Catalysis Science & Technology

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/catalysis

(
- 19	
	_
	0
	ā)
- 7	5
(Ф
(5
- j	
(
(
	CDD
	ecnn
	ecnne
	Iecnn
	& lecun
0 1 0 0	
	ce & lecun
	ocience & lecnne
	Science & lechne
	s ocience & lecnne
	Is acience & lecnne
	sis ocience & lecnne
	SIS SCIENCE & LECUN
	ysis acience & lecnne
	Ilysis acience & lecnne
	alysis ocience & lecnne
	talysis ocience & lecnne
	atalysis ocience & lecnne
Contraction Contraction Contraction	atalysis ocience & lecnne
	Catalysis Science & Lechne

1	Role of different coordinated Cu and reactive oxygen species		
2	on the highly active Cu-Ce-Zr mixed oxides in NH ₃ -SCO: A		
3	combined <i>in situ</i> EPR and O ₂ -TPD approach		
4	Zhenping Qu ^{a+} *, Zhong Wang ^{a,b+} , Xiaoyu Zhang ^a , Hui Wang ^a		
5	^a Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental		
6	Sciences and Technology, Dalian University of Technology, Dalian, 116024, China		
7	^b Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese		
8	Academy of Sciences, Qingdao, 266101, China		
9			
10	Abstract		
11	Novel Cu-Ce-Zr mixed oxides were synthesized by citric acid sol-gel methods,		
12	and it exhibited an excellent NH ₃ -SCO activity (180°C, TOF=1.33 h^{-1}). The finely		
13	dispersed CuO, Cu-Ce-Zr solid solution and monomeric Cu ²⁺ ions in octahedral sites		
14	were the main active sites. The finely dispersed CuO species was NH ₃ adsorption sites,		
15	and this adsorption capacity could be improved by its good reducibility. The		
16	Cu-Ce-Zr solid solution was an important intermediate in oxygen transfer from bulk		
17	to surface. <i>In-situ</i> EPR analysis indicated that the isolated Cu^{2+} locating in octahedral		
18	sites was more active compared with that of locating in square-planar pyramidal sites,		
19	and it induced the formation of more Cu-Ce-Zr solid solution. Meanwhile, in-situ		
20	O2-TPD result showed that both adsorbed oxygen and bulk lattice oxygen were active		
21	oxygen adspecies, and the adsorbed oxygen were more active than bulk lattice oxygen		
	 ⁺ These authors contributed equally to this work * To whom correspondence should be addressed. E-mail: <u>quzhenping@dlut.edu.cn</u>. Tel/Fax: 0086-411-84708083 1 		

- 22 in NH_3 oxidation.
- 23

Keywords: Cu-Ce-Zr; Octahedral sites; Preparation method; Selective catalytic
oxidation of ammonia

26

27 **1 Introduction**

28 The selective catalytic oxidation (SCO) of NH₃ to nitrogen was one of effective technology for abating NH₃ and consequently it has become of increasing interest in 29 recent years ^{1,2}. The metal oxide catalyst with low cost has been demonstrated to be 30 one of the most efficient catalysts for the NH₃-SCO reaction. Up to now, CuO/La₂O₃³, 31 M-Mg-Al (M=Ni, Fe, Cu and Co)⁴, Mg-Cu-Fe⁵, CuO/RuO₂⁶ and Cu-Ce⁷ metal 32 oxide catalysts have been developed. Our previous study found that the Ce-Zr mixed 33 oxides showed the NH₃ oxidation activity to a certain extent and higher N₂ selectivity 34 ⁸. Recently, Yan et al. ⁹ demonstrated that the modifying with Ru for $Ce_{0.6}Zr_{0.4}O_2$ 35 could facilitate NH₃ oxidation, though the operation temperature was still quite high (> 36 350°C). Afterward, the CuO-CeO₂ catalyst prepared by surfactant-templated method 37 exhibited a high molar ratio of finely dispersed CuO species and strong synergetic 38 39 interaction between copper oxide species and cerium oxides, which significantly decreased the operation temperature ($\sim 250^{\circ}$ C)¹⁰. Unfortunately, the thermal 40 resistance of CuO-CeO₂ mixed oxides need to be further enhanced. In addition, in 41 42 spite of all the studies reporting the different factors that influenced redox properties and catalytic behavior of Cu catalyst, the nature of the active sites has not been 43

Catalysis Science & Technology

44 completely elucidated. Some authors ¹¹ indicated that the catalytic activity was 45 correlated with the concentration of isolated Cu^{2+} in a square planar coordination, 46 while others have shown that well dispersed CuO species exhibited much higher 47 activity and reducibility compared to the exchanged Cu ions ¹². Thus the coordination 48 environment and the roles of Cu species need to be further confirmed.

