (c) The $\left[\mathrm{B}-\alpha-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]^{9-}$ segment existing in the precursor; (d) The $\left[\mathrm{B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]^{9-}$ segment in $\mathbf{1}-$ 13; (e) Polyhedral and ball-and-stick view of 1-4; (f) Polyhedral and ball100 and-stick view of 5-13.

In the past several years, some novel POM-based TLHDs with interesting structures and various properties have been reported, ${ }^{8}$ however, reports on POM-based PTLHDs with aminoacid ligands is still less developed. ${ }^{12 d, e}$ To the best of our knowledge, no AT-based ${ }_{5}$ PTLHD with aminoacid ligands is reported to date although a family of organic-inorganic hybrid As ${ }^{\mathrm{V}}$-containing AT-based PTLHDs have been prepared by us in 2012, ${ }^{9 \mathrm{~d}}$ which offers us a good chance to explore the AT-TM-Ln-aminoacid system. On the base of our survey on the reported literatures, it can be found that the $\mathrm{As}(\mathrm{III})$ atoms on
${ }_{10}$ POM units possess the stereoactive lone pair of electrons, which can prevent the formation of the closed Keggin POM fragments, help to direct the aggregation of TM or Ln ions on the periphery of lacunary AT building units and produce novel and complicated structures. ${ }^{3 \mathrm{~b}, 3 \mathrm{ff}, 3 \mathrm{~h}, 6 \mathrm{~h}-6 \mathrm{k}}$ As a result, the $\mathrm{As}^{\mathrm{III}}$-containing dilacunary
${ }_{15} \mathrm{~K}_{14}\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ was selected as the precursor. As we know, the dilacunary $\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{14-}$ polyoxoanion consists of two trilacunary $\left[\mathrm{B}-\alpha-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]^{9-}$ fragments linked by an octahedral $\left\{\mathrm{WO}\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}$ group. Previous experimental results have proved that the bridging $\left\{\mathrm{WO}\left(\mathrm{H}_{2} \mathrm{O}\right)\right.$ \} group is active and can be easily removed 20 away from the precursor leading to the isolation of trilacunary Keggin $\left[\mathrm{B}-\alpha-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]^{9-}$ fragments (Fig. $3 \mathrm{a} \rightarrow \mathrm{c}$). ${ }^{6 \mathrm{~b}-6 \mathrm{~d}}$ Moreover, the trilacunary $\left[\mathrm{B}-\alpha-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]^{9-}$ fragment can be isomerized to the trilacunary $\left[\mathrm{B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]^{9-}$ fragment in the reaction processes (Fig. $3 \mathrm{~b} \rightarrow \mathrm{~d}) .{ }^{6 \mathrm{~b}, 13}$ The formation of these trilacunary fragments tends to
25 combine with TM or Ln ions. In addition, amino acid ligands have flexible N and O coordination sites, which favors to coordinate to TM or Ln ions by various coordination fashions. It is well known that the hydrothermal synthesis is an effective method for growing crystals of numerous inorganic or organic-inorganic hybrid materials, ${ }^{14}$
30 therefore, we chose the hydrothermal technique to exploit this system. Based on these ideas, with the aim of discovering AT-based PTLHDs with aminoacid ligands, we investigated the system containing $\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{14-}, \mathrm{Fe}^{3+}, \mathrm{Ln}^{3+}$ ions and aminoacid. At the beginning, under $100{ }^{\circ} \mathrm{C}$ hydrothermal conditions in the presence of
35 L-leucine and L-alanine, $\mathrm{K}_{14}\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ was used to reacted with $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Pr}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ resulting in a $2-\mathrm{D}$ pure inorganic AT-based PTLHD $\mathrm{KNa}_{2}\left\{\operatorname{Pr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}(\mathrm{~B}-\beta-\right.\right.$ $\left.\left.\left.\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right]\right\} \cdot 21 \mathrm{H}_{2} \mathrm{O}(2)$, and then $\mathrm{KNa}_{2}\left\{\mathrm{Ln}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}(\mathrm{~B}-\beta-\right.\right.$ $\left.\left.\left.\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right]\right\} \cdot 21 \mathrm{H}_{2} \mathrm{O}\left[\mathrm{Ln}=\mathrm{La}^{\text {III }}(\mathbf{1}), \mathrm{Nd}^{\text {III }}\right.$ (3), $\mathrm{Sm}^{\text {III }}$ (4)] were
${ }_{40}$ isolated (Fig. 3d \rightarrow e), in which the Krebs' sandwich-type $\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}\right.$ ($\left.\left.\mathrm{B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right]^{6-}$ segment was seen. More interestingly, a $\left[\operatorname{Ln}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\right]^{3+}$ ion is disordered over both upper and lower sides of a $\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}\left(\mathrm{~B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right]^{6-}$ segment and has the site occupancy of 50% for each position. Unexpectedly, no L-leucine or L-alanine
${ }_{45}$ ligand was observed in 1-4. During the course of preparing 1-4, two aspects are worthy of mentioning here: (1) the pH of reaction system has an important effect on the formation of $\mathbf{1 - 4}$. When the pH was lower than 1.5 , the reported tetra- $\mathrm{Fe}^{\text {III }}$ encapsulated Krebs' sandwichtype AT $\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}\left(\mathrm{~B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right]^{6-}$ was obtained. ${ }^{15 \mathrm{~b}}$ On the ${ }_{50}$ contrary, When the pH was higher than 2.5 , the amorphous powders were formed. (2) The nature of Ln ions also has a crucial influence on the formation of this series. When $\mathrm{La}^{3+} \rightarrow \mathrm{Sm}^{3+}$ ions were used in this condition, the 2-D pure inorganic AT-based PTLHD $\mathrm{KNa}_{2}\{\mathrm{Ln}$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}\left(\mathrm{~B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right]\right\} \cdot 21 \mathrm{H}_{2} \mathrm{O} \quad\left[\mathrm{Ln}=\mathrm{La}^{\text {III }}(\mathbf{1}), \operatorname{Pr}^{\text {III }}\right.$ ${ }_{55}$ (2), $\mathrm{Nd}^{\mathrm{III}}$ (3), $\mathrm{Sm}^{\text {III }}$ (4)] can be obtained. Notably, the $\mathrm{Ce}^{\mathrm{III}}$ containing analogue of this series can be formed (it can be confirmed by the IR spectrum), but the qulity of its crystal is not very good, hitherto, its crystal structure can't be resolved. When
$\mathrm{Eu}^{3+} \rightarrow \mathrm{Lu}^{3+}$ ions were used in this condition, the unknown powders ${ }_{60}$ were afforded. However, when we utilized L-thr to replace L-leucine and L-alanine, a family of organic-inorganic hybrid AT-based PTLHDs with L-thr ligands $\left[\mathrm{Ln}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{2}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}(\mathrm{~L}-\mathrm{thr})_{2}(\mathrm{~B}-\beta\right.$ $\left.\left.\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right] \cdot 20 \mathrm{H}_{2} \mathrm{O}\left[\mathrm{Ln}=\mathrm{La}^{\text {III }}(\mathbf{5}), \operatorname{Pr}^{\text {III }}(\mathbf{6}), \mathrm{Nd}^{\text {III }}\right.$ (7), $\mathrm{Sm}^{\text {III }}$ (8), $\mathrm{Eu}^{\text {III }}$ (9), $\operatorname{Gd}^{\text {III }}(\mathbf{1 0}), \mathrm{Tb}^{\text {III }}$ (11), $\mathrm{Dy}^{\text {III }}$ (12), $\mathrm{Er}^{\text {III }}$ (13)] were successively ${ }_{65}$ obtained under similar conditions (Fig. $3 \mathrm{~d} \rightarrow \mathrm{f}$), in which two L-thr ligands in the $\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}(\mathrm{~L}-\mathrm{thr})_{2}\left(\mathrm{~B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right]^{6-}$ subunit are substituted for two aqueous ligands in the $\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}(\mathrm{~B}-\beta-\right.$ $\left.\left.\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right]^{6-}$ segment and two $\left[\mathrm{Ln}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]^{3+}$ cations are supported to both upper and lower sides of the $\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}(\mathrm{~L}-\mathrm{thr})_{2}(\mathrm{~B}-\beta\right.$ $\left.\left.{ }_{70} \mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right]^{6-}$ subunit. Hitherto, we haven't found the reaction rule what aminoacid ligands can graft to TM or Ln cations in this reaction system. This work is being extensively performed in our lab.

Structural description

75 Fig. 4 (a) Combined polyhedral and ball-and-stick view of 2a; (b) The connection between four Fe^{3+} ions by two W atoms in $\mathbf{2 a}$; (c) The octahedral environment of the Fel^{3+} ion in $\mathbf{2 a}$; (d) The octahedral geometry of the Fe^{3+} ion in 2a; (e) The coordination environment of the Pr^{3+} ion in 2a; (f) The 2-D network of 2; (g) The simplified 2-D network; h) The 3-D packing alignment 80 of 2 with stuffing Na^{+}ions; (i) The simplified 3-D packing structure. The atoms with the suffix A are generated by the symmetry operation where $\mathrm{A}: 2-$ $x, 1-y, \mathrm{z}, \mathrm{B}: 2-x,-y, 1-\mathrm{z}, \mathrm{C}: 1-x,-y, 1-z$. Crystal water molecules are omitted for clarity.

