Dalton Transactions

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/dalton

Dalton Transactions

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Studies on the one-photon and two-photon properties of two watersoluble terpyridines and their zinc complexes

Pengfei Shi, *a, b Qin Jiang, A Xuesong Zhao, D Qiong Zhang and Yupeng Tian*b

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

Two water soluble 2,2':6',2''-terpyridine derivatives (TPYOH and O3TPY) with di(hydroxyethyl)amino or long (2-(2-methoxyethoxy)ethoxy)benzyl group respectively were designed and synthesized. The two terpyridine ligands and their Zn(II) complexes display strong one-photon fluorescence. An unusually large solvatechromism effect in ethanol and water was found, which was ascribed to their interactions with the solvent through hydrogen bonds. All the four compounds show evident two-photon absorption ability when evaluated by Z-scan technology. The free ligands could give distinct two-photon excited

fluorescence, and the emission of O3TPY could respond linearly with Zn^{2+} under the excitation of 780nm femtosecond laser. Only the complex ZnO3TPY, which possesses large π conjugation system and suitable election-donating groups, displayed emission maxima at 595nm when excited by 680~880nm laser.

15 Introduction

Due to the important role of Zn^{2+} in biological and life science, much attention were focused on the sensitive and quantitative measurement of trace Zn^{2+} in vivo.¹ Considering the large redshift in emission when terpyridine derivatives coordinating to $20 Zn^{2+}$, some novel terpyridines have been designed to act as Zn(II)

- fluorescence probes, which could preferentially respond to Zn^{2+} and even map the cellular Zn^{2+} distribution by means of confocal microscopy.² Meanwhile, some Zn-terpyridine complexes have been found to selectively recognize ATP (adenosine triphosphate)
- ²⁵ and PPi (pyrophosphate) ions, which are crucial in various metabolic processes by participation in enzymatic reactions.³ Many published optical analysis on Zn(II) and relevant researches were performed based on UV-Vis absorption spectra and singlephoton excited fluorescence.⁴ Two-photon confocal microscopy
- ³⁰ can be a superior alternative to single-photon microscopy due to its near-infrared excitation wavelength, deeper tissue penetration, efficient light detection, suppressed background signals and reduced phototoxicity.⁵ With the help of two-photon excitation microscopy it is possible to image the cellular zinc and
- ³⁵ phosphates with ideal resolution. So two-photon active Zn²⁺-selective fluorophores are of particular interest and a large numbers of molecules have been screened for cellular Zn(II) bioimaging based on two-photon confocal microscopy. ⁶ Fortunately, some Zn-terpyridine complexes have been reported
- ⁴⁰ to show marked two-photon absorption properties recently.⁷ Furthermore, some Zn-terpyridine complexes have been reported to display notable in vitro cytotoxicity and interact distinctly with DNA or protein.⁸ It's very meaningful to investigate the two-photon ability of the cytotoxic Zn-terpyridine complexes, which
- ⁴⁵ will help to reveal their accurate bio-targets and true antitumor mechanism.

With the aim to obtain terpyridines applicable for biological system, di(hydroxyethyl)amino and (2-(2-meth-oxyethoxy)ethoxy)benzyl groups were chose to combine with 2, 2':6',2''-⁵⁰ terpyridine and two novel terpyridines (O3TPY and TPYOH) behaving good water-solubility were obtained.⁹ Among them, the electron-donors and the terpyridine moiety were bridged by vinyl group in the O3TPY in order to improve the two-photon absorption cross-section (δ) values. The one-photon and two-⁵⁵ photon properties of the two terpyridines and their Zn(II) complexes (ZnO3TPY and ZnTPYOH) were investigated, the structure-property relationship was generally discussed in this paper.

Experimental section

60 1. General procedures

All the reagents were obtained commercially and used as supplied. Products were dried overnight in a vacuum desicator (CaSO₄) prior to characterization. The chemical structure of the terpyridine ligands and their Zn(II) complexes are described in ⁶⁵ scheme 1. The ¹H NMR and ¹³C NMR data were obtained with a 400 MHz Bruker DMX spectrometer and all shifts were quoted with respect to TMS. Electrospray Mass spectra were measured on a Micromass Platform II spectrometer. MAIDI-TOF data were acquired on Bruker Autoflex spectrometer. Elemental analysis ⁷⁰ was carried out on Heraeus CHN-O Rapid analytical instrument.

2. Single Crystal Structure Analysis:

X-ray crystallography data were collected on a Bruker APEX CCD X-ray diffractometer using Mo Ka radiation (k = 0.71073 Å), and the data were processed using the Bruker SAINT and 75 SADABS software packages. The structures were solved by direct methods using SHELXS-97, and refined by full-matrix least-squares on all F_0^2 data using SHELXL-97. All non-

hydrogen atoms were refined anisotropically and hydrogen atoms were included in idealised positions using the riding model. CCDC: 855404¹⁰, 1020953, 1020945 and 1020946, for the four compounds contained the supplementary crystallographic data s (These data can be obtained free of charge from the Cambridge

Crystallographic Data Centre).

3. Quantum Chemical Calculations:

Density functional theory (DFT) calculations were carried out using the Gaussian 09 suite of programs. The B3LYP functional 10 was employed in conjunction with the all-electron 6-31G(d) basis

set for all atoms. Calculated molecular geometry obtained from X-ray diffraction crystallographic data.

