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Near-infrared (NIR) emitting Nd/Yb(III) complexes 
sensitized by MLCT states of Ru(II)/Ir(III) 
metalloligands in visible light region  

Lu-Yin Zhanga, Ya-Jun Houa, Mei Pana,b*, Ling Chena, Yi-Xuan Zhua, Shao-Yun 

Yina, Guang Shaoa,*, and Cheng-Yong Sua,c,*  

Four Ru(II)/Ir(III) metalloligands have been designed and synthesized from polypyridine 
and bibenzimidazole (BiBzIm) organic ligands, which show strong visible light absorption 
via metal-to-ligand charge transfer (MLCT) transitions. Nd/Yb(III) complexes were further 
assembled from these Ru(II)/Ir(III) metalloligands, and Ln(III)-centered NIR emissions can 
be efficiently sensitized by 3MLCT states of the metalloligands in visible-light region. The 
energy transfer rates for the complexes are generally in the order Nd > Yb, which is due to 
the better matching between 3MLCT states of Ru(II)/Ir(III) metalloligands and densely 
distributed excited states of Nd(III) ions. Long decayed lifetimes in s scale and high 
quantum yields up to 1% are obtained in these lanthanide complexes, suggesting that the 
Ru(II)/Ir(III) metalloligands can serve as good visible light harvesting antenna to efficiently 
sensitize Ln(III)-based NIR luminescence.  

Introduction 

Lanthanide ions possess characteristic luminescence with high color 
purity and long lifetimes, therefore have long been the focus of 
scientists’ research for potential applications in such fields as 
chemical analysis, cell imaging, immunoassay, organic 
electroluminescence, optical communication, and so on.1-3 
Especially, the near-infrared (NIR) photoluminescence of Ln(III) 

ions such as PrIII, NdIII, ErIII and YbIII is transparent to biological 
tissue which allows imaging through relatively thick tissue samples. 
Therefore, NIR emitting lanthanides offer major advantages for 
applications in biological luminescent imaging agents and bioprobes. 
4,5 However,  the f-f transitions of lanthanide ions are usually 
forbidden, which results in low absorption cross section and poor 
luminescence efficiency which limits their efficient application.  In 
recent decades, organic ligands are introduced to assemble 
lanthanide coordination complexes to obtain highly efficient 
lanthanide luminescence via so called Antenna effect. In which, the 
organic ligands efficiently absorb the light like an antenna, followed 
by energy transfer to the excited states of lanthanide ions. When the 
lanthanide ions return to the ground state via radiative transitions, 
characteristic fluorescence of the lanthanide is produced.6,7 Up to 
now, abundant lanthanide complexes with either visible or NIR 
emissions have been designed and synthesized from various types of 
organic ligands.8,9 However, since most of the organic chromophores 
can only be excited under UV light by →* transitions with 
relatively high energy, luminescent lanthanide complexes which can 

be excited by visible light in the lower energy region remain 
relatively rare. This limits the application of most lanthanide 
complexes to some extent, especially in such fileds as bio-imaging, 
since UV excitation will inevitably cause some damages to the bio-
systems. 10,11    

Alternatively, metalloligands incorporating d-block 
chromophores (such as IrIII, RuII, PtII, AuI, et al) have wider 
absorption bands ranging from UV to visible and even near-
infrared region, contributed by both * transitions of the 
organic parts and MLCT (metal-to-ligand charge transfer) 
transitions involving the d-block metals such as RuII or IrIII. 12-14 
Therefore, coordination complexes assembled from such 
metalloligands can meet the requirement of visible-light 
excitation with obvious advantages over UV excitation, 
especially in the application of non-invasive bio-analysis and 
bio-imaging. Furthermore, the low 3MLCTexcited states of the 
metalloligands can better fit the excited energy levels of near-
infrared (NIR) emitting Ln(III) ions, which usually reside below 
20,000 cm-1. 15-17 Therefore, the design and assembly of 
lanthanide coordination complexes from d-block metalloligands 
have become a hot topic in recent years.18,19 Herein, we 
designed a series of Ru(II)/Ir(III) polypyridine metalloligands 
to sensitize the NIR luminescence of Nd(III) and Yb(III) 
successfully by excitation wavelength in the visible region (≥ 
400 nm). The d→f energy transfer rates from different 
Ru(II)/Ir(III) metalloligands to Ln(III) centers are analysed by 
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intensive luminescent lifetime study to better understand the 
fundamental energy transfer processes in the complexes. 

