This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Development of an aquacatalytic system based on the formation of vesicles of an amphiphilic palladium NNC-pincer complex

Fumie Sakurai, Go Hamasaka and Yasuhiro Uozumi*

Two amphiphilic palladium NNC-pincer complexes bearing hydrophilic tri(ethylene glycol) chains and hydrophobic dodecyl chains were designed and prepared for the development of a new aquacatalytic system. In water, these amphiphilic complexes self-assembled to form vesicles, the structures which were established by means of a range of physical techniques. When the catalytic activities of the vesicles were investigated in the arylation of terminal alkynes in water, they were found to catalyze the reaction of aryl iodides with terminal alkynes to give good yields of the corresponding internal alkynes. The formation of a vesicular structure was shown to be essential for efficient promotion of this reaction in water.

Introduction

Bilayer vesicles, which are formed by self-assembly of amphiphilic molecules, have received considerable attention as nanomaterials from a wide range of scientists. Several research groups have recently reported that organic molecules that have rigid planar backbones and contain both hydrophilic and hydrophobic groups can self-assemble to form bilayer architectures such as vesicles or nanotubes. If hydrophilic and hydrophobic side chains are incorporated onto rigid planar transition-metal complexes, the resulting amphiphilic complexes can self-assemble to form bilayer vesicles that show catalytic activities. On the basis of this concept, we designed and synthesized the amphiphilic palladium NNC-pincer complexes 1a and 1b (Figure 1). The prepared complexes 1a and 1b self-assembled in aqueous solutions to form bilayer vesicles. These vesicles efficiently catalyzed several organic transformations in water, including ring-opening of vinyl epoxides, the Miyaura–Michael reaction, and the cyclization of alkyne acids. The formation of bilayer vesicles was shown to be necessary for efficient promotion of these reactions. The promotion of these reactions through the formation of vesicles is explained as follows. The organic substrates are concentrated within the hydrophobic region of the bilayer membrane as a result of hydrophobic interactions, producing high concentrations of the substrate near the catalytic center and, consequently, giving rise to rapid reactions (Figure 2).

On the other hand, palladium-catalyzed arylation of terminal alkynes is one of the most useful synthetic means for making a carbon-carbon bond. To expand the range and usefulness of

![Figure 1 Amphiphilic palladium NNC-pincer complexes 1a and 1b.](image1)

![Figure 2 Concept of organic transformation within a bilayer membrane.](image2)
our concept, we examined the design and synthesis of new amphiphilic palladium NNC-pincer complexes 2a and 2b bearing both hydrophilic and hydrophobic side chains (Figure 3), their formation of vesicles 2a_vsc and 2b_vsc by self-assembly in water, and their use as catalysts in the arylation reaction of terminal alkynes in water. The formation of a vesicular structure was shown to be essential for efficient catalysis in water.

Results and Discussion

Synthesis of palladium NNC-pincer complexes 2

Amphiphilic palladium NNC-pincer complex 2a was prepared from 1,10-phenanthroline-5,6-diol (3) (Scheme 1). The reaction of 1,10-phenanthroline-5,6-diol (3) with CH₃(OCH₂CH₂)₃OTs (MeOTEGOTs) gave 5,6-bis(MeOTEGO)-1,10-phenanthroline (4) in 55% yield. Monoarylation of hydrophilic phenanthroline 4 was carried out with p-dodecylphenyllithium, which was generated in situ by treatment of p-bromododecylbenzene with n-BuLi at −10 °C, followed by aqueous quenching and subsequent rearomatization with MnO₂ to give compound 5 in 53% yield. Monoarylated phenanthroline 5 was converted into diarylated phenanthroline 6 under the similar arylation conditions in 52% yield. Treatment of diarylated phenanthroline 6 with PdCl₂(CH₃CN)₂ in methanol at 50 °C furnished the desired amphiphilic NNC pincer palladium complex 2a in 79% yield. The ¹H NMR spectra of ligand 6 and complex 2a are shown in Figure 4. Proton signals of 6 and 2a were assigned by H-H COSY and NOE experiments. Complexation of 6 with PdCl₂(CH₃CN)₂ gave the peaks derived from the unsymmetrical phenanthroline framework (Figure 4, bottom). ESI-MS analysis supported the structure of complex 2a (Figure 5).