4. Two-Photon Excited Fluorescence Spectra Measurement:

The two-photon excited fluorescence (TPEF) spectra were ¹⁵ measured using a mode-locked Ti:sapphire laser (Coherent Mira900F) as the pump source with a pulse duration of 200 fs, a repetition rate of 76 MHz, and a single-scan streak camera (Hamamastu Model C5680-01) together with a monochromator as the recorder. The sample was dissolved in H₂O/acenonitrile ²⁰ (4:1) with a concentration of 1.0×10^{-3} mol·L⁻¹.

5. Measurement of Two-Photon Absorption Cross Section:

The two-photon absorption cross section (δ) was determined on the open-aperture Z-scan setup. All the optical studies were done using a femtosecond laser with pulse duration of 140 fs and 80

- ²⁵ MHz repetition rate. The thermal heating of the sample with high repetition rate (HRR) laser pulse was removed by the use of a mechanical chopper running at 1 kHz. The nonlinear absorption component was evaluated under an open aperture. The measured experimental data was fitted according to equation (1) to obtain
- $_{30}$ the value of the two-photon absorption coefficient (β). Furthermore, δ could be determined by equation (4).

$$T(z) = \frac{1}{q(z)\sqrt{\pi}} \int_{-\infty}^{+\infty} \ln[1 + q(z)] \exp(-\tau^2) d\tau$$
 (1)

$$q(z) = \beta I_0 L_{eff} / (1 + z^2 / z_0^2)$$
(2)

$$L_{eff} = (1 - e^{-\alpha L})/\alpha$$
(3)
$$\delta = h\beta\gamma/N_A C \times 10^{-3}$$
(4)

 $\delta = h\beta\gamma/N_A C \times 10^{-3}$ (4) Here, I₀ is the input intensity at the focus z = 0, L is the sample length, α is the linear absorption coefficient. $z_0 = \pi\omega_0^2/\lambda$ is the Rayleigh diffraction length, ω_0 is the radius of beam at focus. h is the Planck's constant, γ is the frequency of input intensity, N_A is 40 the Avogadro constant, and C is the concentration of the sample.

6. Synthesis of the terpyridines and Zn(II) complexes

4'-p-N,N-bis(2-hydroxyethyl)benzyl-2,2':6',2''-terpyridine
(TPYOH): A mixture of 10.5 g (0.05mol) of *p-N,N*-bis(2-hydroxyethyl)amino benzaldehyde, 14.5 g (0.12 mol) of 2-45 acetylpyridine, 20mL of 10 mol/L NaOH and 100 mL of ethanol were stirred vigorously at room temperature for 3 h, then cooled down to -4°C for 1h. The supernatant solution was decanted and the solid residue was dissolved in 200 mL of ethanol. 10 g of NaOH solid was added to the deep red solution and then 100 mL 50 of NH₃·H₂O (25%) was added dropwise. After the mixture had been refluxed for 4h the solvent was evaporated under high

been refluxed for 4h, the solvent was evaporated under high vacuum to obtain the crude product as a thick paste. 400 mL

solution of ethanol and diethyl ester (v:v = 1:15) was added to produce a yellow precipitate. The yellow solid was collected by 55 filtration and dried in vacuum. Yield: 46%. ¹H NMR (d₆-DMSO): δ (ppm): 3.52 (t, 4H, -CH₂O-), 3.61 (t, 4H, -NCH₂-), 4.85 (s, 2H, -OH), 6.87 (d, 2H, phenyl-H), 7.52 (m, 2H, C^{5,5"}-H), 7.78 (d, 2H, phenyl-H), 8.02 (m, 2H, C^{4,4"}-H), 8.65 (m, 4H, C^{3*,5*+6, 6"}-H), 8.76 (d, 2H, C^{3,3"}-H). ¹³C NMR (d₆-DMSO): δ (ppm): 53.80 (-60 NCH2-), 58.74 (-CH2O-), 112.43 (phenyl-C), 116.84 (-C^{3*,5*}-), 121.49 (-C^{3,5,3",5"}-), 123.83 (phenyl-C link to C^{4*}), 124.95 (phenyl-C), 128.27 (-C^{4,4"}-), 137.98 (-N-phenyl-C), 149.79 (-C^{4*}-

), 149.91 (-C^{6,6"}-), 155.98 (-C^{2',6"}-), 156.00 (-C^{2,2"}-). ESI-MS(+p): *m/z*=413.1 could be assigned as [TPYOH+H]⁺ (calc. m/z=413.1). 65 Elemental analysis for C25H24N4O2: Calc.: C, 72.80%; H, 5.86; N 12.59; Formet C, 72.50% (J, 56) (2, 72)