 
Experimental 

Materials and methods 

All experimental materials were of AR grade and used as purchased 
without further purification. The 1H NMR spectra were recorded on 
Bruker Avance 400 NMR spectrometer using TMS as the internal 
standard. The HR-ESI-TOF-MS spectra were detected on Bruker 
maXis 4G ESI-Q-TOF. The C, H, and N elemental analyses were 
performed on Perkin-Elmer 240 elemental analyzer. The UV-vis 
absorption spectra were measured on SHIMADZU UV-3150 UV-
Vis-NIR Spectrophotometer. Photoluminescence spectra were 
measured on EDINBURGH FLS980 fluorescence spectrophotometer. 

Syntheses of metalloligands 
1H,1'H-2,2'-bibenzo[d]imidazole (BiBzImH2): A mixture of o-
phenylenediamine dihydrochloride (1.79 g, 10 mmol) and oxalic 
acid dihydrate (0.567 g, 4.5 mmol) in 10 ml ethylene glycol (EG) 
was heated to 150 °C and reacted for 24 hours, and then cooled to 
room temperature. The reaction mixture was poured into 100 ml 
water, and the pH value was adjusted to 10. The precipitates were 
filtered and washed with water until the pH value reached 7, and 
then dried to get yellowish product BiBzImH2. Yield: 68%. 1H NMR 
(400 MHz, DMSO-d6, 25 °C): δ = 13.53 (s, 2H), 7.77 (d, 2H), 7.56 
(d, 2H), 7.30 (m, 4H).  
 
Ru(bpy)2Cl2

.2H2O: 1.56 g (5.96 mmol) RuCl3
.3H2O was dissolved 

in 10 ml DMF, and then 1.68 g (0.4 mmol) LiCl and 1.87 g (12 
mmol) 2,2'-bipyridine were added. The mixture was refluxed at 
145 °C under the protection of N2 for 8 hours and then cooled to 
room temperature. 50 ml acetone was added into the reaction 
mixture and freezed at 0 °C overnight. Purple black precipitates were 
obtained by filtration, which was washed with small amounts of 
cooled water, and then washed successively with 5 ml methanol and 
20 ml ethyl ether. The final product of Ru(bpy)2Cl2

.2H2O was 
obtained after drying in vacuum. Yield: 63%. 1H NMR (400 MHz, 
DMSO-d6, 25 °C): δ = 9.96 (d, 2H), 8.85 (d, 2H), 8.50 (d, 2H), 8.08 
(t, 2d), 7.78 (t, 2H), 7.68 (t, 2H), 7.50 (d, 2H), 7.12 (t, 2H).  
 
[Ru(bpy)2(BiBzImH2)](PF6)2 [LRu·(PF6)2]: 0.52 g (1 mmol) 
Ru(bpy)2Cl2

.2H2O and 0.33 g (1.4 mmol) BiBzImH2 were added into 
14 ml ethylene glycol (EG), which was refluxed under the protection 
of N2 for 3 hours and then cooled to room temperature. The reaction 
solution was filtered, then 100 ml water and 2 ml HCl was added 
into the filtrate. Then saturated solution of KPF6 was added to get 
red precipitate, which was stirred for a while and then filtered. The 
final crimson product of LRu·(PF6)2 was obtained after washing 
with water for several times and then drying in vacuum. Yield: 70%. 
1H NMR (400 MHz, DMSO-d6, 25 °C): δ = 8.86 (d, 2H), 8.76 (d, 
2H), 8.25 (t, 2H), 8.07 (t, 2H), 8.00 (d, 2H), 7.89 (m, 4H), 7.61 (t, 
2H), 7.48 (t, 2H), 7.40 (t, 2H), 7.07 (t, 2H), 5.64 (d, 2H). 13C NMR 
(400 MHz, DMSO-d6, 25 °C): δ = 159.03, 157.33, 152.80, 152.60, 
142.00, 138.06, 137.50, 128.34, 127.89, 126.03, 125.13, 124.62, 

124.33, 115.54, 114.94. ESI+-MS: m/z = 647.1180 ([LRu-2PF6
--H+]+, 

calc. 647.1249). 
 
