
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

Dalton
 Transactions

www.rsc.org/dalton

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


An experimental–computer modeling study 

of inorganic phosphates surface adsorption 

on hydroxyapatite particles 

 

Manuel Rivas,
1,♦♦♦♦ Jordi Casanovas,

2,♦♦♦♦ Luis J. del Valle,
1,♦♦♦♦ Oscar 

Bertran,
3,♦♦♦♦ Guillermo Revilla-López,

1
 Pau Turon,

4,*
 Jordi Puiggalí,

1,5,*
 

and Carlos Alemán
1,5,* 

1
 Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, 

Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain 

2
 Departament de Química, Escola Politècnica Superior, Universitat de Lleida, c/ 

Jaume II nº 69, Lleida E-25001, Spain 

3
 Departament de Física Aplicada, EEI, Universitat Politècnica de Catalunya, Av. Pla 

de la Massa, 8, 08700 Igualada, Spain 

4
 B. Braun Surgical, S.A. Carretera de Terrasa 121, 08191 Rubí (Barcelona), Spain 

5
 Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, 

Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona E-08028, Spain 

 

* Corresponding authors: pau.turon@bbraun.com, jordi.puiggali@upc.edu and 

carlos.aleman@upc.edu  

♦♦♦♦¶ 
These authors contributed equally to this work 

  

Page 1 of 41 Dalton Transactions

D
al

to
n

Tr
an

sa
ct

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



2 
 

ABSTRACT 

The adsorption of orthophosphate, pyrophosphate, triphosphate and a 

trisphosphonate onto hydroxyapatite has been examined using experiments and 

quantum mechanical calculations. Adsorption studies with FTIR and X-ray 

photoelectron spectroscopies have been performed considering both crystalline 

hydroxyapatite (HAp) and amorphous calcium phosphate particles, which were 

specifically prepared and characterized for this purpose. Density Functional Theory 

(DFT) calculations have been carried out considering the (100) and (001) surfaces of 

HAp, which were represented using 1×2×2 and 3×3×1 slab models, respectively. The 

adsorption of phosphate onto such two crystallographic surfaces is very favored from an 

energetic point of view, which is fully consistent with current interpretations of HAp 

growing process. The structures calculated for the adsorption of pyrophosphate and 

triphosphate evidence that this process is easier for the latter than for the former. Thus, 

the adsorption of pyrophosphate is severely limited by the surface geometry while the 

flexibility of triphosphate allows transforming repulsive electrostatic interactions into 

molecular strain. On the other hand, calculations predict that the trisphosphonate only 

adsorps onto the (001) surface of HAp. Theoretical predictions are fully consistent with 

experimental data. Thus, comparison of DFT results and spectroscopic data suggest that 

the experimental conditions used to prepare HAp particles promote the predominance of 

the (100) surface. Accordingly, experimental identification of the adsorption of 

trisphosphonate onto such crystalline particles is unclear while the adsorption of 

pyrophosphate and triphosphate are clearly observed.   
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INTRODUCTION 

Bone mineral crystals are compositionally and structurally similar to the synthetic 

hydroxyapatite (HAp), Ca10(PO4)6(OH)2.
1 Consequently, the ability of this bioceramic 

to interact with other with living systems, like cells, as well as with biomolecules are of 

key interest. In this work we focus on the capacity of HAp to interact with 

orthophosphate (
−3

4PO ), pyrophosphate ( −4
72OP ) and polyphosphate (polyP). 

Furthermore, the study has been extended to biophosphonates (BPs), which are stable 

analogues of inorganic pyrophosphates. In order to illustrate the relevance of this topic 

for both biomedicinal and biotechnological fields, relationships between all these 

compounds and HAp are briefly discussed below. 

In the last years scaffolds constructed with HAp have been used for bone 

regeneration.2-12 A very successful strategy was to enhance bone regeneration by 

adsorbing inorganic polyP onto HAp.13-18 PolyP, which is an orthophosphate polymer 

found in mammalian organisms,19 stabilizes basic cell growth and differentiation 

promoting bone regeneration.20-22 Furthermore, short chains of polyP have been 

detected, together with −4
72OP , in human platelets,23 linking coagulation and 

inflammation.24 PolyP has also been identified in patients with myeloma cells, a 

malignant transformation of plasma cells.25 In addition, polyp plays an important role in 

cancer metastasis26,27 and in virulence of different bacteria and a number of parasites.28  

On the other hand, early studies reported that polyP and 
−4

72OP  behave as HAp 

crystal growth inhibitors.29-31 More recently, Grynpas and coworkers32 proposed that the 

production of polyP, which forms strong complexes with divalent cations such as 

Ca2+,33 can lead to a high local accumulations of total phosphate and Ca2+. Accordingly, 

polyP was proposed to play an important role in cartilage mineralization and bone 
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formation, this hypothesis being supported by both the adsorption of polyP onto HAp 

and the correlation between the hydrolytic degradation of polyP in Ca2+-polyP 

complexes and the increment of 
−3

4PO  and Ca2+ concentrations.  