- N, 13.58; Found: C, 72.56%; H, 5.62; N, 13.69. 4'-p-[(β-(β'-methoxyethoxy)]vinyl-2,2':6',2''-terpyridine (O3TPY): 4 mmol of the sodium methoxide and 1.8 mmol of the methylphenyl-2,2':6',2"-terpyridine 4'-p-triphenylphosphine 70 bromide were dissolved in 15 mL of methanol, and then 2.0 mmol of 4-(2-(2-methoxyethoxy) ethoxy)benzaldehyde was added. The clear mixture was refluxed for 1 h and then the white precipitation of O3TPY was obtained. The solid was collected by filtration and washed with ethanol, diethyl ether, then dried in 75 vacuum. Yield: 42%. ¹H NMR (400 MHz, CDCl₃): δ(ppm): 3.41(s, 3H, -CH3), 3.59(t, 2H, ethyl-H), 3.74(t, 2H, ethyl-H), 3.89(t, 2H, -ethyl-O-CH2-C-), 4.19(t, 2H, -CH2-O-phenyl-), 6.94(d, 2H, -O-phenyl-H), 7.01(d, 1H, -vinyl-H), 7.14(d, 1H, vinyl-H), 7.38(m, 2H, C^{5,5"}-H), 7.49(d, 2H, -O-phenyl-H), 80 7.64(d, 2H, central phenyl-H), 7.92(q, 4H, C^{4,4"}-H plus central phenyl-H), 8.70(d, 2H, C^{6,6}"-H), 8.76(t, 4H, C^{3,3",3",5"}-H). ¹³C NMR(d₆-DMSO): δ(ppm): 58.74 (methyl-C), 67.84 (C-O-phenyl), 69.56 (ethyl-C), 70.31 (ethyl-C), 71.94 (C-O-Met), 115.32 (-O-
- phenyl-C), 118.09 (-C^{3',5'}-), 121.61 (-C^{3,3''}-), 125.11 (-C^{5,5''}-), s 125.88 (central phenyl-C), 127.76 (vinyl-C), 127.84 (vinyl-C), 128.719 (central phenyl-C), 129.93 (-O-phenyl-C), 130.23 (-Ophenyl-C), 136.44 (central phenyl-C), 137.88 (-C^{4,4''}-), 139.38 (central phenyl-C), 149.61 (-C^{4'}-), 150.52 (-C^{6,6''}-), 155.64(-C^{2',6'}-
-), 156.19 (-C^{2,2"}-), 159.08 (phenyl-C linked to O atom). ESI-MS ⁹⁰ (+p): m/z=530.6 could be assigned as $[O3TPY+H]^+$ (calc. m/z=530.6). Elemental analysis for C₃₄H₃₁N₃O₃, Calc.: C, 77.10; H, 5.90; N, 7.93%. Found: C, 77.25; H, 5.98; N, 7.86%.
- General synthetic procedure for the Zinc(II) complexes: A mixture of 1 mmol of Zn(BF₄)₂ and 2.2 mmol of the terpyridine 95 ligands in 10 mL CHCl3 and 10mL CH3OH was refluxed with stirring for 4h. Yellow precipitate was collected by filtration, washed with ethanol and ethyl ether, then dried in vacuum. Crystals suitable for X-ray crystallography diffraction were obtained by slow diffusion of diethyl ether into the acetonitrile ¹⁰⁰ solution. ¹H NMR for ZnTPYOH (d₃-CD₃CN): δ(ppm): 3.34 (t, 4H, OH), 3.72 (t, 8H, -CH₂O-), 3.84 (q, 8H, -NCH₂-), 7.09 (d, 4H, phenyl-H), 7.40 (m, 4H, C^{5,5"}-H), 7.84 (d, 4H, phenyl-H), 8.17 (m, 8H, C^{3,3",4,4"}-H), 8.73 (d, 4H, C^{6,6"}-H), 8.89 (s, 4H, C^{3',5'}-H). ¹³CNMR for ZnTPYOH (d₃-CD₃CN): δ(ppm): 53.79 (-NCH₂-), 105 59.25(-CH2O-), 112.73 (phenyl-C), 119.03 (phenyl-C linked to C4'), 121.77(-C^{3,3}"-), 123.07 (-C^{5,5"}-), 127.37 (phenyl-C), 129.29 $(-C^{4,4"})$, 141.22 $(-C^{3',5'})$, 147.92 (phenyl-C linked to N atom), 148.53 (-C^{4'}-), 149.59(-C^{6,6"}-), 151.40(-C^{2,2"}-), 155.87 (-C^{2',6'}-). MALDI-TOF: m/z=889.7 and 495.7 were assigned to $110 [ZnTPYOH]^+$ (calc. m/z=888.3) and $[ZnTPYOH+BF_4+H_2O]^{2+}$

(calc. m/z=496.5), respectively. Elemental analysis of C₅₀H₄₈N₈O₄B₂F₈Zn: C, 56.44, H, 4.55, N, 10.53%. Found: C, 56.28, H, 4.35, N, 10.46%. ¹H NMR for ZnO3TPY (d₃-CD₃CN): δ(ppm): 3.35(s, 6H, -CH3), 3.54(m, 4H, ethyl-H), 3.67(m, 4H, s ethyl-H), 3.83(m, 4H, -ethyl-O-CH2-C-), 4.19(m, 4H, -CH2-Ophenyl-), 7.05(d, 4H, -O-phenyl-H), 7.30(d, 2H, vinyl-H), 7.44(m, 6H, C^{5,5"}-H plus vinyl-H), 7.63(d, 4H, -O-phenyl-H), 7.87(d, 4H, central phenyl-H), 7.94 (d, 4H, central phenyl-H), 8.22 (m, 8H, C^{4,4",6,6"}-H), 8.77 (d, 4H, C^{3",3"}-H), 9.03 (s, 4H, ¹⁰ C^{3',5'}-H). ¹³CNMR for ZnO3TPY (d₃-CD₃CN): δ(ppm): 58.13