Ru(phen)2Cl2

.2H2O: Ru(phen)2Cl2
.2H2O was obtained by the 

similar procedure to Ru(bpy)2Cl2
.2H2O unless phenanthroline (phen) 

was used instead of 2,2'-bipyridine. Yield: 70%. 1H-NMR (400 
MHz, DMSO-d6, 25 °C): δ = 10.30 (d, 2H), 8.74 (d, 2H), 8.30 (d, 
2H), 8.24 (m, 4H), 8.16 (d, 2H), 7.77 (d, 2H), 7.34 (t, 2H). 
 
[Ru(phen)2(BiBzImH2)](PF6)2 [LRu2·(PF6)2]: LRu2·(PF6)2 was 
obtained by the similar procedure to LRu·(PF6)2 unless 
Ru(phen)2Cl2

.2H2O was used instead of Ru(bpy)2Cl2
.2H2O. Yield: 

92%. 1H-NMR (400 MHz, DMSO-d6, 25 °C): δ = 8.81 (d, 2H), 8.73 
(d, 2H), 8.35 (m, 6H), 8.27 (d, 2H), 7.81 (m, 6H), 7.28 (t, 2H), 6.86 
(t, 2H), 5.31 (d, 2H). 13C NMR (400 MHz, DMSO-d6, 25 °C): δ = 
154.09, 153.98, 149.34, 148.25, 142.40, 136.81, 136.47, 130.58, 
128.57, 128.25, 126.96, 126.36, 125.68, 124.82, 115.51, 114.71. 
ESI+-MS: m/z = 695.1450 ([LRu2-2PF6

--H+]+, calc. 695.1250). 
 
[Ir(ppy)2Cl]2: 0.25 g (0.7 mmol) IrCl3

.3H2O and 270 μL (1.9 mmol) 
2-phenylpyridine (ppy) were added into a mixture of 2-
ethoxyethanol/water (30 ml, v:v=3:1), and then reacted at 120 °C 
under the protection of N2 for 24 hours and then cooled to room 
temperature. Precipitates were obtained by filtration, which was 
washed with water. Yellow product of [Ir(ppy)2Cl]2 was obtained 
after drying (yield: 70%). 1H NMR (400 MHz, DMSO-d6, 25 °C): δ 
= 9.81 (d, 2H), 9.55 (d, 2H), 8.28 (d, 2H), 8.20 (d, 2H), 8.11 (t, 2H), 
8.02 (t, 2H), 7.81 (d, 2H), 7.75 (d, 2H) , 7.58 (t, 2H), 7.46 (t, 2H), 
6.91 (t, 2H), 6.85 (t, 2H), 6.78 (t, 2H), 6.70 (t, 2H), 6.27 (d, 2H), 
5.68 (d, 2H).  
 
[Ir(ppy)2(BiBzImH2)]Cl (LIr·Cl): 0.608 g (0.5 mmol) [Ir(ppy)2Cl]2 
and 0.234 g (1 mmol) BiBzImH2 were added into 20 ml ethylene 
glycol (EG), which was reacted at 65 °C  under the protection of N2 
for 24 hours and then filtered. Light green product of LIr·Cl was 
obtained after washing with water for several times and then drying. 
Yield: 79%. 1H NMR (400 MHz, DMSO-d6, 25 °C): δ = 8.20 (d, 
2H), 7.93 (d, 2H), 7.84 (m, 4H), 7.77 (d, 2H), 7.38 (t, 2H), 7.10 (m, 
4H), 7.02 (t, 2H), 6.94 (t, 2H), 6.38 (d, 2H), 6.14 (d, 2H). 13C NMR 
(400 MHz, DMSO-d6, 25 °C): δ = 167.71, 150.12, 148.67, 145.43, 
140.62, 138.58, 132.23, 129.86, 125.78, 125.09, 124.83, 124.11, 
122.34, 119.81, 116.88, 114.89. ESI+-MS: m/z = 735.2124 ([LIr]

+ , 
calc. 735.1844). 
 