We also synthesized amphiphilic palladium NNC-pincer complex 2b bearing hydrophilic and hydrophobic chains in the opposite orientation to those of complex 2a from 1,10-phenanthroline-5,6-diol (3) (Scheme 2). Thus, the hydrophobic dodecyl groups were introduced at the hydroxy groups of 3 to give 5,6-bis(dodecyloxy)-1,10-phenanthroline (7) in 72% yield.
the arylation of monoarylated phenanthroline 8. Treatment of diarylated phenanthroline 9 with PdCl$_2$(CH$_3$CN)$_2$ provided the desired amphiphilic palladium NNC-pincer complex 2b in 87% yield. The 1H NMR spectra of ligand 9 and complex 2b are shown in Figure 6. After complexation of 9 with PdCl$_2$(CH$_3$CN)$_2$, proton signals derived from the unsymmetrical phenanthroline structure were observed (Figure 6, bottom). The structure of complex 2b was supported by ESI-MS analysis (Figure 7).

Self-assembly of palladium NNC-pincer complexes 2a and 2b

Having prepared the desired complexes 2a and 2b, we examined their self-assembly behaviors (Figure 8). After screening of conditions for self-assembly, we found that complexes 2a and 2b both self-assembled in water to form the corresponding vesicles 2a$_{ves}$ and 2b$_{ves}$. Though the correlation between the conditions and the structure (shape and/or size) of the self-assembly is yet unpredictable, we found the reproducible assembling protocols. Thus, complex 2a was heated in water at 60 °C for 4 hours without stirring. After standing at 25 °C overnight, the resulting mixture was sonicated for 15 minutes to give a yellow suspension. Complex 2b was treated in water at 80 °C for 12 hours without stirring.

Scheme 2 Synthesis of amphiphilic palladium NNC-pincer complex 2b.

Figure 6 NMR spectra of 9 (top) and 2b (bottom).

Figure 7 Calculated (left) and observed (right) ESI mass spectra of [2b–Cl]$^–$.
Figure 8 Self-assembly of amphiphilic palladium NNC-pincer complexes 2.

The resulting aqueous mixture was cooled to 25 °C and then sonicated for 10 minutes to give a yellow slurry. Dynamic light-scattering (DLS) analyses showed that the average diameters of vesicles 2a$_{ves}$ and 2b$_{ves}$ were 554 and 985 nm, respectively (Figures 9a and 10a). To investigate the morphologies of the vesicles 2a$_{ves}$ and 2b$_{ves}$, the self-assembled architectures were characterized by means of various
By means of fluorescence microscopy (Figures 9d and 10d). Furthermore, confocal laser-scanning microscopy (CLSM) revealed the presence of an inner hydrophobic region within the exterior membranes of vesicles containing fluorescein (Figures 9e and 10e). These observations showed the presence of hollow structures with membranes (Figures 9b and 10b). Transmission electron microscopy (TEM) of vesicles confirmed that vesicles were spherical in shape (Figures 9a and 10a). Transmission electron microscopy (TEM) showed that vesicles had hollow structures (Figures 9c and 10c); TEM also showed that the thicknesses of the membranes of the observed vesicles were 14 and 32 nm, respectively. These observations suggested that membranes of consisted of tetralayer structure of and having a monomer length of approximately 3.1 nm (Figure 8, top) and decalayer structure of having a monomer length of approximately 3.4 nm (Figure 8, bottom), respectively. The addition of fluorescein as a fluorophore to aqueous suspensions of vesicles gave the corresponding fluorescent vesicles fluorescein and fluorescein. The incorporation of fluorescein into these vesicles was confirmed by means of fluorescence microscopy (Figures 9d and 10d). Furthermore, confocal laser-scanning microscopy (CLSM) showed the presence of hollow structures with membranes containing fluorescein (Figures 9e and 10e). These observations revealed the presence of an inner hydrophobic region within the exterior membranes of vesicles and . After heating of and at 100 °C in water for 1 hour, structural integrity was observed for both vesicles through TEM observation (see Electronic Supplementary Information).