- (methyl-C), 67.76 (C-O-phenyl), 69.43 (ethyl-C), 70.41 (ethyl-C). 71.82 (C-O-Met), 115.06 (-O-phenyl-C), 121.21(vinyl-C), 123.38 (central phenyl-C), 125.29 (central phenyl-C), 127.40 ($-C^{3,3''}$ -), 127.69 (-C^{5,5}"-), 128.41 (-O-phenyl-C), 128.67 (-O-phenyl-C 15 linked to C=C), 130.02 (- $C^{4,4''}$ -), 130.77(- $C^{3',5'}$ -), 134.34 (central
- phenyl-C linked to C=C), 141.12 (central phenyl-C linked to C^{4'}), 141.44 ($-C^{4'}$ -), 148.16 ($-C^{6,6''}$ -), 150.01 ($-C^{2,2''}$ -), 155.93 ($-C^{2',6'}$ -), 159.34(phenyl-C linked to O atom). MALDI-TOF m/z=1122.3 was assigned as ZnO3TPY⁺ (calc. m/z=1122.4), 612.5 and 1247.7
- ²⁰ were assigned to [ZnO3TPY+BF₄+H₂O]²⁺ (calc. m/z=613.7), and $[ZnO3TPY + BF_4 + 2H_2O]^+$ (calc. m/z=1246.7), respectively.

Results and discussion

Synthesis and characterization 1.

- O3TPY was afforded by Wittig-reaction in methanol solution and 25 the target molecule was readily precipitated with high purity and good yield without further purification. The two signals at 7.06 and 7.14ppm (J=16.0Hz) in ¹H NMR spectra (Fig. S3) indicated the formation of trans-vinyl group. TPYOH was obtained by
- "one pot" method. Excess of aqueous NH₃ was used and the 30 overall yield was higher than using ammonium acetate. Zinc tetrafluoroborate was selected as the starting Zn(II) salt in
- the synthesis of the Zn(II) complexes of TPYOH and O3TPY, considering both the water-solubility and the purification effort. If the $Zn(NO_3)_2$ was used, the complexes need complicated
- 35 purification processes although the cationic ions were readily to be dissolved in water.

Scheme 1. The chemical structure of the terpyridine ligands and their Zn(II) complexes

2. Crystallographic results

Experimental details for the structural determinations of TPYOH, 50 O3TPY and their Zn(II) complexes are summarized in Table 1, while the selected bond lengths, angles are presented in Table S1(supporting information). The crystal structures of the terpyridines and their Zn(II) complexes are shown in Fig. 1. Both Zn(II) complexes present a $[Zn(terpyridine)_2]^{2+}$ cationic core. 55 Two terpyridines act as equatorial ligands in a double-tridentate

mode. The {N, N, N} coordination planes are nearly

perpendicular to each other with the dihedral angles of about 88.76° and 81.51° for ZnTPYOH and ZnO3TPY, respectively. The coordination distance of Zn-N_{lateral} (2.16~2.21Å in 60 ZnTPYOH and 2.17~2.21 Å in ZnO3TPY) is slightly longer than that of Zn-N_{central} (2.06~2.07 Å in ZnTPYOH and 2.07~2.10 Å in ZnO3TPY), which is comparable with those found in similar zinc(II) terpyridine complexes.⁸⁻¹¹

Fig. 1. Crystal structure of O3TPY, ZnO3TPY, TPYOH and ZnTPYOH. Hydrogen atoms are omitted in zinc complexes for 90 clarity.

There exists strong hydrogen-bonding (C-H^{...}O) between the oxygen atoms and the C-H on the pyridine ring in both the TPYOH and O3TPY (Fig S13). Intense H-bonds between the coordination cations and BF4 were found in both the ZnTPYOH 95 and ZnO3TPY. As shown in Fig. 2, the two BF₄ play crucial roles in connecting the cations into 3D networks and all fluorin atoms act as H-bonding acceptors. The H-bonding donors are the C-H from adjacent pyridine rings, benzene rings, and the hydroxyethyl groups (ZnTPYOH) or the methyl groups 100 (ZnO3TPY). Compared with their ligands, however, no oxygen atoms were found to participate in the formation of hydrogen bonds in both the Zn complexes.