Despite fifteen years ago Okazaki et al.
34 proposed that DNA inhibits HAp growth, 

more recent studies proved that the formation of HAp can be regulated by DNA, which 

acts as a template in the process of “biomineralization”.35-38 Thus, the role of DNA as 

template to promote mineral formation and the own biomineralization mechanism has 

been recently examined at the atomic level.35-38 Results showed that calcium phosphate 

clusters are formed surrounding the polyP backbone of DNA, which acts as a very large 

nucleus for the growing of the HAp. Also, HAp nanoparticles are suitable as gene 

delivery systems for the transfection of cells with nucleic acids.39-41 Thus, HAp confers 

protection to DNA from chemical and enzymatic degradation, increasing the stability of 

the biomolecule.41,42  

On the other hand, the BPs the oxygen atom that links the phosphate groups of 

pyrophosphates is replaced by a carbon atom. This substitution provokes resistance 

towards both hydrolytic and enzymatic degradations.43 It has been observed that the 

affinity of BPs towards HAp can be modulated by varying the chemical nature of the 

groups attached to the tertiary carbon atom. In particular, the incorporation of amino 

functionalities increases the affinity towards HAp.44-46 Recent studies suggested that 

nitrogen-containing BPs form strong hydrogen bonds with the HAp matrix.47 

Furthermore, BPs are primary agents in the current pharmacological arsenal against 

different bone diseases (e.g. osteoporosis, Paget disease of bone and malignancies 

metastatic to bone).48 
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In this work we examine the adsorption of 
−3

4PO , 
−4

72OP , polyP and amino-

tris(methylenephosphonic acid), a BP hereafter denoted ATMP, on HAp using a 

combined experimental-theoretical approach. In order to provide a clearer picture about 

the influence of the phosphate size on the whole adsorption process, sodium 

triphosphate (Na5P3O10) has been used to describe polyP in both experiments and 

theoretical calculations. Initially, the adsorption of 
−4

72OP  and polyP on both amorphous 

calcium phosphate and crystalline synthetic HAp (hereafter named ACP and cHAp, 

respectively) has been investigated using FTIR spectroscopy and X-ray photoelectron 

spectroscopy (XPS). Once this has been proved and the influence of the compound 

concentration and the pH have been determined, valuable microscopic information 

about the adsorption of 
−3

4PO , 
−4

72OP , polyP and ATMP on HAp have been obtained 

using Density Functional Theory (DFT) calculations. 

 

METHODS 

Materials. Tetrasodium pyrophosphate (
−4

72OP ), sodium triphosphate (polyP), 

ATMP, ammonium phosphate dibasic [(NH4)2HPO4; purity ≥ 99.0%] and ammonium 

hydroxide solution 30% (NH4OH; purity: 28-30%) were purchased from Sigma-

Aldrich. Calcium nitrate [Ca(NO3)2; purity ≥ 99.0%] was purchased from Panreac 

(Barcelona, Spain). Ethanol (C2H5OH; purity ≥ 99.5%) was obtained from Scharlab 

(Barcelona, Spain). 

Synthesis of HAp. ACP and cHAp samples were prepared using the same procedure 

but applying different experimental conditions to the reaction mixture. Reagent 

conditions were adjusted to get a Ca/P ratio of 1.67. In all cases 15 mL of 0.5 M 

Page 5 of 41 Dalton Transactions

D
al

to
n

Tr
an

sa
ct

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



6 
 

(NH4)2HPO4 in de-ionized water (pH adjusted to 11 with ammonia 30% w/w) were 

added drop-wise (2 mL·min-1) and under agitation (400 rpm) to 25 mL of 0.5 M 

Ca(NO3)2 in ethanol. After that, the reaction mixture was stirred 1 h (400 rpm) at room 

temperature. In the case of ACP the resultant suspension was aged for 24 h at 37 ºC, 

whereas hydrothermal conditions were applied during 24 h for cHAp. In both cases, the 

precipitate was separated by centrifugation and sequentially washed with de-ionized 

water and a 60/40 v/v mixture of ethanol-water (twice). A white powder was obtained 

after freeze-drying. 

X-Ray diffraction. Crystallinity was studied by wide angle X-ray diffraction 

(WAXD). Patterns were acquired using a Bruker D8 Advance model with Cu Kα 

radiation (λ = 0.1542 nm) and geometry of Bragg-Bretano, theta-2 theta. A one-

dimensional Lynx Eye detector was employed. Samples were run at 40 kV and 40 mA, 

with a 2-theta range of 10-60, measurement steps of 0.02º, and time/step of 2-8 s. 

Diffraction profiles were processed using PeakFit v4 software (Jandel Scientific 

Software) and the graphical representation performed with OriginPro v8 software 

(OriginLab Corporation, USA). 

The crystallite size (L) in the direction representative to the (211) planes of samples 

was derived from the X-ray diffraction line broadening measurement using the Scherrer 

equation:49 

 
θβ

λ

cos

9.0
=L  (1) 

where λ is the wavelength (CuKα), β is the full width at half maximum height of the 

(211) line, θ is the diffraction angle and 0.9 is a shape factor.  

The crystallinity (χc) was obtained using the following Eqn:50 
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300

112/300

I

V
1 −=cχ  (2) 

where I300 is the intensity of the (300) reflection and V112/300 is the intensity of the 

hollow between the (112) and (300) reflections, which disappears in non-crystalline 

samples.  