[Ir(Fppy)2Cl]2: 0.604 g (1.7 mmol) IrCl3

.3H2O and 0.719 g (3.7 
mmol) 2-(2,4-difluorophenyl)pyridine (Fppy) were added into a 
mixture of 2-ethoxyethanol/water (30 ml, v:v=3:1), and then reacted 
at 120 °C under the protection of N2 for 24 hours and then cooled to 
room temperature. 10 ml water was added to adjust the pH value of 
the reaction mixture. Precipitates were obtained by filtration, which 
was washed with small amounts of EtOH and ethyl ether, and then 
large amounts of n-hexane. Yellow product of [Ir(Fppy)2Cl]2 was 
obtained after drying (yield: 80%), which was applied directly into 
the next procedure without further  characterization due to its 
insolubility in common organic solvents. 
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[Ir(Fppy)2(BiBzImH2)]·Cl (LIr2·Cl): LIr2·Cl was obtained by the 
similar procedure to LIr·Cl unless [Ir(Fppy)2Cl]2 was used instead of 
[Ir(ppy)2Cl]2. Yield: 68%. 1H NMR (400 MHz, DMSO-d6, 25 °C): δ 
= 8.26 (d, 2H), 7.96 (t, 2H), 7.83 (d, 2H), 7.78 (d, 2H), 7.40 (t, 2H), 
7.16 (m, 4H), 7.06 (t, 2H), 6.20 (d, 2H), 5.81 (d, 2H). 13C NMR (400 
MHz, DMSO-d6, 25 °C): δ = 163.51, 163.44, 150.85, 140.25, 
139.96, 129.20, 126.08, 125.35, 124.88, 124.65, 123.35, 123.15, 
116.07, 115.27, 114.25, 114.09, 99.41, 99.14. ESI+-MS: m/z = 
807.1912 ([LIr2]+ , calc. 807.1468). 

 

 

 

 

 

Scheme 1 Synthetic route of Ru(II)/Ir(III) metalloligands.  

Syntheses of lanthanide complexes 

Ln(tta)3(H2O)2 (Ln = Nd, Yb or Gd)：0.667 g (3 mmol) 2-
thenoyltrifluoroacetone (Htta) was dissolved in 15 ml EtOH, and 
then 1 mol/l HCl was added to adjust the pH value to 6-7.  Then 
0.358 g (1 mmol) NdCl3·6H2O, 0.387 g (1 mmol) YbCl3·6H2O or 
0.372 g (1 mmol) GdCl3·6H2O was dissolved in 5 ml water and 
added into the solution of Htta. Then 100 ml water was added into 
the mixture and stirred at 60 °C for 2 hours and then cooled to room 
temperature. Precipitates were obtained by filtration, which was 
washed with water and dried in vacuum.  

LRu-Nd(tta)3：0.38 g (0.4 mmol) LRu·(PF6)2 and 0.34 g (0.4 mmol) 

Nd(tta)3(H2O)2 were added into 7 ml CH2Cl2 (DCM), and then 1 ml 
triethylamine (Et3N) was added dropwisely into the mixture and 
stirred for 10 minutes under room temperature. Then 5 ml n-hexane 
was added into the reaction solution and stirred for 2 minutes. The 
final product of LRu-Nd(tta)3 was obtained after filtration and washed 
with n-hexane and then dried naturally. Yield: 83%. ESI+-MS: m/z = 
1453.9939 ([LRu-Nd(tta)3-H

+]+, calc. 1454.0011). Anal. Calc. (%) for 
C70H68F21N10O6P2RuS3Nd (LRu-Nd(tta)3+2Et3N+2H++2PF6

-): C, 
43.18; H, 3.52; N, 7.20. Found: C, 43.41; H, 3.23; N, 7.47 %. 1H-
NMR (400 MHz, DMSO-d6, 25 °C): δ = 8.80 (d, 2H), 8.70 (d, 2H), 
8.16 (t, 2H), 7.98 (m, 4H), 7.78 (s, 2H), 7.55 (t, 4H), 7.44 (t, 2H), 
7.01 (t, 2H), 6.72 (t, 2H), 5.48 (d, 2H). 13C NMR (400 MHz, DMSO-
d6, 25 °C): δ = 159.34, 157.71, 152.43, 151.63, 144.21, 136.69, 
136.07, 127.60, 127.34, 124.21, 123.92, 121.73, 121.30, 117.38, 
113.05, 46.05. 