	0.0.000			
ТРҮОН	O3TPY	ZnTPYOH	ZnO3TPY	
C. H. N.O.	C. H. N.O.	$C_{51}H_{52}B_2$	$C_{68}H_{62}B_2$	
$C_{25} \Gamma_{24} \Gamma_{4} O_{2}$	C341131113C3	F ₈ N ₈ O ₅ Zn	$F_8N_6O_6Zn$	
412.49	520.62	1006.00	1206.91	
412.40	529.02	1090.00	1290.81	
296(2)	293(2)	293(2)	293(2) K	
Totas comol	Manaalinia	Taialiaia	Triclinic	
Tetragonal	Monoclinic	Triclinic		
14(1) 1	D2(1)/	5.4	P-1	
14(1) cd	P2(1)/c	P-1		
11.9604(9)	21.569(2)	12.1579(9)	15.4795(7)	
11.9604(9)	11.9264(13)	14.2028(15)	15.7780(7)	
29.871(4)	11.1252(9)	15.1132(16)	16.7889(8)	
90	90	89.697(9)	102.259(4)	
90	100.590(10)	82.362(8)	111.596(4)	
90	90	71.041(8)	107.951(4)	
4273.0(8)	2813.1(5)	2444.2(4)	3372.1(3)	
8	4	2	2	
1 292	1 251	1 480	1 330	
1.202	1.231	1.409	1.559	
1744	1120	1132	1410	
0.082 mm^{-1}	0.001	0.501 mm^{-1}	0.444 mm^{-1}	
0.085 11111	0.081 11111	0.391 IIIII	0.444 11111	
2.73~25.02	3.35~28.94	3.04~25.02	3.07~25.04	
10051	9985	12172	19317	
10051				
1007	6268	8573	11805	
1887				
1.025	1.033	1.047	1.049	
0.0640	0.1220	0.0764	0.0901	
0.1813	0.3143	0.1714	0.2532	
	TPYOH C25H24N4O2 412.48 296(2) Tetragonal I4(1) cd 11.9604(9) 29.871(4) 90 91 1.282 10051 1887 1.025 0.0640	TPYOHO3TPY $C_{25}H_{24}N_4O_2$ $C_{34}H_{31}N_3O_3$ 412.48529.62296(2)293(2)TetragonalMonoclinicI4(1) cdP2(1)/c11.9604(9)21.569(2)11.9604(9)11.9264(13)29.871(4)11.1252(9)9090909090100.590(10)909090904273.0(8)2813.1(5)841.2821.251174411200.083 mm ⁻¹ 0.081 mm ⁻¹ 2.73~25.023.35~28.94100519985188762681.0251.0330.06400.12200.18130.3143	TPYOHO3TPYZnTPYOH $C_{25}H_{24}N_4O_2$ $C_{34}H_{31}N_3O_3$ $C_{51}H_{52}B_2$ $F_8N_8O_5Zn$ 412.48529.621096.00296(2)293(2)293(2)TetragonalMonoclinicTriclinicI4(1) cdP2(1)/cP-111.9604(9)21.569(2)12.1579(9)11.9604(9)11.9264(13)14.2028(15)29.871(4)11.1252(9)15.1132(16)909089.697(9)90100.590(10)82.362(8)909071.041(8)4273.0(8)2813.1(5)2444.2(4)8421.2821.2511.4891744112011320.083 mm ⁻¹ 0.081 mm ⁻¹ 0.591 mm ⁻¹ 2.73~25.023.35~28.943.04~25.02100519985121721887626885731.0251.0331.0470.06400.12200.07640.18130.31430.1714	

Table 1 Crystallographic Parameters for the four compounds

3. Single-photon absorption and emission

The UV-Vis absorption properties of the two terpyridines and their Zn(II) complexes were investigated in H₂O solution (Fig. 3 s and Table 2). The spectra of TPYOH and O3TPY exhibited three major bands in the region of 220-400 nm. The Zn(II) complexes have more complicate absorption profiles yet similar to each other. Interestingly, their absorption bands are remarkably redshifted in comparison to the respective absorption bands of

¹⁰ ligands, indicating a decrease in the band gap energy after Zn(II) coordination.

Fig. 3. UV-vis absorption spectra for two terpyridines and their Zn(II) complexes in H₂O solution $(1.0 \times 10^{-5} \text{ M})$.

 $_{25}$ To gain insight into the electronic transitions of terpyridine ligands and their Zn(II) complexes, TD-DFT calculations on the ground state (S_0) optimized structures were performed with the B3LYP functional and 6-31G(d) basis sets. The calculation

results are in accordance with the experimentally observed 30 absorption bands. The molecular orbitals of the TPYOH and ZnTPYOH are shown in Fig. 4 as an example. Notably, the HOMOs of TPYOH are mainly located on the di(hydroxyethyl)amino group, phenyl and the central pyridine ring of terpyridine moieties, while the LUMOs have confined 35 contributions from all the three pyridines. The lowest energy absorption in the TPYOH can be assigned to a $\pi(tpy) \rightarrow \pi^*(tpy)$ intramolecular charge transfer (ICT) transition with p(bishydroxylamino) $\rightarrow \pi(Ar)$ CT character. The absorption spectrum of ZnTPYOH displayed pronounced ligand-centered 40 (LC) transitions.

Fig. 4. Molecular orbitals for TPYOH (a) and ZnTPYOH (b and c) at their ground state (S_0) optimized geometries from TD-DFT ⁶⁵ calculations. Transition energies (in nm) were calculated using the TD-B3LYP method with 6-31G(d) basis sets.