Morphological characterization. Scanning electron microscopy (SEM) studies were 

carried out using a Focused Ion Beam Zeiss Neon40 microscope operating at 5 kV, 

equipped with an energy dispersive X-ray (EDX) spectroscopy system. Samples were 

deposited on a silicon disc mounted with silver paint on pin stubs of aluminum, and 

sputter-coated with a thin layer of carbon to prevent sample charging problems. 

HAp protonation assay. The protonation ability of ACP and cHAp samples was 

determined using the following procedure: HAp particles suspended in milli-Q water (1 

mg/mL) were protonated by adding an aqueous solution of 100 mM HCl and 50 mM 

NaCl up to pH≈ 3. Samples (5 mL) were maintained in a vial with continuous stirring, 

the pH values being determined every minute at 20ºC using a pH-meter. The total time 

for this assay was 15 minutes. 

Adsorption onto ACP and cHAP. The ability of ACP and cHAp to adsorb polyP, 

−4
72OP  and ATMP was determined using FTIR spectroscopy. The effects of both the 

concentration of adsorbate and the pH in the adsorption process were examined by 

preparing different working aqueous solutions, which were subsequently used for the 

incubation process. More specifically, the concentration of the adsorbate in the working 

solutions ranged from 25 to 200 mM while the pHs considered in this study were 4, 6, 7 

and 9. In the case of 
−4

72OP  such concentrations were reduced to a half (i.e. from 12.5 to 

100 mM) because of limitations in the solubility of this specie. 

Page 7 of 41 Dalton Transactions

D
al

to
n

Tr
an

sa
ct

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



8 
 

For the incubation, 500 µL of the working solution with the adsorbate were 

deposited onto 50 mg of ACP or cHAp. After overnight agitation at 25 ºC, adducts were 

separated by centrifugation at 6500 rpm during 5 minutes at 4 ºC. Sediments were re-

suspended in distilled water. After this process, which was repeated two times, the 

obtained pellets were frozen at -80 ºC for 3 h and, subsequently, the humidity was 

removed using a lyophilizer.  

Fourier transform infrared (FTIR) spectroscopy. Infrared absorption spectra were 

recorded with a Fourier Transform FTIR 4100 Jasco spectrometer in the 1800-700 cm-1 

range. A Specac model MKII Golden Gate attenuated total reflection (ATR) equipment 

with a heated Diamond ATR Top-Plate was used. The characteristic bands of the 

compounds studied in this work (substrates and adsorbed species) are listed in Table 1. 

X-ray photoelectron spectroscopy (XPS). XPS analyses were performed in a SPECS 

system equipped with a high-intensity twin-anode X-ray source XR50 of Mg/Al (1253 

eV/1487 eV) operating at 150 W, placed perpendicular to the analyzer axis, and using a 

Phoibos 150 MCD-9 XP detector. The X-ray spot size was 650 µm. The pass energy 

was set to 25 and 0.1 eV for the survey and the narrow scans, respectively. Charge 

compensation was achieved with a combination of electron and argon ion flood guns. 

The energy and emission current of the electrons were 4 eV and 0.35 mA, respectively. 

For the argon gun, the energy and the emission current were 0 eV and 0.1 mA, 

respectively. The spectra were recorded with a pass energy of 25 eV in 0.1 eV steps at a 

pressure below 6×10-9 mbar. These standard conditions of charge compensation resulted 

in a negative but perfectly uniform static charge. The C1s peak was used as an internal 

reference with a binding energy of 284.8 eV. High-resolution XPS spectra were 

acquired by Gaussian–Lorentzian curve fitting after s-shape background subtraction. 

The surface composition was determined using the manufacturer's sensitivity factors. 
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Quantum mechanical calculations. All DFT calculations were performed using the 

Gaussian 0951 computer package. Both the (100) and (001) surfaces of HAp, which 

were represented without periodic boundary conditions but using relatively large slab 

models, were considered for all the examined adsorbates. More specifically, the 

following strategy was used to choose the dimensions of the slab models. Initially the 

orthophosphate adsorption onto HAp was studied considering following slab 

dimensions for the (100) surface: 1×1×1, 1×1×2, 2×1×2 and 1×2×2; while for the (001) 

surface these were: 2×1×1, 2×2×1, 2×2×2 and 3×3×1. The selection of the models was 

based on the following two conditions: (i) the interaction pattern between the surface 

and the adsorbate is not altered by the enlargement of the slab dimensions (i.e. the 

influence of the boundary effects in the mode of interaction is null); and (ii) the 

variation of the binding energy (BE) due to the enlargement of the slab model is ≤ 8%. 

In this work, only results obtained using the two larger slab models, which were used to 

adsorb 
−4

72OP , polyP and ATMP, are discussed since interactions provided the smaller 

models are not representative. Table 2 displays the molecular formulas of all systems 

studied in this work (both adsorbed molecules and slab models).  

The hexagonal HAp crystal unit cell with P63/m geometry (a= b= 9.421 Å, c= 6.881 

Å, α= β= 90º, and γ= 120º) and the 4e Wyckoff position occupied by two hydroxyl 

ions, each with ½ occupancy,52 was generated and, subsequently, was cleaved to obtain 

the (100) and (001) surfaces. Initial configurations for the adsorptions complexes 

between the two considered surfaces and the four studied compounds (
−3

4PO , 
−4

72OP , 

polyP and ATMP) were prepared by considering all possible coordination modes. 