The analytical results of single-crystal X-ray diffraction reveal ${ }_{85}$ that $\mathbf{1 - 4}$ are isostructural and both crystallize in the triclinic space group $P-1$. As a result, only the structure of $\mathbf{2}$ is described in detail. The molecular structural unit of 2 is composed of a $\mathrm{Fe}-\mathrm{Pr}$ heterometallic $\quad\left\{\left[\operatorname{Pr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\right]\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}\left(\mathrm{~B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right]\right\}^{3-} \quad$ subunit
(2a), a K^{+}cation, two Na^{+}cations and twenty-one water molecules of crystallization (Fig. 4a). As far as we know, this tetra- $\mathrm{Fe}^{\text {III }}$ substituted sandwich-type AT $\left\{\left[\operatorname{Pr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\right]\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}\left(\mathrm{~B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right]\right\}^{3-}$ fragment with a supporting $\left[\operatorname{Pr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\right]^{3+}$ cation in 2 is unseen in the 5 field of POM chemistry although a classical tetra- $\mathrm{Fe}^{\mathrm{III}}$ substituted sandwich-type $\left[\mathrm{Mn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{~B}-\alpha-\mathrm{SiW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{12-}$ subunit with two supporting $\left[\mathrm{Ce}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\right]^{3+}$ cations was seen in an inorganic aggregate $\mathrm{K}_{4} \mathrm{Na}_{2}\left[\left\{\mathrm{Ce}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\right\}_{2} \mathrm{Mn}_{4} \mathrm{Si}_{2} \mathrm{~W}_{18} \mathrm{O}_{68}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 21.5 \mathrm{H}_{2} \mathrm{O}$ reported by Wang et al in 2007. ${ }^{8 n}$ In 2a, the $\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}\left(\mathrm{~B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right]^{6-}$
${ }_{10}$ segment retains Krebs' sandwich-type structure with idealized $C_{2 \mathrm{~h}}$ symmetry, which consists of two identical $\left[\mathrm{B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]^{9-}$ moieties are connected by two inner $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{3+}$ and two outer $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]^{3+}$ groups. In the $\left[\mathrm{B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]^{9-}$ fragment, the $\mathrm{As}^{\text {III }}$ atom owns an unshared pair of electrons and exhibits a tri-coordinate 15 environment defined by three μ_{4}-oxygen atom from three $\left\{\mathrm{W}_{3} \mathrm{O}_{13}\right\}$ groups with the As-O distances of 1.788(8)-1.837(10) \AA, moreover, all W centers exhibit the octahedral coordination environment with W-O distances of $1.702(10)-2.409(9) \AA$. In 2a, there are two crystallographically unique Fe^{3+} cations (Fe^{3+} and Fe^{3+}) (Fig. 4b).
 $\mathrm{H}_{2} \mathrm{O}$ ligands while the two outer $\mathrm{Fe}^{3+}\left(\mathrm{Fe}^{3+}\right.$ and $\left.\mathrm{Fe} 2 \mathrm{~A}^{3+}\right)$ cations have three terminal $\mathrm{H}_{2} \mathrm{O}$ ligands. Albeit both Fe^{3+} and Fe^{3+} cations adopt the octahedral geometry, their coordination environments are somewhat different: the octahedron of the Fe^{3+} cation is defined
25 by four O atoms from two $\left[\mathrm{B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]^{9-}$ moieties $[\mathrm{Fe}-\mathrm{O}: 1.918(9)$ $-1.954(10) \AA$] and two water ligands [Fe-O: 2.134(10)-2.144(10) \AA] (Fig. 4c) whereas the octahedron of the Fe^{3+} cation is constituted by three O atoms from two $\left[\mathrm{B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]^{9-}$ moieties [$\mathrm{Fe}-\mathrm{O}: 1.933(9)-1.988(10) \AA$] and three water ligands [$\mathrm{Fe}-\mathrm{O}$:
${ }_{30} 2.064(10)-2.091(11) \AA$] (Fig. 4d). This Krebs' sandwich-type structure was first discovered in $\left[\mathrm{Sb}_{2} \mathrm{~W}_{22} \mathrm{O}_{74}(\mathrm{OH})_{2}\right]^{12-}$ comprising two trivacant Keggin-type $\left[\mathrm{B}-\beta-\mathrm{SbW}_{9} \mathrm{O}_{33}\right]^{9-}$ segments connected by two internal $\left[\mathrm{WO}_{2}\right]^{2+}$ and two external $\left[\mathrm{WO}_{2}(\mathrm{OH})\right]^{+}$groups by Krebs and co-workers in 1997. ${ }^{15 \mathrm{a}}$ In 2002, Kortz et al. employed
35 the $\left[\alpha-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]^{9-}$ precursor to react with Fe^{3+} ions in the $\mathrm{pH}=3.0$ aqueous solution and synthesized the tetra- $\mathrm{Fe}^{\text {III }}$ encapsulated Krebs' sandwich-type AT $\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}\left(\mathrm{~B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right]^{6-}$ with a crystal structural determination. ${ }^{15 \mathrm{~b}} \mathrm{It}$'s worth pointing out that the $\operatorname{Pr} 1^{3+}$ cation splits to two positions with 50% site occupancy of each
${ }_{40}$ position (Fig. S2). Furthermore, the Pr^{3+} cation links to one terminal O atom from one trivacant Keggin $\left[\mathrm{B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]^{9-}$ fragment [$\mathrm{Pr}-\mathrm{O}: 2.605(9) \AA$], one terminal O atom from the other trivacant Keggin $\left[\mathrm{B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]^{9-}$ fragment $\left[\operatorname{Pr}-\mathrm{O}: 2.458(11) \AA\right.$], two μ_{2-} O atoms from two $\mathrm{H}_{2} \mathrm{O}$ ligands [$\mathrm{Pr}-\mathrm{O}: 2.03(3)-2.45(3) \AA$] and
${ }_{45}$ six terminal O from terminal $\mathrm{H}_{2} \mathrm{O}$ ligands [$\mathrm{Pr}-\mathrm{O}: 2.41(3)-2.61(2)$ \AA] to finish its ten-coordinate geometry (Fig. 4e). Interestingly, adjacent $\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}\left(\mathrm{~B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right]^{6-}$ subunits are connected with each other by the Pr^{3+} linkers to result in a beautiful twodimensional (2-D) network (Fig. 4f). From the view of ${ }_{50}$ simplification, the $\left[\mathrm{B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]^{9-}$ moieties are treated as purple spheres and the tetra- $\mathrm{Fe}^{\text {III }}$ units are looked on as orange planes, as a result, an aesthetical 2-D layer is presented (Fig. 4g). The Krebs’ sandwich-type AT subunits $\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}\left(\mathrm{~B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right]^{6-}$ and the complicated connection mode between the Krebs' sandwich-type
${ }_{55}$ AT subunits and the spitting Pr^{3+} ions are clearly visualized in the simplified 2-D network. What's more, the interesting 3-D packing architecture is illustrated in Fig. 4h, it can be clearly seen that stuffing Na^{+}ions are distributed on interspace between
adjacent 2-D layers and the 3-D packing architecture was further ${ }_{60}$ simplified by considering the 2-D layers as the planes (Fig. 4i).

Fig. 5 (a) The wire view of 5a; (b) Combined polyhedral and ball-and-stick view of $\mathbf{5 a}$; (c) The view of the $\left[\mathrm{B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]^{9}$ segment in $\mathbf{5 a}$; (d) The connection between four Fe^{3+} ions by two W atoms in $\mathbf{5 a}$; (e) The coordination ${ }_{65}$ environment of the La^{3+} ion in $\mathbf{5 a}$; (f) The octahedral environment of the Fe^{3+} ion in 5a; (g) The octahedral environment of the Fe^{3+} ion in $\mathbf{5 a}$; (h) The 3-D packing architecture of $\mathbf{5}$. The atoms with the suffix A are generated by the symmetry operation where A: $1-x, 1-y, 2-z$. Crystal water molecules are omitted for clarity.