Compounds	Exp ^a	Calc ^b	Transitions assignment
ТРҮОН	350(21.7) 290(24.7) 234(24.5)	286.7(4.32) 234.4(5.29)	HOMO→LUMO HOMO-1→LUMO
ZnTPYOH	441(51.0)	400(3.10)	HOMO-1→LUMO
	330(38.3)	328(3.78)	HOMO-3→LUMO
	316(37.7)	303(4.09)	HOMO-3→LUMO+1
	288(49.8)	296(4.18)	HOMO-3→LUMO+2
	240(45.6)	247(5.02)	HOMO-3→LUMO+3
O3TPY	340(28.2)	317(3.91)	HOMO→LUMO
	285(24.3)	285(4.34)	HOMO-1→LUMO

This journal is © The Royal Society of Chemistry [year]

	240(24.3)	244(5.07)	HOMO-2→LUMO	
	()	(0.07)		
ZnO3TPY	394(56.5);	375(3.30)	HOMO-1→LUMO	
	324(64.4);	331(3.74)	HOMO-1→LUMO+1	
	287(61.2);	283(4.38)	HOMO-3→LUMO+1	
	234(54.5);	256(4.84)	HOMO-4→LUMO+3	

Table 2. UV-vis absorption data for the compounds. ^{*a*} Experimental absorption wavelength (nm) and the molar extinction coefficient ($\epsilon \times 10^{-3}/M^{-1}$ cm⁻¹) ^{*b*} Calculated absorption maximum (nm) and excitation energies (eV).

- ⁵ The fluorescence spectra of the terpyridines and their Zn(II) complexes displayed strong broad emission bands (Fig. 5). The trends of redshift in emission were consistent with the absorption features, when compared with the emission spectra of TPYOH and O3TPY in H₂O, ZnTPYOH and ZnO3TPY showed a redshift
- ¹⁰ of 63nm and 81nm, respectively. The effect of solvent on the emission spectra was further examined and the recorded fluorescence spectra clearly displayed positive solvatechromism, indicating the polar excited states of the terpyridine ligands and Zn(II) complexes. This result also indicated that emission is CT
- ¹⁵ transition in nature. ¹² It's worthy to note that the emission maximum for all the four compounds is much longer in ethanol and H_2O than that in other polar solvents. When compared with that in DMF, the emission maximum of ZnO3TPY and ZnTPYOH in H_2O showed a redshift of 87nm and 70nm,
- ²⁰ respectively. The major cause for the redshift is attributed to the hydrogen-bonding effect between the complexes and the solvents. Since the derivative groups of N, N-(dihydroxyethyl)amino and (2-(2-methoxyethoxy)ethoxy)-benzene could interact evidently with the water or ethanol through hydrogen bonds, which will ²⁵ decrease the energy of the lowest excitation state and thus the ²⁶

 $_{35}$ Fig. 5 The normallized one-photon excited fluorescence of the four compounds in different solvents. The concentrations were 1.0×10^{-5} M.

4. Two-photon absorption and emission

- The TPA cross-section values (δ) of the terpyridines were 40 evaluated by Z-scan technology using 750 nm femtosecond laser. TPYOH and O3TPY behaved strong two-photon absorption ability (Fig. 6), which were remarkably higher (515 and 148 GM for TPYOH and O3TPY, respectively) than that of similar terpyridine derivatives.⁷ It's interesting to note that the δ value of
- ⁴⁵ TPYOH was much higher than that of O3TPY, which was differed from the common expectation that the increase of the

conjugation length leads to an increase of the TPA activity.¹³ Since the electron donating ability of di(hydroxyethyl)amino was stronger than that of the (2-(2-methoxy- ethoxy)ethoxy)benzyl ⁵⁰ group, it's more effective to improve the TPA ability of terpyridine derivatives by connecting strong electron-donating group than prolonging the π conjugation length. For verification reason, the 4'-p-9-anthracenevinyl-2,2':6',2''-terpyridine (antpy) that possessing a large π conjugation system but without electron-⁵⁵ donating group was chose as a reference, whose δ value was tested to be only 115GM.

Differed from our previous report on enhanced TPA ability of Cd(II), Zn(II) coordination complexes when compared with their terpyridine ligand,¹⁴ coordination to Zn(II) center here leads to a ⁶⁰ decrease of the TPA response, with the δ of 140 and 110 GM for ZnTPYOH and ZnO3TPY, respectively.

- $_{70}$ Fig. 6 Open-aperture Z-scan experimental data and fitting curves for four compounds in H₂O:acetonitrile(4:1) under 750nm laser beam. The concentration were $1.0{\times}10^{-3}$ M.
- The two terpydines display evident two-photon excited fluorescence (TPEF) under 700~940nm femtosecond laser (Fig. 75 S16), with the emission maxima around 507 and 480 nm for TPYOH and O3TPY in mixed H₂O: acetontrile (v:v=4:1) solution, respectively. Since much higher concentration used in the measurement of TPEF, the TPEF spectra showed distinct redshift when compared with the one-photon excited fluorescence in the 80 same solvent, due to the fluorescence reabsorption effect. Unexpectedly, the ZnO3TPY could display TPEF in H₂O/acetontrile (v:v=4:1) solution while no two-photon excited emission could be recorded for the ZnTPYOH under the same condition. Since the two-photon absorption spectrum of 85 ZnO3TPY showed a broad band at 740~800nm (Fig. 7, left), the TPEF of ZnO3TPY was recorded under 700-940nm femtosecond laser and showed a strong emission maxima at 595nm when excited by 780 nm laser (Fig. 7, right). When compared with the redshift (81nm) in the one-photon emission, the TPEF emission 90 band of ZnO3TPY showed an unusually large redshift of 130nm against that of O3TPY, which will bring great advantages in the future bioimaging of celluar Zn²⁺ using two-photon confocal microscopy, such as reduced background fluorescence interference and decreased photobleaching.

solution under different laser beam. The TPA spectrum was recorded using Z-scan technology and the concentration was 1.0×10^{-3} M.