Geometries of the different initial adsorbate configurations for all the investigated 
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systems were fully optimized using the B3LYP53,54 functional combined with the 6-

31G(d) basis set. 

BEs were corrected with the basis set superposition error (BSSE) by mean of the 

standard counterpoise (CP). The BE of the complex is defined as usual by subtracting 

the energy of the surface and the adsorbate from the energy of the complex. It should be 

remarked that, due to the limitations of models described above (i.e. gas-phase, limited 

size of the surface, static description of the system, etc…), the calculated BEs cannot be 

interpreted as a quantitative description of the strength of the system. However, 

qualitative comparison of the relative BEs is expected to provide microscopic 

understanding of experimental observations. 

 

RESULTS AND DISCUSSION 

Characterization of ACP and cHAp. The morphologies of ACP and cHAp, which 

are displayed in Figure S1, reflect the noticeable influence of hydrothermal and aging 

conditions. cHAp samples, which were prepared using hydrothermal conditions, show 

laminar crystals and fusiform rods, while ACP particles obtained using open aging, 

exhibit an pseudo-spherical morphology of nanometric dimensions. The average 

dimensions of ACP pseudo-spheres and cHAp rods are displayed in Table 3.  

Characterization of two synthesized particles by X-ray diffraction (Figure S2) was 

focused on peaks at 2θ between 31.5º and 34.5º, which correspond to the (211), (112), 

and (300) HAp reflections. The crystallinity and crystallite size determined for ACP and 

cHAp samples are listed in Table 3. The physical differences between ACP and cHAp 

particles are expected to affect their properties. This is proved in Figure S3, which 

compares the response of the two HAp particles to acidic environments. Thus, titration 

Page 10 of 41Dalton Transactions

D
al

to
n

Tr
an

sa
ct

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



 

11 

results display a steep pH gradient for cHAp, whereas the slow and gradual variation of 

the pH evidences a remarkable buffering effect for the ACP sample. This result 

indicates that crystallinity plays a major role reducing the proton-buffering capacity of 

HAp.  

 

Experimental detection of adsorption onto ACP and cHAp. The FTIR spectra of 

the synthesized ACP and cHAP, polyP, −4
72OP  and ATMP are displayed in Figure S4, 

while the most characteristic bands of each compound are listed in Table 1. It should be 

noted that the asymmetric and symmetric stretching vibration of the P–O–P bridges are 

characteristic of polyP and 
−4

72OP , even though they are not observed for ACP and 

cHAp. The 
−2

3PO vibration modes of polyP and 
−4

72OP  are detected in 1000-1200 cm-1 

domain, as detailed in previous work.55 On the other hand, the ATMP spectrum was 

recently described by some of us.56 

Figure 1 displays the FTIR spectra of cHAp and ACP recorded after incubation in 

solutions with different concentrations of polyP, 
−4

72OP  and ATMP at neutral pH. For 

polyP the characteristic absorption band is clearly identified at around 891-894 cm-1 for 

all concentrations ≥ 50 mM, even though it is only a weak shoulder for 25 mM. The 

band at 734 cm-1 is only detectable for the largest concentration, 200 mM. Regarding 

the adsorption of 
−4

72OP , a very weak shoulder associated to the band at 889 cm-1 is 

observed for all tested concentrations while, in opposition, the band at 736 cm-1 remains 

practically undetectable. Although these results evidence the adsorption of polyP and 

−4
72OP , difficulties in the identification of some characteristic bands suggest some 

limitations in such association processes. Theoretical calculations provide microscopic 
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details about such limitations in next sub-sections. Unfortunately, identification of 

adsorbed ATMP molecules is a very complex task, especially in cHAp samples, in 

which no clear band is observed. For ACP, the shoulder detected at ∼900 cm-1 for 

ATMP concentrations ≤ 100 mM, transforms into a broad but weak band for 200 mM.  

The influence of the pH in the adsorption process is displayed in Figure 2, which 

shows the FTIR spectra of cHAp and ACP after incubation in 200 mM polyP, 100 mM 

−4
72OP  and 200 mM ATMP at pH 6, 7 and 9. As it can be seen, adsorption is detected in 

all cases, even though changes in the spectra recorded at pH 6 point to the degradation 

of the nanoparticles. This is particularly evident for ACP, which presents the higher 

proton-buffering capacity than cHAp. Such feature suggests that the chemical protection 

against the acid is provoked by the delivery of anionic species during the degradation 

process. On the other hand, the adsorption of polyP and 
−4

72OP  is apparently favored at 

pH 7 with respect to pH 9 for both ACP and cHAP, this feature being corroborated by 

the ratios (not shown) between the intensity of the characteristic band associated to each 

of these compound and the intensity of the 
−3

4PO  band for cHAP and ACP. 

The ability of cHAp and ACP to bind polyP and 
−4

72OP  has been corroborated by 

XPS. Figure S5 represents the characteristic XPS spectra in the O1s region of cHAp as 

prepared and after incubation in presence of polyP (200 mM), 
−4

72OP  (100 mM) and 

ATMP (200 mM). The sharp peak at 531.2 eV involve in all cases to the O1s of the 

−3
4PO  and OH– groups of cHAP.57 The spectra of samples incubated in presence of 

polyP and 
−4

72OP  show a shoulder at 533.3 eV, which corresponds to the oxygen atom 

involved in symmetric bridging P–O–P groups of the adsorbed molecules.58 This result 

supports the adsorption previously detected by FTIR spectroscopy. Finally, the broad 
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peak at 536.3 eV, which is only detected in samples with adsorbed polyP and 
−4

72OP , 

can be attributed to non-bridging oxygen atoms,59 water accompanying the adsorbed 

compounds60 or a combination of both.  