70 5-13 are isomorphous and they all crystallize in the triclinic space group $P-1$. Hence, the structural description is exemplified by 5 at length. Although 2 and 5 belong to the same space group, their structures are distinct from each other and the differences will be discussed in the following description. Structurally, the basic 75 molecular structural unit $\left[\mathrm{La}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{2}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}(\mathrm{~L}-\mathrm{thr})_{2}(\mathrm{~B}-\beta-\right.$

$\left.\left.\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right] \cdot 20 \mathrm{H}_{2} \mathrm{O}$ of $\mathbf{5}$ is composed of an organic-inorganic $\mathrm{Fe}-\mathrm{La}$ heterometallic $\left[\mathrm{La}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{2}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}(\mathrm{~L}-\mathrm{thr})_{2}\left(\mathrm{~B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right]$ subset (5a) and twenty lattice water molecules. From Fig. 5a,b, it is clear to find that a tetra-Fe ${ }^{\text {III }}$ substituted Krebs' sandwich-type AT ${ }_{5}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}\left(\mathrm{~B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right]^{6-}$ subunit associates with two "attached" nine-coordinate $\left[\mathrm{La}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]^{3+}$ ions through two terminal O atoms from the $\left[\mathrm{B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]^{9-}$ segments, giving rise to the interesting $\left[\mathrm{La}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{2}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}(\mathrm{~L}-\mathrm{thr})_{2}\left(\mathrm{~B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right]$ hybrid, in which two L-thr ligands coordinate to two external Fe^{3+} ions situated on the ${ }_{10}$ sandwich belt of Krebs-type subunit via two O atoms. To the best of our knowledge, such Fe-Ln heterometallic AT with L-thr ligands was unseen although similar tungstoantimonate-based TM-Ln heterometallic hybrids have been discovered. ${ }^{12 a}$ In $\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}(\mathrm{~L}-\right.$ $\left.\operatorname{thr})_{2}\left(\mathrm{~B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right]^{6-}$, two identical $\left[\mathrm{B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]^{9-}$ moieties
15 (Fig. 5c) are bridged by the central symmetric organic-inorganic $\left[\mathrm{Fe}^{\mathrm{III}}{ }_{4}(\mathrm{~L}-\mathrm{th})_{2}\right]^{12+}$ group (Fig. 5d). In each $\left[\mathrm{B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]^{9-}$ fragment, the $\mathrm{As}^{\text {III }}$ atom also exhibits a tri-coordinate trigonal pyramid defined by three μ_{4}-oxygen atom from three $\mathrm{W}_{3} \mathrm{O}_{13}$ triads with As-O distances of $1.804(10)-1.816(10) \AA$, and all W centers exhibit the
$20\left\{\mathrm{WO}_{6}\right\}$ octahedra with the W-O distances of $1.714(10)-2.391(11) \AA$. In $\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}(\mathrm{~L}-\mathrm{thr})_{2}\left(\mathrm{~B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right]^{6}$, the coordination environments of the inner $\mathrm{Fel}^{3+}\left(\mathrm{Fe} 1 \mathrm{~A}^{3+}\right)$ ions and the outer $\mathrm{Fe}^{3+}\left(\mathrm{Fe}^{2} \mathrm{~A}^{3+}\right)$ ions are also somewhat different. The coordination geometry of the inner Fe^{3+} ion is built by two O atoms from one $\left[\mathrm{B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]^{9-}$
${ }_{25}$ fragment $[\mathrm{Fe}-\mathrm{O}: 1.933(10)-1.950(10) \AA$], two O atoms from the other $\left[\mathrm{B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]^{9-}$ fragment $[\mathrm{Fe}-\mathrm{O}: 1.956(10)-1.962(10) \AA]$ and two O atoms from two terminal $\mathrm{H}_{2} \mathrm{O}$ ligands [$\mathrm{Fe}-\mathrm{O}: 2.121(12)-$ $2.144(11) \AA$] (Fig. 5f) whereas the coordination geometry of the Fe^{3+} ion is defined by one O atom from the L-thr ligand $[\mathrm{Fe}-\mathrm{O}$:
${ }_{30} 2.049(12) \AA$], one O atom from one $\left[\mathrm{B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]^{9-}$ fragment $[\mathrm{Fe}-$ O: $1.983(11) \AA$], two O atoms from the other $\left[\mathrm{B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]^{9-}$ fragment [$\mathrm{Fe}-\mathrm{O}: 1.932(11)-1.952(11) \AA$] and two O atoms from two terminal $\mathrm{H}_{2} \mathrm{O}$ molecules [$\mathrm{Fe}-\mathrm{O}: 2.066(14)-2.083(14) \AA$] (Fig. 5g). In addition, the $\mathrm{La} 1^{3+}$ cation (Fig. 5e) in $\mathbf{5}$ achieves the monocapped
${ }_{35}$ square antiprismatically 9 -fold coordination by attachment to a terminal O atom from the trivacant Keggin $\left[\mathrm{B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]^{9-}$ fragment [La-O: $2.547(10) \AA$] and eight O atoms from eight aquaoxygen ligands [La-O: 2.521(18)-2.62(3) \AA], which is somewhat different from the tricapped square prism geometry of the Pr^{3+} ion
${ }_{40}$ in 2. Comparing $\mathbf{5}$ and $\mathbf{2}$, two obvious discrepancies are observed: (a) $\mathbf{2}$ is a purely inorganic 2-D structure while $\mathbf{5}$ owns a discrete organicinorganic hybrid containing a tetra- $\mathrm{Fe}^{\text {III }}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}(\mathrm{~L}-\mathrm{thr})_{2}\right]^{12-}$ (Fig. 5d) sandwiched $\left[\mathrm{La}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{2}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}(\mathrm{~L}-\text { thr })_{2}\left(\mathrm{~B}-\beta-\mathrm{AsW} \mathrm{O}_{9} \mathrm{O}_{33}\right)_{2}\right]$ moiety.
(b) The Pr^{3+} cation in $\mathbf{2}$ inhabits in a distorted nona-coordinate
${ }_{45}$ tricapped square prism, in contrast, the $\mathrm{La} 1^{3+}$ cation in $\mathbf{5}$ adopts a nona-coordinate severely distorted monocapped square antiprism configuration. Other else, the 3-D packing structure of $\mathbf{5}$ is shown in Fig. 5h.

IR spectra

so IR spectra of 1-13 have been recorded between 4000 and $400 \mathrm{~cm}^{-1}$ with KBr pellets (Fig. S1) and the low wave-number regions display four characteristic terminal $v_{\text {as }}\left(\mathrm{W}-\mathrm{O}_{\mathrm{t}}\right), v_{\mathrm{as}}\left(\mathrm{As}-\mathrm{O}_{\mathrm{a}}\right)$, corner-sharing $v_{\mathrm{as}}\left(\mathrm{W}-\mathrm{O}_{\mathrm{b}}\right)$ and edge-sharing $v_{\mathrm{as}}\left(\mathrm{W}-\mathrm{O}_{\mathrm{c}}\right)$ asymmetric stretching vibration bands derived from the Keggin-type AT skeleton, which are 55 observed at $960,881,802$, and $662 \mathrm{~cm}^{-1}$ for $1,963,885,815$, and 659
cm^{-1} for $\mathbf{2}, 968,883,805$, and $672 \mathrm{~cm}^{-1}$ for $\mathbf{3}, 960,872,812$, and 658 cm^{-1} for $4,961,897,811$, and $676 \mathrm{~cm}^{-1}$ for $5,957,893,807$, and 672 cm^{-1} for $6,960,897,810$, and $683 \mathrm{~cm}^{-1}$ for $7,961,895,810$, and $677 \mathrm{~cm}^{-1}$ for $8,961,897,802$, and $685 \mathrm{~cm}^{-1}$ for $9,962,891,804$, and ${ }_{60} 677 \mathrm{~cm}^{-1}$ for $10,969,898,818$, and $676 \mathrm{~cm}^{-1}$ for 11, 960, 896, 817, and $682 \mathrm{~cm}^{-1}$ for 12, $967,894,816$, and $680 \mathrm{~cm}^{-1}$ for 13 , respectively. It's easy to find that IR spectra of $\mathbf{1} \mathbf{- 1 3}$ are very similar in the low wave-number regions, which may be due to the presence of the trivacant Keggin $\left[\mathrm{B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]^{9-}$ fragments in their skeletons. In
${ }_{65}$ the high wave-number region, all show a broad band at 3419-3448 cm^{-1} and a strong absorption band at $1626-1640 \mathrm{~cm}^{-1}$, which are assigned to the stretching and bending vibration modes of water molecules, respectively. But for 5-13 with L-thr ligands, the $v(\mathrm{C}-\mathrm{O})$ absorption bands of L-thr ligands are overlapped by the intense ${ }_{70}$ bending vibration bands of water molecules. The bands at $1336-1354 \mathrm{~cm}^{-1}$ are indicative of the $v(\mathrm{C}-\mathrm{N})$ vibration. It should be noted that apparent shifts of $v_{\mathrm{as}}\left(\mathrm{W}-\mathrm{O}_{\mathrm{t}}\right), v_{\mathrm{as}}\left(\mathrm{As}-\mathrm{O}_{\mathrm{a}}\right), v_{\mathrm{as}}\left(\mathrm{W}-\mathrm{O}_{\mathrm{b}}\right)$ and $v_{\text {as }}\left(\mathrm{W}-\mathrm{O}_{\mathrm{c}}\right)$ vibration frequencies occur by comparing the IR data of $\mathbf{1} \mathbf{- 1 3}$ with those of the precursor $\mathrm{K}_{14}\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right][951,891$, ${ }_{75} 796$ and $751 \mathrm{~cm}^{-1}$ for $v_{\mathrm{as}}\left(\mathrm{W}-\mathrm{O}_{\mathrm{t}}\right), v_{\mathrm{as}}\left(\mathrm{As}-\mathrm{O}_{\mathrm{a}}\right), v_{\mathrm{as}}\left(\mathrm{W}-\mathrm{O}_{\mathrm{b}}\right)$ and $v_{\text {as }}\left(\mathrm{W}-\mathrm{O}_{\mathrm{c}}\right)$, respectively], ${ }^{16}$ which may be result from the transformation of $\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{14-} \rightarrow\left[\mathrm{B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]^{9-}$ as well as the embedding of the tetra- $\mathrm{Fe}^{\text {III }}\left[\mathrm{Fe}^{\mathrm{III}}{ }_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}(\mathrm{~L}-\mathrm{thr})_{2}\right]^{12+}$ cluster to the defects of two $\left[\mathrm{B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]^{9-}$. In comparison with the IR ${ }_{80}$ spectra of $\mathbf{1 - 4}$, the appearance of weak vibration peaks of $\mathbf{5 - 1 3}$ suggest the implanting of L -thr ligands to two external Fe^{3+} ions of $\left[\mathrm{Ln}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{2}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}(\mathrm{~L}-\mathrm{thr})_{2}\left(\mathrm{~B}-\mathrm{\beta}-\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right]$ subunits. But, the $\mathrm{Ln}-\mathrm{O}$ stretching vibrations can't be observed, which may be relevant to the dominant ionic interactions between trivacant POM fragments ${ }_{85}$ and $\mathrm{Ln}^{\text {III }}$ ions. ${ }^{17}$