Recently, a large number of works have been focused on the ternary mixed 49 50 oxides for various catalytic reactions. Most researchers believed that the synergistic interaction of different components increased the dispersion degree of active 51 52 constituents, and its several properties such as reducibility, pore structure, and mechanical and chemical properties could be also obviously improved, which finally 53 determined their excellent catalytic activities and stabilities ¹³⁻¹⁵. It has been known 54 that the preparation method was a better way to adjust the dispersion of the active 55 component. Compared with MnO_x/TiO₂ prepared by an impregnation or 56 co-precipitation method, the catalyst prepared by sol-gel method exhibited a fine 57 dispersion of manganese oxides and higher activity and better tolerance to SO₂ in 58 NH₃-SCR¹⁶. Moreover, varying preparation method often led to the change in 59 coordination environment and location of metal ions and metal oxide in catalyst ¹⁷. 60 61 Especially, for metal-modified CeO_2 catalysts, the more labile oxygen and enhanced oxygen storage capacity were also obtained when there was a truly homogenous 62 distribution of metal ions¹⁸. 63

In the present study, the dispersion of active components, reducibility of metal oxides, the concentration of oxygen vacancies and the mobility of lattice oxygen over

Catalysis Science & Technology Accepted Manuscript

66 Cu-Ce-Zr mixed oxides were well adjusted by optimizing the preparation methods. 67 The novel ternary Cu-Ce-Zr catalyst prepared by citric acid sol-gel method showed 68 the excellent activity for NH₃ oxidation ($T_{90\%}$ =190°C). The role of different 69 coordination environment and location of Cu species were systematically studied by 70 *in situ* EPR, and the active oxygen species was also confirmed by *in situ* O₂-TPD.

71

72 **2** Experimental

73 **2.1 Catalyst preparation**

The ternary metal oxides catalysts were prepared by citric acid sol-gel method (SOL), homogeneous precipitation method (HP), incipient wetness impregnation method (IW), respectively. In all samples, the molar ratio of Ce/Zr was 4, and the Cu loading content was 6 wt%. All samples were calcined at 450°C for 3 h in air. The detailed procedures are described in the Supporting Information. The as-prepared samples were referred to Cu-Ce-Zr (SOL), Cu-Ce-Zr (HP), Cu/Ce-Zr (IW), Cu/CeO₂-ZrO₂ (IW).

81

82 **2.2 Catalyst characterization**

XRD experiment was recorded on a Rigaku D/max-γb X-ray diffractometer with
monochromatic detector equipped with CuKα radiation. The bulk metal composition
was determined by inductively coupled plasma atomic emission spectrometry
(ICP-AES, OPTIMA 2000). XPS was measured using an X-ray photoelectron
spectrometer (ESCALAB 250Xi, Thermo) with a monochromatic X-ray source of Al

88	K α under ultra-high vacuum (3~2×10 ⁻⁶ Pa). H ₂ -TPR was performed on a Chem BET
89	TPR/TPD Chemisorptions Analyzer. The NH ₃ -TPD were performed in a fixed-bed
90	reaction using quadrupole mass spectrometer (GSD 320). O ₂ -TPD was also performed
91	by quadrupole mass spectrometer (GSD 320) on a fixed-bed continuous flow
92	micro-reactor system. In-situ electron paramagnetic resonance (EPR) measurements
93	were performed at room temperature using a Bruker (A200-9.5/12) operating at the X
94	band (~9.8 GHz).

96 **2.3 Catalytic activity tests**

The NH₃-SCO activity was studied in a fixed-bed flow reactor (8 mm in interior diameter) using 200 mg of catalyst. The typical reactant gas composition was as follows: 1000 ppm NH₃, 10 vol% O₂, and balance He. The total flow rate of the reaction mixture was 100 ml/min, and the gas hourly space velocity (GHSV) was about 40000 h⁻¹. The inlet and outlet gas were analyzed by Gas Chromatograph using a 5A column with a TCD detector for N₂ and the NH₃ analyzer (GXH-1050, Beijing) to monitor the concentration of ammonia.