LRu-Yb(tta)3：LRu-Yb(tta)3 was obtained by the similar procedure 
to LRu-Nd(tta)3 unless Yb(tta)3(H2O)2 was used instead of 
Nd(tta)3(H2O)2. Yield: 85%. ESI+-MS: m/z = 1484.0606 ([LRu-
Yb(tta)3-H

+]+, calc. 1484.0695). Anal. Calc. (%) for 
C70H68F21N10O6P2RuS3Yb (LRu-Yb(tta)3+2Et3N+2H++2PF6

-): C, 
42.48; H, 3.47; N, 7.08. Found: C, 42.42; H, 3.60; N, 6.89 %. 1H-
NMR (400 MHz, DMSO-d6, 25 °C): δ = 8.85 (d, 2H), 8.75 (d, 2H), 
8.23 (t, 2H), 8.01 (m, 4H), 7.79 (d, 2H), 7.60 (t, 2H), 7.55 (d, 2H), 
7.47 (t, 2H), 7.36 (s, 1H), 7.07 (t, 2H), 6.79 (t, 2H), 5.70 (s, 1H), 
5.51 (d, 2H), 5.30 (s, 1H). 13C NMR (400 MHz, DMSO-d6, 25 °C): δ 
= 159.31, 157.68, 152.61, 151.73, 151.43, 143.75, 137.06, 136.47, 
132.60, 127.87, 127.49, 126.78, 124.32, 124.06, 122.65, 122.35, 
113.54, 52.45, 46.11. 

LRu-Gd(tta)3：LRu-Gd(tta)3 was obtained by the similar procedure 
to LRu-Nd(tta)3 unless Gd(tta)3(H2O)2 was used instead of 
Nd(tta)3(H2O)2. Yield: 80%. ESI+-MS: m/z = 1468.0151 ([LRu-
Gd(tta)3-H

+]+, calc. 1468.0152). Anal. Calc. (%) for 
C70H68F21N10O6P2RuS3Gd (LRu-Gd(tta)3+2Et3N+2H++2PF6

-): C, 
42.83 H, 3.47; N, 7.14. Found: C, 42.42; H, 3.32; N, 7.12 %. 

LRu2-Nd(tta)3 ： LRu2-Nd(tta)3 was obtained by the similar 
procedure to LRu-Nd(tta)3 unless LRu2·(PF6)2 was used instead of 
LRu·(PF6)2.  Yield: 80%. ESI+-MS: m/z = 1502.0034 ([LRu2-Nd(tta)3-
H+]+, calc. 1502.0013). Anal. Calc. (%) for C68H53F15N9O6PRuS3Nd 
(LRu2-Nd(tta)3+2Et3N+2H++2PF6

-): C, 44.48; H, 3.41; N, 7.01. 
Found: C, 44.66; H, 3.28; N, 7.02 %. 1H-NMR (400 MHz, DMSO-
d6, 25 °C): δ = 8.76 (d, 2H), 8.66 (d, 2H), 8.32 (m, 6H), 8.24 (d, 2H), 
7.83 (m, 2H), 7.78 (m, 2H), 7.55 (d, 2H), 7.01 (t, 2H), 6.63 (t, 2H), 
5.15(d, 2H). 13C NMR (400 MHz, DMSO-d6, 25 °C): δ = 153.87, 
153.04, 151.62, 149.74, 148.64, 135.89, 135.54, 130.47, 128.43, 
128.14, 126.66, 126.13, 122.53, 122.32, 113.39, 46.08. 