Photoluminescence (PL) properties

The highly emissive $\mathrm{Y}_{2} \mathrm{O}_{3}$: Eu ${ }^{\text {III }}$ material is a significant discovery in the Ln luminescence field. ${ }^{18}$ Since Finnish researchers addressed Eu ${ }^{\text {III }}$ and $\mathrm{Tb}^{\text {III }}$ containing polyaminocarboxylates and β-diketonates as ${ }_{90}$ bioprobes in the time-resolved luminescent (TRL) immunoassays, continuous investigations on luminescent coordination compounds sprang up. ${ }^{19}$ Nowadays, Ln coordination compounds highlight the fascinating and outstanding luminescent properties in light conversion fields such as light-emitting diodes, sensory probes, plasma displays, medicinal ${ }_{95}$ analyses, cell imaging as well as monitoring drug delivery, ${ }^{20}$ which benefit from the eminent electronic properties of Ln cations: the shielding of the 4 f orbitals by the filled $5 s^{2} 5 \mathrm{p}^{6}$ subshells. ${ }^{21}$ It should be noted that the photoexcitation of the $\mathrm{O} \rightarrow \mathrm{M}(\mathrm{M}=\mathrm{Mo}$ or W$)$ transitions of POM units are able to give rise to intramolecular energy
100 transfer from the $\mathrm{O} \rightarrow \mathrm{M}$ excited states to excited energy levels of $\mathrm{Ln}^{\text {III }}$ ions, then sensitizing the emission of Ln cations. Therefore, the intramolecular energy transfer from POMs to Ln cations can occur via ligand-to-metal charge transfer (LMCT) route. ${ }^{22}$ The luminescent properties and mechanism of energy transfer from the ligand to the 105 metal of some POM-based Ln derivatives have been widely studied. ${ }^{22}$ Hence, the PL behaviors of $\mathbf{9}$ and $\mathbf{1 1}$ in the solid state have been investigated at room temperature. The emission spectrum of $\mathbf{9}$ was connected under the maximum excitation wavelength at 394 nm . The emission spectrum of 9 is composed of the first excited state, ${ }^{5} \mathrm{D}_{0}$, and ${ }_{110}$ the ground septet, ${ }^{7} \mathrm{~F}_{\mathrm{J}}(\mathrm{J}=0-4)$ of the $\mathrm{Eu}^{\mathrm{III}}$ cation. ${ }^{23 a}$ Five characteristic transitions from the first excited ${ }^{5} \mathrm{D}_{0}$ state of $\mathrm{Eu}^{\text {III }}$ to the

Fig. 6 (a) The emission spectrum of 9 under excitation at 394 nm at room temperature. (b) The excitation spectrum of 9 monitored at the Eu ${ }^{\text {III }}{ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{2}$ transition $(617 \mathrm{~nm})$ at room temperature. (c) The luminescence decay curve of $\mathbf{9}$. (d) The emission spectrum of $\mathbf{1 1}$ under excitation at 379 nm at room temperature. (e) The emission spectrum of the precursor $\mathrm{K}_{14}\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ under excitation at 379 nm at room temperature. (f) The excitation spectrum of $\mathbf{1 1}$ monitored at the intense ${ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{5}$ transition (549 nm) of the $\mathrm{Tb}^{\text {III }}$ ion. (g) The luminescence decay curve of $\mathbf{1 1}$. (h) The luminescence decay curve of the precursor $\mathrm{K}_{14}\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$.
ground-state ${ }^{7} \mathrm{~F}_{\mathrm{J}}$ manifold are evident and the apparent peak maxima appear at approximately $558,585,617,651$ and 697 nm for the $J=0$, $1,2,3$ and 4 , respectively (Fig. 6a). These data are in accordance with the previous results. ${ }^{9 \mathrm{~d}, 23 \mathrm{c}-\mathrm{f}}$ Formally, the ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{0}$ transition reveals 5 the symmetry-forbidden emission, which is severely forbidden in a field of symmetry. Interestingly, the presence of ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{0}$ transition at 558 nm can still be observed in 9 , demonstrating that the $\mathrm{Eu}^{\text {III }}$ ions are located in the lower symmetric ligand field, which coincides with the monocapped square antiprismatic geometry of the $E u^{\text {III }}$ ions. It is ${ }_{10}$ concluded that the magnetic-dipolar ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{1,3}$ transitions are insensitive to the local microenvironments whereas the electricdipolar ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{2,4}$ transitions are extraordinarily sensitive to the local microenvironments. ${ }^{23 e, 24}$ In generally, the emission intensity of the magnetic dipole ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{1}$ transition scarcely varies with the strength ${ }_{15}$ of ligand field exerting on the $\mathrm{Eu}^{\text {III }}$ ion, whereas the intensity of the electric dipole ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{2}$ transition is highly sensitive to the chemical bonds in the neighborhood of $\mathrm{Eu}^{\text {III }}$ ions. ${ }^{12 \mathrm{a}}$ The emission intensity of the magnetic dipole ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{1}$ transitions is dominating in a centrosymmetric environment, in contrast, the ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{2}$ transition is 20 the strongest in a noncentrosymmetric situation. ${ }^{9 \mathrm{~d}, 25}$ Thereby, the $\mathrm{I}\left({ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{2}\right) / \mathrm{I}\left({ }^{5} \mathrm{D}_{0} \rightarrow \mathrm{~F}_{1}\right)$ ratio is generally used as a criterion of the coordination environment and site symmetry of the Eu ${ }^{\text {II }}$ ions. ${ }^{26}$ The value of this intensity ratio for 9 is ca. 1.3 reflecting the comparatively low site symmetry of the $\mathrm{Eu}^{\text {III }}$ ion, and it is also in
${ }_{25}$ good agreement with the distorted monocapped square antiprism geometry of the Eu ${ }^{\text {III }}$ cation. Moreover, the excitation spectrum of 9 monitored at the Eu ${ }^{\text {III }}{ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{2}$ transition (617 nm) contains a broad band and several weak bands (Fig. 6b). The broad band at 394 nm is assigned to the ${ }^{7} \mathrm{~F}_{0} \rightarrow{ }^{5} \mathrm{~L}_{6}$ transition of the $\mathrm{Eu}^{\text {III }}$ intra-4f ${ }^{6}$ ion, the weak
${ }_{30}$ bands between $375-384 \mathrm{~nm}$ correspond to the ${ }^{7} \mathrm{~F}_{0} \rightarrow{ }^{5} \mathrm{G}_{0-4}$ transitions, whereas the weak band at 416 nm is attributed to the ${ }^{7} \mathrm{~F}_{0} \rightarrow{ }^{5} \mathrm{D}_{3}$ transitions. ${ }^{23 \mathrm{ab} \mathrm{b}}$ The ${ }^{5} \mathrm{D}_{0}$ lifetime curve of the $\mathrm{Eu}^{\text {III }}$ ion was monitored under the excitation at 394 nm and the more intense emission at 617
$\mathrm{nm}\left({ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{2}\right)$ (Fig. 6c), which can be well fitted to a single ${ }_{35}$ exponential function $[I=\operatorname{Aexp}(-t / \tau)]$, yielding the lifetime value (τ) of $9.51 \mu \mathrm{~s}$, the pre-exponential factor (A) of 934.17 and the agreement factor $\left(\chi^{2}\right)$ of 1.087. In comparison with $\mathrm{K}_{13}\left[\mathrm{Eu}\left(\alpha-\mathrm{SiW}_{11} \mathrm{O}_{39}\right)\right]$ ($\tau=$ $2.440 \mathrm{~ms})$ and $\mathrm{Na}_{0.5} \mathrm{Cs}_{4.5}\left[\mathrm{Eu}\left(\alpha-\mathrm{SiW}_{11} \mathrm{O}_{39}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 23 \mathrm{H}_{2} \mathrm{O}(\tau=0.39$ $\mathrm{ms}),{ }^{27}$ the decay time for $\mathbf{9}$ is more shorter. This phenomenon can be ${ }_{40}$ ascribed to the presence of inner-sphere water molecules and the radiationless deactivation of the ${ }^{5} \mathrm{D}_{0}$ state by coordinated water molecules. ${ }^{28}$ Close inspection to the microstructure of $\mathbf{9}$ will find that there are eight water coordination molecules are bonded to the $\mathrm{Eu}^{\text {III }}$ ion, however, the Eu ${ }^{\text {III }}$ cation is coordinated by two water ligands in ${ }_{45} \mathrm{Na}_{0.5} \mathrm{Cs}_{4.5}\left[\mathrm{Eu}\left(\alpha-\mathrm{SiW}_{11} \mathrm{O}_{39}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 23 \mathrm{H}_{2} \mathrm{O}$ and the Eu^{3+} cation is combined with eight lacunary oxygen atoms from two monovacant $\left[\alpha-\mathrm{SiW}_{11} \mathrm{O}_{39}\right]^{8-}$ fragments in $\mathrm{K}_{13}\left[\mathrm{Eu}\left(\alpha-\mathrm{SiW}_{11} \mathrm{O}_{39}\right)_{2}\right]$. Hence, there is no doubt for the shorter luminescent lifetime of 9 .