 

Theoretical characterization of orthophosphate adsorption onto HAp. The two 

HAp planes considered in this work are the (001) and (100), which is isostructural with 

the (010). The (001) is the most stable HAp surface61-64 and was identified as the crystal 

growth plane during the biomineralization of teeth and hard tissues.64-66 Figure 3a 

shows the projection of the (001) plane in the unit cell as well as the 2×2×1 and 3×3×1 

slab models. In order to preserve as much as possible the surface symmetry and the 

electroneutrality, species farthest from the center of the supercell were added in the first 

model, or removed in the second one. As a consequence of such changes, the 

boundaries of the two surfaces present some differences that involve the hydroxyl 

groups. However, comparison between the results obtained for these slab models (see 

below) indicated that such differences are located far enough from the adsorption sites 

and do not affect the interaction pattern. The selected 2×2×1 and 3×3×1 models contain 

201 and 293 explicit atoms, respectively. On the other hand, it is not possible to 

construct a slap of the (100) surface with same termination at both sides. Thus, 

construction of a stable (100) surface, in which the total dipole moment across the slab 

perpendicular to the surface is zero, leads to sides that differ in the content of OH– and 

Ca2+ ions. One side only contains Ca2+ and −3
4PO  while the other side involves Ca2+, 

OH– and −3
4PO . In a recent study41 we found that the binding of DNA is disfavored for 

the latter termination. In this study we have only considered the termination with OH– 
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and Ca2+ ions for the (100) surface. Figure 3b represents the projection of the (100) 

plane in the unit cell as well as the 1×2×2 slab model (176 explicit atoms).  

Although different initial configurations were considered for the adsorption of 
−3

4PO  

onto the (001) and (100) surfaces of HAp, all them converged to the same complex (i.e. 

excluding those complexes in which the adsorbate moved towards the outer regions of 

the finite model used to described the surface) and those in which the slab model was 

too small (i.e. 2×1×1 and 1×1×1 for the (001) and (100), respectively). Figure 4 displays 

details of the geometric features of the adsorbed complex obtained for each surface 

while binding energies (BEs) are displayed in Table 4. As it can be seen in Figure 4a, 

which represents the complex calculated using the largest slab model, the adsorption of 

−3
4PO  involves two interaction sites located at different heights. Consequently, the 

resulting Ca2+···O distances differ by ∼ 0.15 Å in the two calculated models. Although 

the BE improves by increasing the slab size of the (001) surface, the adsorption onto the 

(100) surface is clearly favored. The adsorption onto the (100) surface occurs through a 

tridentate coordination mode (Figure 4b). The additional interaction site and the most 

favorable geometry, which is reflected by smaller Ca2+···O distances, provoke a 

reduction in the BE with respect to that obtained the (001) surface. On the other hand, it 

should be mentioned that enlargement of the thickness of the simulated HAp using the 

slab models described in Table 2 does not provide any change in terms of both 

interaction pattern and relative BEs for both (100) and (001) surfaces (Table 4).  

The favorable BEs obtained for adsorption of 
−3

4PO  onto the examined surfaces 

(Table 4) is consistent with the different models used to explain the crystal growth of 

HAp. In the current interpretation of the crystal growth process, the existence of 

calcium phosphate clusters acting as HAp growth unit seems to be widely accepted.67,68 
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Following such cluster growth model, the formation of small calcium phosphate 

particles has been also examined using computer simulation techniques based on 

classical force-fields, which evidenced that clusters play a key role in the 

biomineralization process.38,69 Another model is the surface-induced crystallization, 

which is a common event in the mineralization of bone and dental hard tissues. The low 

interfacial energy between 
−3

4PO  and the HAp surfaces67,70 clearly suggests that 

adsorption of the former ions favors the crystal growth from an early forming phase. 

Quantum mechanical results described in this section evidence that the incorporation of 

new 
−3

4PO  ions onto both already formed crystals and incipient crystals formed through 

the aggregation of small clusters is very favored from an energetic point of view. 

 

Theoretical characterization of pyrophosphate adsorption onto HAp. Different 

possible orientations of the 
−4

72OP  anion onto the (100) surface of HAp were identified, 

all such configurations being constructed and used as starting geometries for 

calculations. Geometry optimizations using the 1×2×2 slab model led to different 

minima with favorable BEs. Figure 5a displays the disposition of the 
−4

72OP  molecule 

onto the (100) surface for the most stable complex, the BE being included in Table 4. 