LRu2-Yb(tta)3 ： LRu2-Yb(tta)3 was obtained by the similar 
procedure to LRu2-Nd(tta)3 unless Yb(tta)3(H2O)2 was used instead 
of Nd(tta)3(H2O)2. Yield: 85%. ESI+-MS: m/z = 1532.0263 ([LRu2-
Yb(tta)3-H

+]+, calc. 1532.0296). Anal. Calc. (%) for 
C68H53F15N9O6PRuS3Yb (LRu-Yb(tta)3+Et3N+H++PF6

-): C, 45.92; H, 
3.01; N, 7.09. Found: C, 45.35; H, 3.22; N, 7.82 %. 1H-NMR (400 
MHz, DMSO-d6, 25 °C): δ = 8.77 (d, 2H), 8.67 (d, 2H), 8.35 (m, 
6H), 8.24 (d, 2H), 7.88 (m, 2H), 7.78 (m, 2H), 7.37(s), 7.52 (d, 2H), 
7.00 (t, 2H), 6.62 (t, 2H), 5.71(s), 5.19(d, 2H). 13C NMR (400 MHz, 
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DMSO-d6, 25 °C): δ 153.87, 153.04, 151.59, 149.75, 148.65, 144.09, 
135.89, 135.55, 132.62, 130.48, 128.44, 128.16, 126.82, 126.66, 
126.12, 122.52, 113.39, 46.18. 

LRu2-Gd(tta)3 ： LRu2-Gd(tta)3 was obtained by the similar 
procedure to LRu2-Nd(tta)3 unless Gd(tta)3(H2O)2 was used instead 
of Nd(tta)3(H2O)2. Yield: 82%. ESI+-MS: m/z = 1516.0160 ([LRu2-
Gd(tta)3-H

+]+, calc. 1516.0153). Anal. Calc. (%) for 
C68H53F15N9O6PRuS3Gd (LRu-Gd(tta)3+Et3N+H++PF6

-): C, 44.20; H, 
3.38; N, 6.97. Found: C, 43.77; H, 3.01; N, 7.29 %. 

LIr-Nd(tta)3：LIr-Nd(tta)3 was obtained by the similar procedure to 
LRu-Nd(tta)3 unless LIr·Cl was used instead of LRu·(PF6)2. Yield: 
45%. Anal. Calc. for C60H36F9N6O6S3ClIrNd (LIr-Nd(tta)3·Cl): C, 
45.72; H, 2.30; N, 5.33. Found: C, 45.53; H, 3.45; N, 5.30 %. 1H-
NMR (400 MHz, DMSO-d6, 25 °C): δ = 8.14 (d, 2H), 7.89 (d, 2H), 
7.77 (t, 4H), 7.67 (d, 2H), 7.54 (d, 2H), 7.07 (m, 4H), 6.89 (t, 2H), 
6.76 (t, 2H), 6.43 (d, 2H), 6.02 (d, 2H). 13C NMR (400 MHz, 
DMSO-d6, 25 °C): δ = 99.99, 46.21. 

LIr-Yb(tta)3：LIr-Nd(tta)3 was obtained by the similar procedure to 
LIr-Nd(tta)3 unless Yb(tta)3(H2O)2 was used instead of 
Nd(tta)3(H2O)2.  Yield: 39%. Anal. Calc. for C66H51F9N7O6S3ClIrYb 
(LIr-Yb(tta)3·Et3N·Cl): C, 46.46; H, 3.01; N, 5.75. Found: C, 45.32; 
H, 3.55; N, 5.80 %. 1H-NMR (400 MHz, DMSO-d6, 25 °C): δ = 8.13 
(d, 2H), 7.87 (d, 2H), 7.77 (t, 4H), 7.67 (d, 2H), 7.53 (d, 2H), 
7.37(s), 7.05 (m, 4H), 6.88 (t, 2H), 6.74 (t, 2H), 6.42 (d, 2H), 6.02 
(d, 2H), 5.71(s), 5.62(s), 5.30(s).  13C NMR (400 MHz, DMSO-d6, 
25 °C): δ = 168.31, 151.83, 151.69, 149.36, 145.55, 137.84, 132.49, 
129.51, 126.80, 124.86, 124.12, 123.55, 122.41, 122.17, 121.52, 
119.49, 115.71, 46.08. 