Turnover Frequency (TOF) is defined as the number of NH₃ molecules
 converted per surface active Cu site per second.

$$\text{TOFs} = \frac{C_{\text{NH}_3} X_{\text{NH}_3} V_{\text{gas}} M_{\text{Cu}}}{m_{\text{cat}} w_{\text{Cu}} D_{\text{Cu}}} \text{ [h}^{-1}\text{]}$$

where $C_{\rm NH_3}$ is the concentration of NH₃; $X_{\rm NH_3}$, the conversion of NH₃ based on N₂ formation within the differential kinetic regime (NH₃ conversion below ~10%); $V_{\rm gas}$, the total molar flow rate; $M_{\rm Cu}$, the atomic weight of Cu; $m_{\rm cat}$, the mass of 109 catalyst in the reactor bed; w_{Cu} , the mass fraction of Cu measured by ICP; D_{Cu} , the 110 dispersion of Cu determined by N₂O oxidation and followed H₂ titration using the 111 procedure described by Van Der Grift et al. ¹⁹.

112

113 **3 Results**

3.1 Distribution of Cu species in catalysts

115 Fig. 1 shows the XRD patterns of different catalysts. The strong diffraction peaks of cubic fluorite-phase CeO₂ were observed at $2\theta=28.5^{\circ}$, 33.3° , 47.7° , and 56.8° , 116 corresponding to the (111), (200), (220), and (311) crystal faces over pure CeO₂ 117 catalyst ²⁰. It was interesting to note that the diffraction peaks shifted to higher angles 118 with the co-incorporation of both Cu and Zr. And no peaks splitting for the three 119 120 phases (Cu, Ce and Zr) were detected, which suggested the formation of Cu-Ce-Zr solid solution ²¹. In addition, for the Cu/Ce-Zr (IW) catalyst, the small diffraction 121 peaks for bulk CuO (2θ =35.4° and 38.5°) could be identified ²². No CuO characteristic 122 123 diffraction peaks were observed for other three samples, and the copper species were 124 in the form of Cu-Ce-Zr solid solution or a combination of the finely dispersed CuO and Cu-Ce-Zr solid solution. 125

H₂-TPR behaviors was used to confirm the state of Cu species, as shown in **Fig. 2A**. Generally, the reduction of Zr^{4+} occurred above 1000°C and the Ce⁴⁺ for surface and bulk ceria could be reduced at least 500°C and 780°C ^{23, 24}, respectively. Thus the reduction peaks in the range of 100-500°C were attributed to the reduction of Cu species for all mixed oxides. The zone (I) peaks were proposed as the reduction of the

Catalysis Science & Technology

131	finely dispersed CuO species strongly interacting with ceria, whereas the zone (II)
132	peaks were due to the reduction of Cu^{2+} ions in Cu-Ce-Zr solid solution ^{10, 25} . The
133	zone (III) peaks were related to the reduction of bulk CuO ²⁶ . Combining with XRD
134	results, it was reasonable to conclude that finely dispersed CuO species and Cu-Ce-Zr
135	solid solution existed in all samples. And the bulk CuO species was only observed in
136	Cu/CeO ₂ -ZrO ₂ (IW) and Cu/Ce-Zr (IW) catalysts. The incipient wetness impregnation
137	method decreased the homogeneity of mixed oxides compared with single step
138	method, resulting in the formation of bulk CuO. Moreover, it was found that more
139	bulk CuO was formed on the Cu/Ce-Zr (IW) sample.

140 Meanwhile, EPR technology was used to probe the hyperfine structure of Cu species, as shown in **Fig. 3**. By analyzing the hyperfine features of catalysts, a doublet 141 142 spectral features centered at $g_{\perp}=2.060$ (A₁=14 G) (labeled K) appeared, which has been reported to be resulted from the Cu²⁺ dimers ²⁷. Usually, the shortest separation 143 distance between neighboring Ce⁴⁺ ions was 3.811Å in the lattice. Then it was 144 possible that such Cu^{2+} ions (3.5Å) was located by substitution of two Ce^{4+} in 145 neighboring positions, so the type K signal could be observed. This also provided the 146 predominant evidence for the formation of Cu-Ce-Zr solid solution, which was in 147 148 agreement with the XRD and H₂-TPR results. Another broad and poorly resolved signal B centered around at g=2.130 was observed over all samples. Its wide line 149 shape and unresolved hyperfine splitting might be attributed to the dipolar broadening 150 effects produced by mutual interactions between paramagnetic Cu²⁺ ions, suggesting 151 that the corresponding ions were located in a Cu²⁺-containing aggregated phase or Cu 152