The adsorption occurs through four monodentate sites, which provides a symmetric 

interaction pattern with two asymmetric bindings at each phosphate unit. Thus, the two 

Ca2+···O–P distances associated to each phosphate unit are ∼2.27 and 2.42 Å. Local 

minima with similar BEs and Ca2+···O–P distances were also obtained, a representative 

one being shown in Figure 5b. In this structure, which is 42 kcal/mol less stable than the 

global minimum, the interaction also occurs through four monodentate sites. 
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Calculations related to the adsorption of 
−4

72OP  onto the (001) surface did not lead to 

any stable complex. Thus, the most frequent situation, which was identified from 

different starting configurations, corresponded to the fragmentation of the −4
72OP  

molecule into 
−3

4PO  and −
3PO . Then, the 

−3
4PO  anion was adsorbed onto the surface in 

a coordination mode similar to that displayed in Figure 3a while the −
3PO fragment, 

which is less stable, was repelled by the surface.  

The overall of these results is fully consistent with experimental observations 

displayed in Figure 1. Thus, the very weak shoulder detected at 889 cm-1 indicates that 

the adsorption of −4
72OP onto the mineral is a restricted to surfaces in which the 

positions of the Ca2+ cations favor the process energetically. Furthermore, the 

disposition of adsorption sites with respect to crystallographic positions of Ca2+ and 

−3
4PO  in HAp suggests agree with the role attributed to 

−4
72OP as HAp crystal growth 

inhibitor.29-31 This is supported by the systematic formation of asymmetric links in all 

stable complexes, which are identified by different Ca2+···O–P. Thus, adsorbed −4
72OP

molecules should be viewed as important structural defects appeared onto the 

adsorption surface. Moreover, destruction of adsorbed 
−4

72OP  molecules by the action 

of tissue non-specific alkaline phosphatase has been shown to favor the mineralization 

by promoting the continuation of previously inhibited crystal growth.71   

 

Theoretical characterization of polyphosphate adsorption onto HAp. Six 

different configurations were constructed to study the adsorption of polyP onto each 

examined HAp surface. In the most stable structure obtained after optimization of the 
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configurations constructed for the (100) surface (Figure 6), the three phosphate units of 

the polyP molecule participate in the coordination with the surface. Specifically, six 

oxygen atoms interact with four Ca2+ cations at the surface and the Ca2+···O distances 

range from 2.372 to 2.498 Å. Comparison with the previously calculated complexes 

indicates that such interval of variation increases with the size of the adsorbate. Thus, 

the Ca2+···O distances in complexes involving 
−4

72OP  and 
−3

4PO  ranged from 2.270 to 

2.418 Å and from 2.307 to 2.327 Å, respectively. This is consistent with differences in 

the strength of the complexes. Analysis of the BEs obtained for the most stable complex 

of 
−3

4PO , −4
72OP  and polyP adsorbed onto the 1×2×2 slab model of the (100) surface 

(Table 4) indicates that the strength of the interaction between the adsorbate and the 

surface increases less than expected with the number of Ca2+···O interactions. Thus, the 

BE decreases -153.9 kcal/mol when the number of interactions increases from 3 in 

−3
4PO  to 4 in 

−4
72OP , such stabilization being of only -122.7 kcal/mol when the number 

of interactions enlarges from 4 to 6 in polyP. Such behavior is due to the fact that the 

restrictions in the complexation process increase with the number of phosphate units in 

the adsorbate. In order to avoid repulsive interactions with the anions located at the 

surface, the adsorbate adapts its geometry to the crystallographic positions of the Ca2+ 

ions, provoking strain. This effect increases with the size of the adsorbate, explaining 

the enlargement of the Ca2+···O distances and the reduction in the strength of the 

interaction.  

Most of the structures constructed to study the adsorption of polyP onto the 3×3×1 

slab model of the (001) surface led to the decomposition of polyP into fragments (i.e. 

one fragment remained adsorbed onto the surface while the other was repelled, as 

observed above for the pyrophosphate). However, a stable complex, which is displayed 
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in Figure 6a, was also achieved. In this structure two Ca2+ cations act as coordination 

sites, interacting with two and one oxygen atoms located at the two end phosphate units 

of the adsorbed polyP molecule. In contrast, the central phosphate unit of polyP does 

not interact with the surface. The most remarkable characteristic of this complex is the 

significant strain exhibited by the adsorbate. This is reflected by the values of the two 

∠P–O–P angles, which are 174.1º and 105.8º in the complex and 144.2º in the free-state 

(i.e. ∠P–O–P angles are 137.2º and 140.4º in the structure displayed in Figure 6b). In 

spite of this strain and poor coordination, the Ca2+···O distances are relatively short in 

comparison to those obtained for the (100) surface (Figure 6b). The BE is similar to that 

obtained for the 
−4

72OP  molecule adsorbed onto the (100) surface, which showed four 

Ca2+···O interactions.  

The overall of these results indicate that adsorption of polyP onto HAp is easier than 

of −4
72OP . The BE decreases with the increasing number of phosphate units when the 

Ca2+ sites are located at favorable positions, as occurs in the (100) surface (Table 4). 

Furthermore, the additional phosphate unit of polyP facilitates the interaction with 

surfaces in which the position of the coordination sites is not adequate. Thus, although 

unfavorable repulsive electrostatic interactions induced by the (001) surface provokes 

strain in central phosphate unit of polyP, an energetically favorable adsorption process 

is achieved through the end phosphate units. In contrast, the repulsive electrostatic 

interactions exerted by the (001) surface provoked the fragmentation of 
−4

72OP . These 

features are in excellent agreement with experimental observations displayed in Figures 

1 and 2, which evidence that the adsorption of polyP onto cHAp is more clear than that 

of
−4

72OP  for all the tested concentrations.  
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Theoretical characterization of ATMP adsorption onto HAp. Five different 

starting configurations of ATMP adsorbed onto the (100) surface were build. After 

geometry optimization, none of such complexes resulted stable and the adsorbate broke 

into two fragments. As occurred for 
−4

72OP , a fragment remained onto the surface while 

repulsive interactions repelled the other.  