LIr-Gd(tta)3：LIr-Gd(tta)3 was obtained by the similar procedure to 
LIr-Nd(tta)3 unless Gd(tta)3(H2O)2 was used instead of 
Nd(tta)3(H2O)2.  Yield: 35%. Anal. Calc. for C66H51F9N7O6S3ClIrGd 
(LIr-Gd(tta)3·Et3N·Cl): C, 46.86; H, 3.02; N, 5.80. Found: C, 46.23; 
H, 3.62; N, 5.94%. 

LIr2-Nd(tta)3：LIr2-Nd(tta)3 was obtained by the similar procedure 
to LRu-Nd(tta)3 unless LIr2·Cl was used instead of LRu·(PF6)2.  Yield: 
33%. Anal. Calc. for C66H47F13N7O6S3ClIrNd (LIr2-
Nd(tta)3·Et3N·Cl): C, 45.32; H, 2.71; N, 5.61. Found: C, 44.56; H, 
2.98; N, 5.57 %. 1H-NMR (400 MHz, DMSO-d6, 25 °C): δ = 8.21 
(d, 2H), 7.89 (t, 2H), 7.70 (d, 2H), 7.58 (d, 2H), 7.18 (t, 2H), 7.12 (t, 
2H), 6.98 (t, 2H), 6.91 (t, 2H), 6.07 (d, 2H), 5.84 (d, 2H).  13C NMR 
(400 MHz, DMSO-d6, 25 °C): δ = 159.03, 157.33, 152.80, 152.60, 
142.00, 138.06, 137.50, 128.34, 127.89, 126.03, 125.13, 124.62, 
124.33, 115.54, 114.94. 

LIr2-Yb(tta)3：LIr2-Yb(tta)3 was obtained by the similar procedure 
to LIr2-Nd(tta)3 unless Yb(tta)3(H2O)2 was used instead of 
Nd(tta)3(H2O)2. Yield: 35%. Anal. Calc. for C72H62F13N8O6S3ClIrYb 
(LIr2-Yb(tta)3·2Et3N·Cl): C, 46.02; H, 3.33; N, 5.96. Found: C, 
46.02; H, 2.95; N, 6.20%. 1H-NMR (400 MHz, DMSO-d6, 25 °C): δ 
= 8.21 (d, 2H), 7.90 (t, 2H), 7.71 (d, 2H), 7.58 (d, 2H), 7.37(s), 7.18 
(t, 2H), 7.11 (t, 2H), 6.98 (t, 2H), 6.90 (t, 2H), 6.06 (d, 2H), 5.84 (d, 
2H), 5.71(s), 5.30(s). 

LIr2-Gd(tta)3：LIr2-Gd(tta)3 was obtained by the similar procedure 

to LIr2-Nd(tta)3 unless Gd(tta)3(H2O)2 was used instead of 
Nd(tta)3(H2O)2. Yield: 35%. Anal. Calc. for C72H62F13N8O6S3ClIrGd 
(LIr2-Gd(tta)3·2Et3N·Cl): C, 46.37; H, 3.33; N, 6.01. Found: C, 
46.36; H, 2.86; N, 6.43%. 

   

 

Scheme 2 Synthetic route of lanthanide complexes (Ln = Nd, Yb or Gd).  

Results and discussion 

The UV-vis absorption spectra of the Ru/Ir metalloligands and 
their Nd/Yb coordination complexes are shown in Fig. 1. As we can 
see, LRu metalloligand has multifold absorption bands, i.e., a strong 
and sharp peak around 290 nm originating from the →* transition 
of bpy and BiBzIm ligands; a structured absorption bands with 
multiple peaks from 310 to 420 nm, bearing ILCT (intraligand 
charge transfer) character; and  a long tail absorption band from 420 
to 530 nm, which can be assigned to 1MLCT (metal-to-ligand charge 
transfer) transitions from RuII metal center to ppy and BiBzIm 
organic ligands.20 