The solid-state emission spectrum of $\mathbf{1 1}$ under excitation at 379 ${ }_{50} \mathrm{~nm}$ displays four obvious emission peaks at $509,549,590$ and 625 nm , respectively (Fig. 6d). The three typical emission peaks at 549 , 590 and 625 nm are respectively attributed to the ${ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{5},{ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{4}$ and ${ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{3}$ transitions of the $\mathrm{Tb}^{\text {III }}$ cation, which are in good consistence with the previous results. ${ }^{29}$ To clarify the broad and ${ }_{55}$ strong emission band centered at 509 nm , the PL emission behavior of the precursor $\mathrm{K}_{14}\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ has been studied. Upon excitation at 379 nm , the precursor $\mathrm{K}_{14}\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ exhibits a strong emission band at 509 nm (Fig. 6e), which is induced by the ${ }^{3} \mathrm{~T}_{1 \mathrm{u}} \rightarrow{ }^{1} \mathrm{~A}_{1 \mathrm{~g}}$ transitions derived from the $\mathrm{O} \rightarrow \mathrm{W}$ LMCT transitions of ${ }_{60} \mathrm{ATs}$. ${ }^{22 e, 30}$ Comparing the PL spectrum of $\mathbf{1 1}$ with that of $\mathrm{K}_{14}\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, evidently, the broad and strong emission band centered at 509 nm in $\mathbf{1 1}$ can be assigned to the ${ }^{3} \mathrm{~T}_{1 \mathrm{u}} \rightarrow{ }^{1} \mathrm{~A}_{1 \mathrm{~g}}$ transitions from the $\mathrm{O} \rightarrow \mathrm{W}$ LMCT transitions of AT fragments. In addition, the excitation spectrum of $\mathbf{1 1}$ was also monitored under the excitation at ${ }_{65} 379 \mathrm{~nm}$ and the more intense emission at $549 \mathrm{~nm}\left({ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{5}\right)$ of the $\mathrm{Tb}^{\mathrm{III}}$ ion (Fig. 6f), in which the broad excitation band results from the
${ }^{7} \mathrm{~F}_{5} \rightarrow{ }^{5} \mathrm{D}_{3}$ transition (379 nm) of the $\mathrm{Tb}^{\text {III }}$ intra- $4 \mathrm{f}^{8}$ ion. ${ }^{23 \mathrm{ab} \mathrm{b}}$ To further determine the lifetime, the luminescent decay curve of $\mathbf{1 1}$ has also been carried out (Fig. 6 g). However, the decay curve of $\mathbf{1 1}$ can't be fitted to a single exponential function, but a double exponential ${ }_{5}$ function as $I=\mathrm{A}_{1} \exp \left(-t / \tau_{I}\right)+\mathrm{A}_{2} \exp \left(-t / \tau_{2}\right)$ (where τ_{1} and τ_{2} are the fast and slow components of the luminescent lifetimes and A_{1} and A_{2} are the pre-exponential factors) affording the luminescent lifetime τ_{1} and τ_{2} are $1.69 \mu \mathrm{~s}(9.20 \%)$ and $12.74 \mu \mathrm{~s}(90.80 \%)$, respectively. Since there is one crystallographically independent $\mathrm{Tb}^{\text {III }}$ ion in the structure 10 of $\mathbf{1 1}$, it is very little possible that $\mathbf{1 1}$ has two different lifetimes for the $\mathrm{Tb}^{\text {III }}$ center. To further probe into the origin of two lifetimes, the luminescent decay curve of the precursor $\mathrm{K}_{14}\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ has also been performed (Fig. 6h), which is also fitted to a double exponential function with τ_{1} and τ_{2} of $0.87 \mu \mathrm{~s}(24.83 \%)$ and $8.83 \mu \mathrm{~s}$
${ }_{15}(75.17 \%)$. From this result we can be concluded that the intramolecular transfer of the $\mathrm{O} \rightarrow$ W LMCT energy to the $\mathrm{Tb}^{\text {III }}$ center has indeed occurred during the course of the emission process of 11, leading to the appearance of two lifetimes of $\mathbf{1 1}$. This observation further consolidates that the emission behavior of $\mathbf{1 1}$ principally ${ }_{20}$ stems from the combined action of $\mathrm{O} \rightarrow \mathrm{W}$ LMCT transitions and the characteristic ${ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{\mathrm{J}}(\mathrm{J}=5-3)$ transitions of the $\mathrm{Tb}^{\text {III }}$ cation. Similar intramolecular transfer phenomena from POM to the $\mathrm{Tb}^{\text {III }}$ ions have been encountered by Yamase and Boskovic. ${ }^{31}{ }^{29 a}$ In contrast, comparing the emission spectrum and the luminescence
${ }_{25}$ decay curve of 7 with those of the precursor $\mathrm{K}_{14}\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, the PL emission of $\mathbf{1 1}$ prevailingly originates from the contribution of the characteristic ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{2}(\mathrm{~J}=4-0)$ transitions of the $\mathrm{Eu}^{\text {III }}$ cation.

TG analyses

In order to examine their thermal stability, the TG measurements of ${ }_{30}$ 1-4 and 6-12 have been carried out on crystalline samples in flowing N_{2} atmosphere with a heating rate of $10^{\circ} \mathrm{C} \cdot \mathrm{min}^{-1}$ in the temperature range from 25 to $800^{\circ} \mathrm{C}$. All the compounds display two weight loss steps. The TG curves indicate the weight-loss processes of all the compounds can be divided into two steps. In the case of $\mathbf{1}$ (Fig. 7a, 1-
${ }_{35} \mathrm{La}$), the first weight loss of 6.20% (calcd. 6.70%) is from 25 to $96^{\circ} \mathrm{C}$, which is assigned to the liberation of 21 lattice water molecules. The second weight loss of 8.85% (calcd. 8.93%) from 94 to $800{ }^{\circ} \mathrm{C}$ corresponds to the removal of 17 coordination water molecules and the sublimation of $\mathrm{As}_{2} \mathrm{O}_{3}$. For 2 (Fig. 7a, 2-Pr), the first weight loss is
${ }_{40} 5.10 \%$ (calcd. 6.70%) from 25 to $76^{\circ} \mathrm{C}$, involving the release of 21 lattice water molecules. The second weight loss of 8.16% (calcd. 8.92%) from 76 to $800{ }^{\circ} \mathrm{C}$ is attributable to the removal of 17 coordination water molecules and the sublimation of $\mathrm{As}_{2} \mathrm{O}_{3}\left(\mathrm{As}_{2} \mathrm{O}_{3}\right.$ is from the decomposition of the skeleton of the polyoxoanion). ${ }^{32}$ In the
${ }_{45}$ case of $\mathbf{3}$ (Fig. 7a, 3-Nd), the first weight loss of 6.53% is (calcd. 6.69%) from 25 to $6{ }^{\circ} \mathrm{C}$, is assigned to the liberation of 21 lattice water molecules. The second weight loss of 9.39% (calcd. 8.92%) from 65 to $790{ }^{\circ} \mathrm{C}$ corresponds to the removal of 17 coordination water molecules and the sublimation of $\mathrm{As}_{2} \mathrm{O}_{3}$. For 4 (Fig. 7a, 4-Sm),
${ }_{50}$ the first weight loss of 6.67% (calcd. 6.68%) between 25 and $94{ }^{\circ} \mathrm{C}$ is attributable to the liberation of 21 lattice water molecules. The second weight loss of 8.94% (calcd. 8.91%) from 94 to $800^{\circ} \mathrm{C}$ corresponds to the removal of 17 coordination water molecules and the sublimation of $\mathrm{As}_{2} \mathrm{O}_{3}$. With regard to 6 (Fig. 7b, 6-Pr), one weight
${ }_{55}$ loss (5.12%) between 25 and $63^{\circ} \mathrm{C}$ corresponds to the loss of 20