- To examine the Zn(II) sensing ability of O3TPY using TPEF, s zinc titration experiment was carried out under 780nm laser (Fig.8). The TPEF of O3TPY was quenched gradually with the concentration increase of Zn^{2+} while the TPEF for ZnO3TPY increased, and the equivalent point appeared at 558nm. Since the required concentration of the sample for TPEF was much higher
- ¹⁰ than that for one-photon excited fluorescence and the two photon absorption effect at high concentration cannot be ignored, the O3TPY can respond linearly with the zinc concentration ranging from 2×10^{-6} to 3.5×10^{-4} mol/L, and the linear correlation coefficient R=0.99818.

Fig. 8. (left) The TPEF spectra of O3TPY in the absence and presence of Zn^{2+} .(right) The plot of TPEF intensity of the ²⁵ O3TPY- Zn^{2+} system *vs* Zn^{2+} concentrations (inserted is the linear fit of the data).

Conclusions

Herein, we designed two terpyridines with good water solubility and reported the facile synthesis procedures. The structure of the ³⁰ terpyridine ligands and their Zn(II) complexes were fully characterized by ¹H NMR, ¹³CNMR, ESI-MS, MALDI-TOF, elemental analysis and X-ray crystallography. The one-photon absorption of the four compounds was analyzed experimentally and theoretically. The absorption bands can be assigned to a

- ³⁵ $\pi(tpy) \rightarrow \pi^*(tpy)$ ICT transition with p(nitrogen or oxygen) $\rightarrow \pi(Ar)$ CT character. The four compounds could display strong one-photon fluorescence, and the di(hydroxyethyl)amino and the (2-(2-methoxy- ethoxy) ethoxy) benzyl groups played important roles in the solvatechromism effect on the emission
- ⁴⁰ spectra. The evaluation on the two-photon properties of the compounds demonstrated that the free terpyridines could behave good two-photon absorption properties, while the two-photon ability were weakened for their Zn(II) complexes. The two terpyridine ligands could display good two photon excited
- ⁴⁵ fluorescence (TPEF). Although TPYOH presented the highest TPA cross section values, its TPEF was fully quenched by the Zn(II) coordination. Only ZnO3TPY that possessing large π -conjugation system together with suitable electon-donating group could give an emission maxima at 595nm when excited by
- ⁵⁰ 680~880nm femtosecond laser. The TPEF titration experiment revealed that O3TPY could respond linearly with the Zn²⁺ concentration. The high water solubility and two-photon emissive ability of ZnO3TPY provides an excellent starting point for the development of cellular zinc two-photon fluorescent probes. The
- ss current results form an important base for future design of terpyridine based Zn(II) complexes with large TPA cross-section values and are important for the future Zn(II)-bioimaging using

two-photon confocal microscopy.

Acknowledgement

⁶⁰ We are grateful for the financial supports from the Natural Science Foundation of China (No. 21101069, 51432001, 51372003, 21271004, 21271003) for support of this work. Dr. Shi also thanks the Jiangsu Overseas Research & Training Program for University Prominent Young & Middle-aged Teachers and ⁶⁵ Presidents.