Six starting geometries were constructed for the adsorption of ATMP onto the 3×3×1 

slab model of the (001) surface, the most stable structure derived from geometry 

optimization being displayed in Figure 7. In this tricoordinated structure ATMP makes 

one monodentate O···Ca2+ interaction and two bidentate interactions, in which two 

different oxygen atoms bind the same Ca2+. The Ca2+···O distances range from 2.358 to 

2.541 Å, evidencing that the adsorption of ATMP onto the (001) surface is due to the 

balance between the number and strength of the Ca2+···O interactions. Furthermore, 

comparison of the geometries displayed in Figures 6b and 7, as well as of the BEs 

(Table 4) clearly indicates that the adsorption of ATMP onto the (001) surface is 

favored with respect to the adsorption of polyP on the same surface.  

It is worth noting that the overall of theoretical results is fully consistent with the 

FTIR spectra displayed in Figure 1. Thus, calculations predict that complexes derived 

from the adsorption of polyP and −4
72OP onto the (100) surface of HAp are very stable 

from an energetic point of view, whereas the adsorptions of such species onto the (001) 

surface are energetically disfavored. In contrast, DFT calculations predict that ATMP 

only adsorbs onto the (001) surface (Figure 7). FTIR spectra clearly proved the 

adsorption of polyP and 
−4

72OP  onto cHAp suggesting that such crystalline 

nanoparticles are dominated by the (100) surface. According to this, the adsorption of 

Page 19 of 41 Dalton Transactions

D
al

to
n

Tr
an

sa
ct

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



20 
 

ATMP onto cHAp should not be a favored process and, consistently, no clear 

absorption band was identified for cHAp incubated in ATMP solutions. This excellent 

correlation between theoretical and experimental results provides direct understanding 

on the adsorption mechanism. Furthermore, it should be noted that previous studied 

evidenced that the dominant surface of crystalline nanoparticles depend on the 

experimental conditions used for their preparation.41 This feature suggests that the 

adsorption process can be modulated a priori during the synthesis of HAp. 

 

Adsorption provokes the nucleation of crystals. As a proof of concept, the 

growing of polyP, 
−4

72OP  and ATMP crystals onto the surface of cHAp and ACP 

particles was investigated. Thus, molecular adsorption is necessarily the initial stage of 

such surface-induced crystal growing process. Figure S6 shows high resolution SEM 

micrographs of cHAp and ACP samples after incubation in concentrated solutions of 

polyP (2M), −4
72OP (1M) and ATMP (2M). As it can be seen, in all cases crystals grew 

onto the surface of both cHAp and ACP particles corroborating the molecular adsorción 

processes described in previous sub-sections. 

 

CONCLUSIONS 

The combination between experimental techniques and atomistic quantum 

mechanical calculations have been used to prove that the interaction betwwen 
−3

4PO , 

−4
72OP , polyP or ATMP and HAp occurs in very different ways. While the adsorption 

of 
−3

4PO  onto HAp is a very favored process that promotes the crystal growth, the 

interaction of 
−4

72OP  with the mineral depends on the geometry of the crystal surface, 
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which can induce strong repulsive surface···adsorbate interactions. An intermediate 

situation is observed for polyP that, due to its higher number of phosphate units, 

remains adsorbed onto all tested surfaces. Thus, when the geometry of the surface is not 

appropriated, the adsorbed polyP molecule turns repulsive interactions into molecular 

strain while retain enough attractive adsorbate···surface interactions. The interactions 

described by theoretical calculations are fully consistent with experimental data, which 

clearly indicate that polyP adsorbs onto cHAp more easily than 
−4

72OP . On the other 

hand, DFT calculations predict the molecular architecture of ATMP is not compatible 

with the geometry of the (100) surface while adsorption of such BP onto the (001) 

surface is energetically favored. This, result is fully consistent with the conclusions 

reached from the comparison of theoretical and experimental results achieved for mono-

, di- and triphosphates, which indicated that the behavior of the cHAp particles prepared 

in this work is dominated by the (100) surface. 

In summary, our findings provide relevant information related not only with the 

abilities of crystalline HAp and ACP to interact with 
−3

4PO , 
−4

72OP , polyP and ATMP 

but also with the chemical microscopic details that are responsible of the formation or 

not of such interactions. The interactions between the inorganic systems described in 

this work are relevant for the biomedical field. Phosphates play a crucial role in bone 

regeneration and have been identified in platelets and carcinogenic cells. The fact that 

phosphates have an important role in cancer metastasis and in the virulent effects of 

some bacteria and parasites, make these results interesting for the design of new 

treatments based on the adsorption ability of HAp. On the other hand, nitrogen-

containing BPs are currently used in medical therapies related with bone degradation 

and malignancies, as for example osteoporosis and metastasis, respectively. Also results 
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obtained in the work contribute to understanding of biomineralization, which should be 

considered relevant not only as new therapeutic approximation but also as a process 

related with the origin of life. 
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Table 1. Characteristic FTIR bands of the species studied in this work. 