Arylation of terminal alkynes in water

Having prepared and characterized vesicles and , we next explored their catalytic activities in the coupling reaction of iodobenzene with ethynylbenzene in water (Table 1). Vesicles promoted the reaction of iodobenzene with ethynylbenzene in water at 40 °C for 1 h in the presence of triethylamine to give 1,1'-ethylen-1,2-diyldibenzenes (12a) in 92% yield (Table 1, entry 1). In contrast, when the amorphous complex (non-assembled nanopowder of complex 2a) was used as the catalyst, only a 14% yield of the desired product was obtained (Table 1, entry 2). The formation of a vesicular structure therefore significantly accelerated the coupling reaction of iodobenzene with ethynylbenzene in water. In the presence of vesicles and the amorphous complex (non-assembled nanopowder of complex 2b), the reaction of iodobenzene with ethynylbenzene gave in yields of 32 and 30%, respectively (entries 3 and 4). The formation of vesicles from did not, therefore, improve its catalytic activity in this reaction. The catalytic activity of vesicles bearing hydrophobic dodecyl chains near the palladium center was greater than that of vesicles , which bore hydrophilic tri(ethylene glycol) chains near the palladium center (entries 1 and 3). The difference in the catalytic activities of and might be explicable as follows: when vesicles are used as the catalyst, the organic substrates (aryl iodides and alkynes) are present near the catalytic centers because the palladium atoms are directed to the hydrophobic regions; consequently, the coupling reaction proceeds smoothly. On the other hand, when vesicles are used as the catalyst, the approach of the organic substrates to the palladium is hindered because the palladium is present in a hydrophilic region and, consequently, the reaction does not proceed efficiently. The directions of the hydrophilic chains and the hydrophobic chains attached to the phenanthroline backbone therefore influence the catalytic activity. The simple palladium phenanthroline complexes did not efficiently promote the reaction (entries 5 and 6). We also examined the catalytic activities of and in organic solvents. In the presence of vesicles or the amorphous complex , the reaction did not proceed in toluene, dichloromethane, or tetrahydrofuran (THF) (entries 7–12). When acetonitrile or methanol was used as the solvent, the reaction gave only 3–11% yields of (entries 13–16). These results indicate that vesicles disassembled or dissolved in the organic solvents to give the catalytically less-active monomeric complex .
Table 1 The reaction of iodobenzene (10a) with ethynylbenzene (11a)\(^b\)

Entry	Catalyst	Solvent	Yield (%)	\\
1	2a_vscl	H\(_2\)O	92	\\
2	2a_amps	H\(_2\)O	14	\\
3	2b_vscl	H\(_2\)O	30	\\
4	2b_amps	H\(_2\)O	32	\\
5	13	H\(_2\)O	0	\\
6	14	H\(_2\)O	5	\\
7	2a_vscl	Toluene	0	\\
8	2a_amps	Toluene	0	\\
9	2a_vscl	CH\(_2\)Cl\(_2\)	0	\\
10	2a_amps	CH\(_2\)Cl\(_2\)	0	\\
11	2a_vscl	THF	0	\\
12	2a_amps	THF	0	\\
13	2a_vscl	CH-CN	3	\\
14	2a_amps	CH-CN	3	\\
15	2a_vscl	CHOH	11	\\
16	2a_amps	CHOH	7	\\

\(^{a}\) Reaction conditions: 10a (0.034 mmol), 11a (0.068 mmol), catalyst (8.5 × 10\(^{-5}\) mmol), Et\(_3\)N (0.1 mmol), solvent (1.0 mL), 40 °C. \(^{b}\) Isolated yield.

To investigate the scope of the acceleration effect resulting from the formation of vesicles 2a_vscl in the arylation of terminal alkynes, reactions of various aryl iodides 10 with a range of alkynes 11 were carried out in the presence of vesicles 2a_vscl or the amorphous complex 2a_amps in water (Scheme 3). Vesicles 2a_vscl promoted the reactions of 1-iodo-4- (trifluoromethyl)benzene (10b) or 1-iodo-4-methoxybenzene (10c) with ethynylbenzene (11a) in water to give desired internal alkynes 12b and 12c in yields of 63 and 85%, respectively. In contrast, the amorphous complex 2a_amps gave 12b and 12c in only 19 and 18% yields, respectively. A similar acceleration effect resulting from the formation of the vesicular structure was also observed in the reaction of 1-iodo-3- methylbenzene (10d) or sterically hindered aryl iodides such as 1-iodo-2-methylbenzene (10e) or 1-iodonaphthalene (10f) with ethynylbenzene (11a). Vesicles 2a_vscl also catalyzed the reaction of 2-iodothiophene (10g) with ethynylbenzene (11a) to give the desired product 12g in 75% yield, whereas the amorphous complex 2a_amps gave only a 24% yield of 12g. The reaction of iodobenzene (10a) with 1-ethynylcyclohexene (11b) proceeded in the presence of vesicles 2a_vscl to give alkyne 12h in 44% yield, whereas only a 9% yield of 12h was obtained when 2a_amps was used as the catalyst. The formation of vesicles therefore enhances the activity of the catalyst in the reactions of various aryl iodides with a range of alkynes.