Fig. 7 (a) The TG curves of 1-4. (b) The TG curves of 6-9. (c) The TG curves of 10-12.
lattice water molecules (calc. 5.94%). After $63{ }^{\circ} \mathrm{C}$, a gradual weight ${ }_{60}$ loss of 13.43% until $800^{\circ} \mathrm{C}$ is observed and assigned to the removal of 24 coordination water molecules, the decomposition of two L-thr ligands and the $\mathrm{As}_{2} \mathrm{O}_{3}$ escaping (calcd. 14.34\%). With respect to 7 (Fig. 7b, $7-\mathrm{Nd}$), the weight loss of 6.82% in the first stage from 25 to $93^{\circ} \mathrm{C}$ is involved with the release of 20 lattice water molecules (calcd. ${ }_{65} 5.94 \%$). In the second stage, the weight loss of 15.23% is attributable to the removal of 24 coordination water molecules, two L-thr ligands and the $\mathrm{As}_{2} \mathrm{O}_{3}$ escaping (calcd. 14.32\%). With respect to 8 (Fig. 7b, 8 -Sm), the weight loss of 5.31% during the first step from 25 to $97{ }^{\circ} \mathrm{C}$ involves the loss of 20 lattice water molecules (calcd. 5.93%). The 70 weight loss of 13.85% in the second step from 91 to $800{ }^{\circ} \mathrm{C}$ is attributable to the removal of 24 coordination water molecules, two L-TN ligands and the $\mathrm{As}_{2} \mathrm{O}_{3}$ escaping (calcd. 14.30\%). As for 9 (Fig. $7 \mathrm{~b}, 9-\mathrm{Eu}$), the first weight loss between 25 and $78{ }^{\circ} \mathrm{C}$ is 5.15% corresponding to the loss of 20 lattice water molecules (calcd. 5.92\%). ${ }_{75}$ On the further heating, the second weight loss of 13.63% is attributable to the release of 24 coordination water molecules, two Lthr ligands and $\mathrm{As}_{2} \mathrm{O}_{3}$ (calcd. 14.28\%). As to 10 (Fig. 7c, 10-Gd), the weight loss of 5.89% during the first step from 25 to $91{ }^{\circ} \mathrm{C}$ involves the loss of 20 lattice water molecules (calcd. 5.91%). The weight loss ${ }_{80}$ of 15.00% in the second step from 91 to $800^{\circ} \mathrm{C}$ is attributable to the removal of 24 coordination water molecules, two L-thr ligands and the $\mathrm{As}_{2} \mathrm{O}_{3}$ escaping (calcd. 14.26%). In terms of $\mathbf{1 1}$ (Fig. 7c, 11-Tb), the first-step weight loss of 6.14% occurring from 25 to $106{ }^{\circ} \mathrm{C}$ corresponds to the loss of 20 lattice water molecules (calcd. 5.91%)
while the second-step weight loss of 13.49% occurring from 106 to $800{ }^{\circ} \mathrm{C}$ is attributable to the removal of 24 coordination water molecules and two L-thr ligands and the sublimation of $\mathrm{As}_{2} \mathrm{O}_{3}$ (calcd. 14.25%). In regard to $\mathbf{1 2}$ (Figure 7c, 12-Dy), the first step with 5 weight loss of 5.13% is the loss process of 20 lattice water molecules (calcd. 5.9%) before $81^{\circ} \mathrm{C}$, followed by the weight loss of 13.29% derived from the release of 24 coordination water molecules, two L-thr ligands and $\mathrm{As}_{2} \mathrm{O}_{3}$ (calcd. 14.23%) until $800^{\circ} \mathrm{C}$.

Conclusions

${ }_{10}$ In conclusion, we have made two types of novel tetra-Fe ${ }^{\text {III }}$ substituted sandwich-type ATs with supporting Ln pendants $\mathrm{KNa}\left[\mathrm{Ln}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\right]$ $\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}\left(\mathrm{~B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right] \cdot 21 \mathrm{H}_{2} \mathrm{O}\left[\mathrm{Ln}=\mathrm{La}^{\text {III }}(\mathbf{1}), \operatorname{Pr}^{\text {III }}(2), \mathrm{Nd}^{\text {III }}(\mathbf{3})\right.$, $\mathrm{Sm}^{\text {III }}$ (4)] and $\left[\mathrm{Ln}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{2}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}(\mathrm{~L}-\mathrm{thr})_{2}\left(\mathrm{~B}-\beta-\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right] \cdot 20$ $\mathrm{H}_{2} \mathrm{O}\left[\mathrm{Ln}=\operatorname{La}^{\text {III }}(\mathbf{5}), \operatorname{Pr}^{\text {III }}(\mathbf{6}), \mathrm{Nd}^{\text {III }}(\mathbf{7}), \operatorname{Sm}^{\text {III }}(\mathbf{8}), \operatorname{Eu}^{\text {III }}(\mathbf{9}), \operatorname{Gd}^{\text {III }}(\mathbf{1 0})\right.$, $\left.{ }_{15} \mathrm{~Tb}^{\text {III }}(\mathbf{1 1}), \mathrm{Dy}^{\text {III }}(\mathbf{1 2}), \mathrm{Er}^{\text {III }}(\mathbf{1 3})\right]$ under $100^{\circ} \mathrm{C}$ hydrothermal conditions, which all include classic tetra- $\mathrm{Fe}^{\text {III }}$ sandwiched $\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\left(\mathrm{~L}_{2}\right)(\mathrm{B}-\beta-\right.$ $\left.\left.\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right]^{6-}\left(\mathrm{L}=\mathrm{H}_{2} \mathrm{O}\right.$ for $\mathbf{1 - 4}, \mathrm{L}=\mathrm{L}$-thr for 5-13) building units with covalent attachments of $\left[\operatorname{Ln}\left(\mathrm{H}_{2} \mathrm{O}\right)_{n}\right]^{3+}(\mathrm{n}=7$ for $\mathbf{1 - 4 ,} \mathrm{n}=8$ for 5-13) cations. Moreover, the degradation of the $\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{14-}$ ${ }_{20}$ polyoxoanion to the trivacant Keggin AT fragments has occurred during the course of preparing $\mathbf{1 - 1 3}$, which proves that the bridging $\left\{\mathrm{WO}\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}$ group is active and easily escapes from the precursor in the reactions. It is important to emphasize that 1-13 stand for an interface between AT moieties and TM and Ln heterometallic ${ }_{25}$ components that are one of hotspot of much contemporary research POM chemistry. Additionally, the luminescence properties of 9 and 11 have been intensively discussed. The results indicate that the PL emission of $\mathbf{9}$ is mainly derived from the characteristic ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{2}(\mathrm{~J}$ $=4-0$) transitions of the $\mathrm{Eu}^{\text {III }}$ cations whereas the PL behavior of
${ }_{30} 11$ stems from the common contribution of the ${ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{\mathrm{J}}(\mathrm{J}=5-3)$ transitions of $\mathrm{Tb}^{\mathrm{III}}$ ions and oxygen-to-tungsten charge-transfer transitions of AT segments. The luminescent decay curve of 9 can be well fitted to a single exponential function with the τ of $9.51 \mu \mathrm{~s}$ whereas the luminescent decay curve of $\mathbf{1 1}$ can be fitted into double ${ }_{35}$ exponential function with the τ_{1} and τ_{2} of $1.69 \mu \mathrm{~s}(9.20 \%)$ and 12.74 $\mu \mathrm{S}(90.80 \%)$. Furthermore, the TG curves of $\mathbf{1 - 4}$ and $\mathbf{6 - 1 2}$ show two steps of weight loss between 25 and $800^{\circ} \mathrm{C}$. These research fruits will guide us to continuously explore and prepare much more novel TM-Ln heterometallic POMs with aminoacid ingredients with the 40 aim of searching some reaction rules between aminoacid ligands and TM-Ln heterometallic POM units in this reaction system. The continuous work and unremitting efforts are in avenue.

Acknowledgements

This work was supported by the Natural Science Foundation of ${ }_{45}$ China (21101055, 21301049, U1304208), the Natural Science Foundation of Henan Province (122300410106, 102300410093), the Foundation of State Key Laboratory of Structural Chemistry (20120013), 2014 Special Foundation for Scientific Research Project of Henan University, 2012 Young Backbone Teachers Foundation ${ }_{50}$ from Henan Province and the Students Innovative Pilot Plan of Henan University (2013, 2014).