Notes and references

- ^a Chemistry Department, Huaihai Institute of Technology, Lianyungang, China. Fax: +86-518-81031298; Tel: +86-518-81031298; E-mail: shipf@hhit.edu.cn
- ^b Chemistry Department, Anhui University, Hefei, China. Fax: +86-55165107342; Tel: +86-551-65108151; E-mail: yptian@ahu.edu.cn
 † Electronic Supplementary Information (ESI) available: [¹H NMR,
 ¹³CNMR, ESI-MS and MALDI-TOF data for the four compounds; Selected bond lengthes and angels for the compounds; ORTEP drawing
 ⁷⁵ of the compounds: Molecular orbitals for O3TPY and ZnO3TPY based
- on TD-DFT calculations; TPEF spectra for TPYOH and O3TPY, etc.].
- Z. Xu, J. Yoon and D. R. Spring, *Chem. Soc. Rev.*, 2010, **39**, 1996-2006; Y. Tan, J. Gao, J. Yu, Z. Wang, Y. Cui, Y. Yang and G. Qian, *Dalton Trans.*, 2013, **42**, 11465-11470; L. Zhu, Z. Yuan, J. T. Simmons and K. Sreenath, *RSC Adv.*, 2014, **4**, 20398-20440.
- 2 Y. Q. Tan, M. Liu, J. K. Gao, J. C. Yu, Y. J. Cui, Y. Yang and G. D. Qian, *Dalton Trans.*, 2014, **43**, 8048-8053.
- 3 P. Das, A. Ghosh, M. K. Kesharwani, V. Ramu, B. Ganguly and A. Das, *Eur. J. Inorg. Chem.*, 2011, 3050-3058; L. J. Liang, X. J. Zhao and C. Z. Huang, *Analyst*, 2012, **137**, 953-958; A. Wild, A. Winter, M. D. Hagerabc and U. S. Schubert, *Analyst*, 2012, **137**, 2333-2337.
- 4 A. Ajayaghosh, P. Carol and S. Sreejith, J. Am. Chem. Soc., 2005, **127**, 14962-14963; Z. C. Xu, J. Yoon and D. R. Spring, Chem. Soc. Rev., 2010, **39**, 1996–2006; L. Zhu, Z. Yuan, J. T. Simmons and K. Sreenath, RSC Adv., 2014, **4**, 20398-20440
- 5 W. Denk, J. Strickler and W. W. Webb, Science, 1990, 248, 73-76; D. Kim, H. G. Ryu and K. H. Ahn, *Org. Biomol. Chem.*, 2014, **12**, 4550-4566
- 6 N. Y. Baek, C. H. Heo, C. S. Lim, G. Masanta, B. R. Cho and H. M. Kim, *Chem. Commun.*, 2012, 48, 4546-4548; G. Masanta, C. S. Lim, H. J. Kim, J. H. Han, H. M. Kim and B. R. Cho, *J. Am. Chem. Soc.*, 2011, 133, 5698-5700; K. P. Divya, S. Sreejith, P. Ashokkumar, K. Yuzhan, Q. Peng, S. K. Maji, Y. Tong, H. Yu, Y. Zhao, P. Ramamurthyc and A. Ajayaghosh, *Chem. Sci.*, 2014, 5, 3469-3474; Y. H. Gao, J. Y. Wu, Y. M. Li, P. P. Sun, H. P. Zhou, J. X. Yang, S. Y. Zhang, B. K. Jin and Y. P. Tian, *J. Am. Chem. Soc.*, 2009, 131, 5208-5213; C. B. Huang, J. L. Qu, J. Qi, M. Yan and G. X. Xu, *Org. Lett.*, 2011, 13, 1642-1645; P. Rivera-Fuentes, A. T. Wrobel, M. L. Zastrow, M. Khan, J. Georgiou, T. T. Luyben, J. C. Roder, K. Okamotobc and S. J. Lippard, *Chem. Sci.*, 2015, DOI: 10.1039/c4sc03388d
- 7 T. C. He, Y. Gao, R. Chen, L. Ma, D. Rajwar, Y. Wang, A. C. Grimsdale and H. D. Sun, *Macromolecules*, 2014, 47, 1316-1324; S. Righetto, S. Rondena, D. Locatelli, D. Roberto, Fr.

Tessore, R. Ugo, S. Quici, S. Roma, D. Korystovc and V. I. Srdanov, *J. Mater. Chem.*, 2006, **16**, 1439-1444;

- 8 .V. M. Manikandamathavan, T. Weyhermüller, R. P. Parameswari, M. Sathishkumar, V. Subramaniana and B. U. Nair, *Dalton Trans.*, 2014, **43**,13018-13031; Q. Jiang, J. H. Zhu, Y. M. Zhang, N. Xiao and Z. J. Guo, *Biometals*, 2009, **22**, 297-305.
- 9 R. Mohr, R. Van Eldik and H. Kelm, *Inorg. Chem.*, 1985, 24, 3396-3399; E. C. Constable, C. E. Housecroft, A. C.Thompson, P. Passaniti, S. Silvi, M. Maestri and A. Credi, *Inorg. Chim. Acta*, 2007, 360, 1102-1110; E. L. Crossley, D. Caiazza and L. M. Rendina, *Dalton Trans.*, 2005, 34, 2825-2826; E. C. Constable, C. E. Housecroft, N. S. Murray and J. A. Zampese, *Polyhedron*, 2013, 54, 110-118; E. C. Constable, M. Devereux, E. L. Dunphy, C. E. Housecroft, J. A. Rudd and J. A. Zampese, *Dalton Trans.*, 2011, 40, 5505-5515
- 10 The crystal structure was firstly appeared in "P. F. Shi, Q Jiang, H. C. Duan and D. Q. Wang, Chin. Chem. Lett., 2014, 25, 586-588".
- 11 M. A. Harvey, S. Baggio, A. Ibañez and R. Baggio, *Acta Cryst. C*, 2004, **60**, m375-m381
- 12 X. Peng, Y. Xu, S. Sun, Y. Wu and J. Fan, Org. Biomol. Chem., 2007,5, 226-228; W. Goodall and J. A. G. Williams, Chem. Commun., 2001, 2514-2515.
- 13 M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow,
- Z. Y. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne and J. L. Brédas, *J. Am. Chem. Soc.*, 2000, **122**, 9500-9510
- 14 D. M. Li, Q. Zhang, P. Wang, J. Y. Wu, Y. H. Kan, Y. P. Tian, H. P. Zhou, J. X. Yang, X. T. Tao and M. H. Jiang, *Dalton Trans.*, 2011, 40, 8170-8178; L. Grisanti, C. Sissa, F. Terenzia ni, A. Painelli, D. Roberto, F. Tessore, R. Ugo, S. Quici, I. Fortunati, E. Garbin, C. Ferranted and R. Boziod, *Phys. Chem. Chem. Phys.*, 2009, 11, 9450-9457.

Studies on the one-photon and two-photon properties of two water-soluble terpyridines and their zinc complexes

Pengfei Shi, Qin Jiang, Xuesong Zhao, Qiong Zhang and Yupeng Tian*^b The terpyridines and its Zn(II) complex processing suitable conjugation system and electron donors display strong two-photon excited fluorescence.