Conclusions

In summary, we have designed and synthesized two amphiphilic palladium NNC-pincer complexes 2a and 2b bearing both hydrophilic and hydrophobic chains for the development of new aquacatalytic systems. These complexes self-assembled in water to form vesicles 2a_vscl and 2b_vscl, which were characterized by means of DLS, TEM, AFM, fluorescence microscopy, and CLSM. In the arylation of terminal alkynes in water, vesicles 2a_vscl showed a superior catalytic activity to that of the amorphous complex 2a_amps. The formation of a vesicular structure is essential for efficient promotion of this reaction. On the other hand, when vesicles 2b_vscl and amorphous complex 2b_amps were used as catalysts, the formation of vesicles 2b_vscl did not improve the catalytic activity for the reaction. The directions of the hydrophilic chains and the hydrophobic chains attached to the phenanthroline backbone therefore influence the catalytic activity. We are currently examining further applications of the aquacatalytic system based on the formation of vesicles 2a_vscl and 2b_vscl to a range of aqueous reaction systems, and these will be reported in due course.

Acknowledgements

We thank Associate Prof. Dr. R. Tero (Toyohashi University of Technology, Japan) for performing the AFM measurements.
Confocal images were acquired at the Spectrography and Bioimaging Facility, NIBB Core Research Facilities. The Computations were performed using Research Center for Computational Science, Okazaki, Japan. This work was supported by the JST-CREST and JST-ACCEL programs.

Notes and references

† Electronic Supplementary Information (ESI) available: Experimental details, additional TEM images and spectroscopic data for all products. See DOI: 10.1039/b000000x/

3 For selected reviews on catalytic applications of vesicles, see: (a) J. P. Hill, W. Jin, A. Kosaka, T. Fukushima, H. Ichihara, T. Aida, Angew. Chem. Int. Ed. 2004, 43, 8787, Japan

5 The molecular structures of 2a and 2b were preliminarily calculated by RHF/STO-3G

7 Typical procedure for the arylation of terminal alkynes: To a vial equipped with a screw cap, 1 mL aqueous suspension of 2a vscl (1.0 mg, 8.5 × 10⁻⁴ mmol), triethylamine (0.10 mmol, 0.063 mmol, 92%) as white solids.

8 In general, the size and shape of self-assembled architectures depend on the self-assembling conditions (temperature, pH, solvent, concentration, etc), though the correlation between the conditions and shape and/or size of the resulting assemblages is still unclear. For selected examples, see (a) B. J. L. M. Cornelissen and R. J. M. Nolte, Chem. Commun. 2013, 50, 1445; (b) M. Raynal, P. Ballester, A. Vidal-Ferran and P. W. M. N. van Leeuwen, Chem. Soc. Rev. 2014, 43, 1734.

9 After the reaction, TEM analysis showed that the vesicular structure was maintained (see Electric Supplementary Information).

10 We also tested the coupling reaction of 10a vscl with 11a in the presence of 1b vscl. 1a vscl, 1b vscl, and 1b vscl in water under the similar reaction conditions for Table 1 to give 12a vscl in 34%, 29, 23, and 27% yield, respectively. The formation of vesicles from 1a vscl did not accelerate the reaction.

11 Because of the organic solvent was incorporated into the vesicles, 2a vscl was maintained (see Electric Supplementary Information).

12 From TEM images of 2a vscl and 2b vscl, see Electronic Supplementary Information.

13 The reaction of iodobenzene (11a vscl) with 2a vscl (40 °C for 24 h in water) gave 1,1'-ethyne-1,2-diyldibenzene 12a vscl (11.5 mg, 0.063 mmol, 92%) as white solids.

14 The reaction mixture was extracted with tert-butyl-methyl ether (1.0 mL, 5 times). The combined organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The resulting residue was chromatographed on silica gel (elucent: hexane) to give 1,1'-ethyne-1,2-diyldibenzene 12a vscl (11.5 mg, 0.063 mmol, 92%) as white solids.

15 After the reaction, TEM analysis showed that the vesicular structure of 2a vscl was maintained (see Electric Supplementary Information).

16 The reaction of iodobenzene (10a vscl) with 1-phenylheptane with 2a vscl (40 °C for 24 h in water) gave 1,1'-ethyne-1,2-diyldibenzene (12a vscl) in 21% yield.