In comparison, the Nd/Yb complexes of LRu metalloligand also 
show the major UV absorption peak around 290 nm associating with 
ppy and  BiBzIm and the broad absorption band extending beyond 
550 nm contributed by the MLCT transitions of LRu metalloligand. 
Meanwhile, we can detect an obvious redshift for this MLCT 
absorption band due to lanthanide coordination. In addition, the 
originally structured ILCT absorption band around 300 to 400 nm 
was superimposed by a much stronger and sharper absorption peak 
centered at 350 nm. Based on the UV-vis absorption spectra of 
Ln(tta)3(H2O) shown in Fig. 1 inset, we can assign this band to the 
enol-form absorption of the tta ligands from Ln(tta)3(H2O) salts. 
Similar results are also observed in LRu2 and its Nd/Yb coordination 
complexes. While for the two Ir(III) metalloligands and Nd/Yb 
coordination complexes, there are mainly two absorption peaks at 
275 and 350 nm, attributed by →* transitions from ppy, BiBzIm, 
and tta ligands. Comparatively, the MLCT transitions based on Ir(III) 
metalloligands are not so impressive, which extend in the range from 
380 to 470 nm. This is in accordance with the general situation, in 
which the energies required for MLCT transitions are usually higher 
for Ir(III) than Ru(II) compounds with similar structures. 
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 a) 

 b)                                              

 c)  

 d) 

Fig. 1 The UV-vis absorption spectra of different Ru(II)/Ir(III) 
metalloligands and their Nd/Yb complexes. (a) LRu, (b) LRu2,  (c) LIr, (d) LIr2.  

The two Ru(II) metalloligands have wide excitation bands 
extending from 300 to 600 nm, and the excitation spectra detected 
for the two Ir(III) metalloligands cover 300 to 500 nm. As we can 
see in Fig. 2, LRu and LRu2 show strong emission bands centered at 
643 and 660 nm. And decay lifetime testing at room temperatue (239 
and 171 ns for LRu and LRu2) manifests the phosphorescent nature of 
the emission, originated from the 3MLCT excited levels of Ru(II) 
metalloligands. In comparison, the emissions of LIr and LIr2 appear 

in higher energy range, with maxima at 520 ( = 47 ns) and 523 nm 
( = 125 ns), respectively. It is noted here that a well-structured 
profile can be detected in the emission of LIr2 metalloligand at room 
temperature (also detectable in LIr, but less clearcut), which have 
also been observed in other literatures.21 

  

Fig. 2 Solid state emission of the Ru(II)/Ir(III) metalloligands measured at 

room temperatrure.  

The designed Ru(II)/Ir(III) metalloligands can be applied to 
efficiently sensitize the excited states of NIR-emitting Nd3+ and Yb3+ 
ions, as estimated by the 3MLCT energy state from the 
phosphorescence data of their Gd-complexes. From Fig. 3, we can 
see that the emission profiles tested for the LRu/Ir-Gd compounds at 
room temperature and 77 K show little difference, but their decay 
lifetimes are obviously prolonged at low temperature (99, 135, 36, 
66 ns at room temperature, and 177, 662, 683, 1095 ns at 77 K for 
LRu-Gd, LRu2-Gd, LIr-Gd, LIr2-Gd, respectively), in accordance with 
the general trend for phosphoresence emission from Ru(II)/Ir(III)-
based complexes. Compared with their corresponding Ru(II)/Ir(III) 
metalloligands, the emissions are broadened in these Gd complexes 
and obvious redshift can also be detected in LRu-Gd and LRu2-Gd 
complexes, showing the coordination effect of Gd3+. From the 
emission maxima, we calculated the 3MLCT energy state for the four 
metalloligands to be around 14, 286 (700 nm), 14, 184 (705 nm), 19, 
230(520 nm), and 20, 000 (500 nm) cm-1, respectively, which are 
suitable for sensitizing the 4F3/2 state of Nd3+ and 2F5/2 state of Yb3+ 
energy levels situated at around 10,000 cm-1. Therefore, for the 
Nd/Yb(III) coordination complexes assembled from the four 
metalloligands, the excitation into the Ru(II)/Ir(III) based MLCT 
transition resulted in the appearance of lanthanide-centered 
emissions occurring in the NIR region (Fig. 4). For Nd(III) 
complexes, there appear three emission peaks within 850-1500 nm: 
the main emission peak centered at 1061 nm (4F3/2→

4I11/2), and two 
other peaks centered at 895 nm (4F3/2→

4I9/2) and 1330 nm 
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