 

 

Compound  νννν 

ACP and cHAp −3
4PO  ν1 

962  

 −3
4PO  ν3 

1022, 1059, 1089  

polyP P–O–P symmetric stretching  734 

 P–O–P asymmetric stretching 890  

 −2
3PO  vibrations 1100-1200 

−4
72OP  P–O–P symmetric stretching  736 

 P–O–P asymmetric stretching 889 

 −2
3PO  vibrations 1100-1200 

ATMP P–O–CH2 stretching 1070 

 asymmetric vibrations of alkylphosphonic  939 

 symmetric vibrations of alkylphosphonic  1000 

 P–C stretching 985 
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Table 2. Molecular formula of all systems studied in this work 

 

# System Molecular formula 

Adsorbed compounds Orthophosphate  −3
4PO  

 Pyrophosphate −4
72OP  

 PolyP  −5
103OP  

 ATMP −6
332 )PON(CH  

(100) Surface 1×1×1 slab model Ca10(PO4)6(OH)2 

 1×1×2 slab model Ca20(PO4)12(OH)4  

 2×1×2 slab model Ca40(PO4)24(OH)8 

 1×2×2 slab model Ca40(PO4)24(OH)8  

(001) Surface 2×1×1 slab model Ca20(PO4)12(OH)4 

 2×2×1 slab model Ca40(PO4)24(OH)8 

 2×2×2 slab model Ca80(PO4)48(OH)16 

 3×3×1 slab model Ca90(PO4)54(OH)18  
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Table 3. Physical parameters as determined by SEM and X-ray diffraction for ACP and 

cHAp. 

 

 ACP cHAp 

Average radius (R)  and length (ℓ) of the 

observed nanostructures 

R= 2.6±0.2 nm R= 2.8±0.2 nm 

ℓ = 21±3 nm 

Cristallinity (see Eqn 1) χc= 3±1% χc= 56±4% 

Crystallite size (see Eqn 2) L= 6±1 nm L= 55±8 nm 
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Table 4. 

 

Surface Slab model Adsorbate BE (kcal/mol) 

(001) 2×2×1 −3
4PO  -518.8 

 2×2×2 −3
4PO  -526.4 

 3×3×1 −3
4PO  -548.1 

  −4
72OP  Unstable 

  PolyP -735.0 

  ATMP -1138.5 

(100) 1×1×2 −3
4PO  -531.5 

 2×1×2 −3
4PO  -545.9 

 1×2×2 −3
4PO  -594.9 

  −4
72OP  -748.8 

  PolyP -871.5 

  ATMP Unstable 
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CAPTIONS TO FIGURES 

Figure 1. FTIR spectra of cHAp (left) and ACP (right) samples incubated in 

presence of different concentrations of polyP (25, 50, 100 and 200 mM; top), 
−4

72OP  

(12.5, 25, 50 and 100 mM; middle) and ATMP (25, 50, 100 and 200 mM; bottom). The 

concentration of adsorbate increases from top-to-down. The most important band are 

marked with arrows. 

Figure 2. FTIR spectra of cHAp (left) and ACP (right) samples incubated in 

presence of polyP (200 mM; top), 
−4

72OP  (100 mM; middle) and ATMP (200 mM; 

bottom) at pH 6, 7 and 9. The pH increases from top-to-down. The most important band 

are marked with arrows. 

Figure 3. Unit cell (left) and n × m × n slab models (right) used to represent the (a) 

(001) and (b) (100) surfaces in DFT calculations. 

Figure 4. Lowest energy structure obtained for the adsorption of 
−3

4PO  onto the (a) 

(001) and (b) (100) surfaces of HAp. The (001) and (100) surfaces are represented by 

3×3×1 and 1×2×2 slab models. Ca2+···O interactions are indicated by blue lines, 

distances (in Å) between the coordination sites and the oxygen atoms of the adsorbate 

being also displayed. 

Figure 5. (a) Lowest energy structure and (b) representative local minimum obtained 

for the adsorption of 
−4

72OP  onto the (100) surface of HAp. The (100) surface is 

represented by a 1×2×2 slab model. Ca2+···O interactions are indicated by blue lines, 

distances (in Å) between the coordination sites and the oxygen atoms of the adsorbate 

being also displayed. 
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Figure 6. Lowest energy structure obtained for the adsorption of polyP onto the (a) 

(001) and (b) (100) surfaces of HAp. The (001) and (100) surfaces are represented by 

3×3×1 and 1×2×2 slab models. Ca2+···O interactions are indicated by blue lines, 

distances (in Å) between the coordination sites and the oxygen atoms of the adsorbate 

being also displayed. 

Figure 7 Lowest energy structure obtained for the adsorption of ATMP onto the 

(001) surface of HAp, which is represented by a 3×3×1 slab model. Ca2+···O 

interactions are indicated by blue lines, distances (in Å) between the coordination sites 

and the oxygen atoms of the adsorbate being also displayed. 
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Figure 2  
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Graphical Abstract 

 

 

 

The adsorption of different phosphates and a triphosphonate onto hydroxyapatite has 

been highlighted combining experiments and theoretical calculations.  
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