References

Henan Key Laboratory of Polyoxometalate Chemistry, Institute of
Molecular and Crystal Engineering, College of Chemistry and Chemical
55 Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
Email: luojie@henu.edu.cn,zhaojunwei@henu.edu.cn
\dagger Electronic Supplementary Information (ESI) available: The refinement details and additional figures. For ESI and crystallographic data in CIF or other 60 electronic format see DOI: 10.1039 / b0000000x/

1 J. Berzelius, Pogg. Ann., 1826, 6, 369.
2 (a) M. T. Pope, Heteropoly and Isopoly Oxometalates, Springer-Verlag, Berlin. Germany, 1983; (b) J. J. Borras-Almenar, E. Coronado, A. Müller 65 and M. T. Pope, Polyoxometalate Molecular Science. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003; (c) M. AlDamen, J. Clemente-Juan, E. Coronado, C. Martí-Gastaldo and A. Gaita-Ariño, J. Am. Chem. Soc., 2008, 130, 8847; (d) D. L. Long, E. Burkholder and L. Cronin, Chem. Soc. Rev., 2006, 36, 105; (e) G. Absillis and T. N. Parac-Clemente-Juan D. Q Yuan and G. Y. Yang Angew. Chem. Int Ed. 2009 48, 7176.
3 (a) U. Kortz, N. K. Al-Kassem, M. G. Savelieff, N. A. Al Kadi and M. Sadakane, Inorg. Chem., 2001, 40, 4742; (b) K. Fukaya and T. Yamase,
75 Angew. Chem. Int. Ed., 2003, 42, 654; (c) B. Godin, Y. Chen, J. Vaissermann, L. Ruhlmann, M. Verdaguer and P. Gouzerh, Angew. Chem. Int. Ed., 2005, 44, 3072; (d) S. S. Mal and U. Kortz, Angew. Chem. Int. Ed., 2005, 44, 3777; (e) B. S. Bassil, M. Ibrahim, R. AlOweini, M. Asano, Z. Wang, J. van Tol, N. S. Dalal, K. Y. Choi, R.
80 N. Biboum, B. Keita, L. Nadjo and U. Kortz, Angew. Chem. Int. Ed., 2011, 50, 5961; (f) K. Wassermann, M. H. Dickman and M. T. Pope, Angew. Chem. Int. Ed., 1997, 36, 1445; (g) B. S. Bassil, M. H. Dickman, I. Römer, B. von der Kammer and U. Kortz, Angew. Chem. Int. Ed., 2007, 46, 6192; (h) F. Hussian, F. Conrad and G. R. Patzke,
85 Angew. Chem. Int. Ed., 2009, 48, 9088; (i) J. Yan, J. Gao, D.-L. Long, H. N. Miras and L. Cronin, J. Am. Chem. Soc., 2010, 132, 11410; (j) J. Gao, J. Yan, S. Beeg, D.-L. Long and L. Cronin, J. Am. Chem. Soc., 2013, 135, 1796; (k) L. Huang, S.-S. Wang,J.-W. Zhao, L. Cheng and G.-Y. Yang, J. Am. Chem. Soc., 2014, 136, 7637.

904 (a) F. Hussain, U. Kortz and R.J. Clark, Inorg. Chem., 2004, 43, 3237; (b) W. Chen, Y. Li, Y. Wang, E. Wang and Z. Su, Dalton Trans., 2007, 4293; (c) K. Wassermann, M. H. Dickman and M. T. Pope, Angew. Chem. Int. Ed. Engl., 1997, 36, 1445; (d) J. W. Zhao, D. Y. Shi, L. J. Chen, X. M. Cai, Z. Q. Wang, P. T. Ma, J. P. Wang and J. 95 Y. Niu, CrystEngComm, 2012, 14, 2797.
5 (a) F. Hussain, M. Reicke and U. Kortz, Eur. J. Inorg. Chem., 2004, 2733; (b) Z. Zhou, D. Zhang, L. Yang, P. Ma, Y. Si, U. Kortz, J. Niu and J. Wang, Chem. Commun., 2013, 49, 5189.
6 (a) C. Tourné, A. Revel, G. Tourné and M. Vendrell, C. R. Hebd. Seances Acad. Sci. Ser. C, 1973, 277, 643, (b) U. Kortz, M. G. Savelieff, B. S. Baassil and M. H. Dickman, Angew. Chem. Int. Ed., 2001, 40,3384; (c) L. H. Bi, U. Kortz, B. Keita, L. Nadjio and L. Daniel, Eur. J. Inorg. Chem., 2005, 3034; (d) F. Hussain, B. S. Baassil, U. Kortz, O. A. Kholdeeva, M. N. Timofeeva, P. D. Oliveira,
105 B. Keita and L. Nadjo, Chem. Eur. J., 2007, 13, 4733; (e) S. Chang, Y. F. Qi, E. B. Wang, Y. G. Li and H. Jin, J. Clust. Sci., 2007, 18, 781; (f) S. Chang, Y. F. Qi, E. B. Wang, L. Xu, C. Qin, X. L. Wang and H. Jin, J. Mol. Struct., 2008, 875, 462; (g) A. H. Ismail, B. S. Bassil, I. Römer, N. C. Redeker and U. Kortz, Z. Naturforsch., 2010,
110 65b, 383; (h) C. Ritchie and C. Boskovic, Cryst. Growth Des., 2010, 10, 488; (i) C. Ritchie, M. Speldrich, R. W. Gable, L. Sorace, P. Kögerler and C. Boskovic, Inorg. Chem., 2011, 50, 7004; (j) C. Ritchie, E. G. Moore, M. Speldrich, P. Kögerler and C. Boskovic, Angew. Chem. Int. Ed., 2010, 49,7702; (k) C. Ritchie, V. Baslon, E.
15 G. Moore, C. Reber and C. Boskovic, Inorg. Chem., 2012, 51, 1142.
7 (a) S. Reinoso, Dalton Trans., 2011, 40, 6610; (b) Y. Z. Li, J. Luo, L. J. Chen and J. W. Zhao, RSC Adv.,2014, 4, 50679.

8 (a) J. Cao, S. Liu, R. Cao, L. Xie, Y. Ren, C. Gao and L. Xu, Dalton Trans., 2008, 37, 115; (b) S. Yao, Z. Zhang, Y. Li, Y. Lu, E. Wang and Z. Su, Cryst. Growth Des., 2010, 10, 135; (c) A. H. Ismail, B. S. Bassil, G. H. Yassin, B. Keita and U. Kortz, Chem. Eur. J., 2012, 18, 6163; (d) H.-H. Wu, S. Yao, Z.-M. Zhang, Y.-G. Li, Y. Song, Z.-J. Liu, X.-B. Han and E.-B. Wang, Dalton Trans., 2013, 42, 342; (e)
Y.-W. Li, Y.-G. Li, Y.-H. Wang, X.-J. Feng, Y. Lu and E.-B. Wang, Inorg. Chem., 2009, 48, 6452; (f) B. Nohra, P. Mialane, A. Dolbecq, E. Rivière, J Marrot and F. Sécheresse, Chem. Commun., 2009, 45, 2703; (g) J. Niu, S. Zhang, H. Chen, J. Zhao, P. Ma and J. Wang, 5 Cryst. Growth Des., 2011, 11, 3769; (h) Z.-M. Zhang, Y.-G. Li, S. Yao and E.-B. Wang, Dalton Trans., 2011, 40, 6475; (i) S. Zhang, J. Zhao, P. Ma, J. Niu and J. Wang, Chem. Asian J., 2012, 7, 966; (j) S. Zhang, J. Zhao, P. Ma, H. Chen, J. Niu and J. Wang, Cryst. Growth Des., 2012, 12, 1263; (k) X. Fang, M. Speldrich, H. Schilder,R. Cao, K. P. O'Halloran, C. L. Hill and P. Kögerler, Chem. Commun., 2010, 46, 2760; (l) X. Fang and P. Kögerler, Angew. Chem. Int. Ed., 2008, 47, 8123; (m) S. Reinoso, M. Gimónez-Marqués, J. R. GalánMascarós, P. Vitoria, and J. M. Gutiérrez-Zorrilla, Angew. Chem. Int. Ed., 2010, 49, 8384; (n) W. Chen, Y. Li, Y. Wang and E. Wang, Eur.
15 J. Inorg. Chem., 2007, 2216; (o) S. Reinoso and J. R. Galán-Mas carós, Inorg. Chem., 2010, 49, 377; (p) J.-D. Compain, P. Mialane, A. Dolbecq, I. M. Mbomekallé, J. Marrot, F. Sécheresse, C. Duboc and E. Rivière, Inorg. Chem., 2010, 49, 2851; (q) S. Reinoso, J. R. GalánMas carós and L. Lezama, Inorg. Chem., 2011, 50, 9587; (r) J.-W. Zhao, Y.-Z. Li, F. Ji, J. Yuan, L.-J. Chen and G.-Y. Yang, Dalton Trans., 2014, 43, 5 694; (s) Y.-Y. Li, J.-W. Zhao,Q. Wei,B.-F. Yang, H. He and G.-Y. Yang, Chem. Asian J., 2014, 9, 858; (t) J. Wang, J.W. Zhao, H.-Y. Zhao, B.-F. Yang, H. He and G.-Y. Yang, CrystEngComm, 2014, 16, 252; (u) J. W. Zhao, D. Y. Shi, L. J. Chen,
25 Y. Z. Li, P. T. Ma, J. P. Wang and J. Y. Niu, Dalton Trans., 2012, 41, 10740.

9 (a) G. Xue, B. Liu, H. Hu, J. Yang, J. Wang and F. Fu, J. Mol. Struct., 2004, 690, 95; (b) A. Merca, A. Mülle, J. van Slageren, M. Läge and B. Krebs, J. Clust. Sci., 2007, 18, 711; (c) W. L. Chen,Y. G. Li, Y. H.

Wang, E. B.Wang and Z. M. Zhang, Dalion Trans., 2008, 865, (d) D. Y. Shi, J. W. Zhao, L. J. Chen, P. T. Ma, J. P. Wang and J. Y. Niu, CrystEngComm, 2012, 14, 3108.
10 F. Zhang, X. Ma, J. Zhang and L. J. Chen, Chem. Res., 2014, 25(3), 2.
11 (a) G. M. Sheldrick, SHELXS 97, Program for Crystal Structure
35 Solution, University of Göttingen, Göttingen, Germany, 1997; (b) G. M. Sheldrick, SHELXL 97, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997.
12 (a) S. Sankar Mal and U. Kortz, Angew. Chem. Int. Ed., 2005, 44, 377; (b) R. Al-Oweini, B. S. Bassil, J. Friedl, V. Kottisch, M. Ibrahim, M. Asano, B. Keita, G. Novitchi, Y. Lan, A. Powell, U. Stimming and U. Kortz, Inorg. Chem., 2014, 53, 5663; (c) R. E. Marsh, Acta Cryst, 1999, B55, 931; (d) J. W. Zhao, J. Cao, Y. Z. Li, J. Zhang and L. J. Chen, Cryst. Growth Des., 2014, 14, 6217; (e) Y. Y. Li, J. W. Zhao, Q. Wei, B. F. Yang, H. He and G. Y. Yang, Chem. Asian J., 2014, 9, 858.

4513 (a) U. Kortz, M. G. Savelieff, B. S. Bassil, B. Keita and L. Nadjo, Inorg. Chem., 2002, 41, 783; (b) T. McGlone, L. Vila-Nadal, H. N. Miras, D. L. Long, J. M. Poblet and L. Cronin, Dalton Trans., 2010, 39, 11599; (c) M. A. Pilette, S. Floquet, J. Marrot, F. Secheresse, E. Cadot, Eur. J. Inorg. Chem., 2013, 1726; (d) A. H. Ismail, B. S. 2510.

14 (a) A. Rabenau, Angew. Chem. Int. Ed. Engl., 1985, 24, 1026; (b) P. J. Hagrman, D. Hagrman and J. Zubietua, Angew. Chem. Int. Ed., 1999, 38, 2638; (c) J. W, Zhao, H, P. Jia, J. Zhang, S. T. Zheng and G. Y. Z. Li, J. Cao and L. J. Chen, Cryst. Growth Des., 2014, 14, 1467; (e) B. Nohra, P. Mialane, A. Dolbecq, E. Rivière, J. Marrot and F. Sécheresse, Chem. Commun., 2009, 2703.
15 (a) M. Bösing, I. Loose, H. Pohlmann and B. Krebs, Chem. Eur. J., 1997, 3, 1232; (b) U. Kortz, M. G. Savelieff, B. S. Bassil, B. Keita, and L. Nadjo, Inorg. Chem., 2002, 41, 783.
16 S. Li, Y. Wang, P. Ma, J. Wang and J. Niu, CrystEngComm, 2014, 16, 10746.

17 J. Y. Niu, K. H. Wang, H. N. Chen, J. W. Zhao, P. T. Ma, J. Y. Wang, M. X. Li, Y. Bai and D. B. Dang, Cryst. Growth Des., 2009, 9, 4362.
(a) E. Soini and I. Hemmilä, Clin. Chem., 1979, 25, 353; (b) I. Hemmilä, T. Ståhlberg and P. Mottram, Bioanalytical Applications of Labelling Technologies, Wallac Oy, Turku, Finland, 2nd edition, 1995.

20 (a) L. Armelao, S. Quici, F. Barigelletti, G. Accorsi, G. Bottaro, M.

Cavazzini and E. Tondello, Coord. Chem. Rev., 2010, 254, 487; (b) B. A. Hess, A. Kedziorski, L. Smentek and D. J. Bornhop, J. Phys. Chem. A, 2008, 112, 2397; (c) J.-C. G. Bünzli, A.-S. Chauvin, C. D.
75 B. Vandevyver, B. Song and S. Comby, Ann. N. Y. A cad. Sci., 2008, 1130, 97.
21 (a) G. J. Sopasis, M. Orfanoudaki, P. Zarmpas, A. Philippidis, M. Siczek, T. Lis, J. R. O’Brien and C. J. Milios, Inorg. Chem., 2012, 51, 1170 ; (b) S. V. Eliseevaa and J.-C. G. Bünzli, Chem. Soc. Rev., 2010, ${ }^{8} \quad 39,189$.
22 (a) S. L. Cai, S. R. Zheng, Z. Z. Wen, J. Fan and W. G. Zhang, Cryst. Growth Des., 2012, 12, 5737; (b) R. W. Ricci and K. B. Kilichowski, J. Phys. Chem., 1974, 78, 1953; (c) R. M. Supkowski, J. P. Bolender, W. D. Smith, L. E. L. Reynolds and W. D. Horrocks, Coord. Chem.

85 Rev., 1999, 307, 185; (e) T. Yamase, Chem. Rev., 1998, 98, 307; (f) T Yamase, T. Kobayashi, M. Sugeta and H. Naruke, J. Phys. Chem. A, 1997, 101, 5046; (g) T. Ozeki and T. Yamase, J. Alloys Compd., 1993, 192, 28.
23 (a) X. Li, H.-L. Sun, X.-S. Wu, X. Qiu and M. Du, Inorg. Chem.,
90 2010, 49, 1865; (b) P. I. Girginova, F. A. A. Paz, P. C. R. SoaresSantos, R. A. SáFerreira, L. D. Carlos, V. S. Amaral, J. Klinowski, H. I. S. Nogueira and T. Trindade, Eur. J. Inorg. Chem., 2007, 4238; (c) J. W. Zhao, J. Luo, L. J. Chen, J. Yuan, H. Y. Li, P. T. Ma, J. P. Wang and J. Y. Niu, CrystEngComm, 2012, 14, 7981; (d) R. Gupta,
95 M. K. Saini and F. Hussain, Eur. J. Inorg. Chem., 2014, 6031; (e) C. C. Li, S. X. Liu, S. J. Li, Y. Yang, H. Y. Jin and F. J. Ma, Eur. J. Inorg. Chem., 2012, 3229; (f) J. W. Zhao, D. Y. Shi, L. J. Chen, Y. Z. Li, P. T. Ma, J. Y. Wang and J. Y. Niu, Dalton Trans., 2012, 41, 10740.

10024 Q. H. Xu, L. S. Li, X. S. Liu and R. R. Xu, Chem. Mater., 2002, 14, 549.

25 (a) A. F. Kirby and F. S. Richardson, J. Phys. Chem., 1983, 87, 2544; (b) J. W. Stouwdam and F. C. J. M. van Veggel, Nano Lett., 2002, 2, 733; (c) Y. Su, L. Li and G. Li, Chem. Mater., 2008, 20, 6060.
10526 H. He, G. J. Cao, S. T. Zheng and G. Y. Yang, J. Am. Chem. Soc., 2009, 131, 15588; (b) X. L. Wang, Y. Q. Guo, Y. G. Li, E. B. Wang, C. W. Hu and N. H. Hu, Inorg. Chem., 2003, 42, 4135; (c) T. Yamase, T. Kobayashi, M. Sugeta, H. and Naruke, J. Phys. Chem. A, 1997, 101, 5046; (d) X. F. Li, T. F. Liu, Q. P. Lin and R. Cao, Cryst. Growth Des., 2010, 10, 608; (e) T. Zhang, C. Spitz, M. Antonietti and C. F. J. Faul, Chem. Eur. J., 2005, 11, 1001.
27 P. Mialane, L. Lisnard, A. Mallard, J. Marrot, E. Antic-Fidancev, P. Aschehoug, D. Vivien and F. Sécheresse, Inorg. Chem., 2003, 42, 2102
11528 A. Beeby, I. M. Clarkson, R. S. Dickins, S. Faulkner, D. Parker, L. Royle, A. S. deSousa, J. A. G. Williams and M. Woods, J. Chem. Soc. Perkin Trans., 1999, 2, 493.
29 (a) C. Ritchie, E. G. Moore, M. Speldrich, P. Kögerler and C. Boskovic, Angew. Chem. Int. Ed., 2010, 49, 7702; (b) K. Binnemans,
120 Chem. Rev., 2009, 109, 4283.
30 (a) T. Ito, H. Yashiro and T. Yamase, Langmuir, 2006, 22, 2806; (b) L. J. Chen, D. Y. Shi, J. W. Zhao, Y. L. Wang, P. T. Ma, J. P. Wang and J. Y. Niu, Cryst. Growth Des., 2011, 11, 1913.
31 T. Yamase and H. Naruke, J. Phys. Chem. B, 1999, 103, 8850.
12532 Q. X. Han, P. T. Ma, J. W. Zhao, Z. L. Wang, W. H. Yang, P. H. Guo, J. P. Wang and J. Y. Niu, Cryst. Growth Des., 2011, 2, 436.