Catalysis Science & Technology Accepted Manuscript

Catalysis Science & Technology Accepted Manuscript

oxide clusters ²⁸. Thus the finely dispersed CuO species should be responsible for the 153 B signal. In addition, two A signals (A1 and A2) corresponding to the isolated 154 monomeric Cu^{2+} ions in sites with an axial symmetry environment were observed. A 155 central signal (A₁) around at $g_{1/2}=2.211$ (A_{1/2}=170 G) and $g_{\perp}=2.054$ (A_{1/2}=28 G) 156 composed of four narrow hyperfine splitting in its parallel and perpendicular 157 components, which was attributed to Cu^{2+} ions in octahedral sites with tetragonal 158 distortion ²⁹. The signal A₂ with well-resolved hyperfine structure at least in parallel 159 component ($g_{//}=2.152$, $A_{/}=81$ G) was correlated with Cu²⁺ species in square-planar 160 pyramidal sites ³⁰. The EPR results not only provided an additional evidence for the 161 162 formation of finely dispersed CuO and Cu-Ce-Zr solid solution, but also confirmed the existence of isolated monomeric Cu^{2+} ions in octahedral or square-planar 163 164 pyramidal sites.

165

166 **3.2 Oxygen species in catalysts**

The catalysts were further investigated by XPS to examine the surface chemical 167 state, and the results are shown in Fig. 4. The peaks marked as u, u'' and u''' were 168 attributed to Ce⁴⁺ $3d_{3/2}$, and those labeled as v, v", v" were arising from Ce⁴⁺ $3d_{5/2}$ ³¹. 169 Compared with the bands of Ce^{4+} 3d, the bands u' and v' corresponded to the Ce^{3+} 170 $3d_{3/2}$ and $Ce^{3+} 3d_{5/2}$ contributions, respectively ³². These results indicated that Ce was 171 172 in a partially reduced state on the surfaces, which might be attributable to the interaction between Cu and Ce. In addition, the presence of Ce^{3+} resulted in a charge 173 imbalance, and leaded to the formation of oxygen vacancies ³³. Yet, in the Cu 2p XPS 174

spectra (**Fig. 4B**), the shake-up peak and Cu $2p_{3/2}$ (933.6 eV) as well as Cu $2p_{1/2}$ (953.5 eV) peaks were observed, which were characteristic of Cu^{2+ 34}. However, the lower Cu $2p_{3/2}$ binding energy (931.2 eV) and the absence of the shake-up peak were characteristic of Cu^{+ 35}. That was to say, it was apparent that the Cu²⁺ and Cu⁺ was coexistence in original samples. Thus, it was probably suggested that the transient generation of oxygen vacancy for fresh samples during calcination followed this process:

$$2Ce^{4+}-OH+2Cu^{2+}-OH \xrightarrow{-2H_2O} Ce^{3+}-\blacksquare -Cu^++O^--Ce^{4+}-Cu^{2+}-O^-$$
(1)

Usually, oxygen molecules were easily adsorbed at the oxygen vacancies of an oxide material ³⁶. As shown in **Fig. 4C**, the asymmetrical O 1s signal could be deconvoluted to two components. The broad shoulder at a higher BE (531.2 eV) was assigned to the surface adsorbed oxygen species (O_{ads}), whereas the peak at ~ 529.1 eV was attributed to the surface lattice O^{2-} (O_{latt}) ³⁷. The instantaneous formation of O_{ads} by adsorbing O_2 at oxygen vacancy during calcination followed this step: Catalysis Science & Technology Accepted Manuscript

$$Ce^{3+} - \Box - Cu^{+} + 2O_2 \rightarrow O_2^{-} - Cu^{2+} - Ce^{4+} - O_2^{-}$$
 (2)

This phenomenon was also implying the existence of oxygen vacancies in catalysts. The O₂-TPD profiles directly exhibited the O₂ desorption behavior in catalysts, and the results are shown in **Fig. 5**. Three distinct peaks centered at 485-610°C, 715-750°C and 770-860°C were observed. Generally speaking, the signals recorded below 700°C could be ascribed to the α -O₂ desorption and originated from the oxygen species adsorbed on the surface oxygen vacancies ³⁸, coinciding with the result of XPS (**Fig. 4C**). According to Eq. (1) and Eq. (2), the α -O₂ desorption was proposed 195 by the following two reactions process:

$$O^{-}Ce^{4+}-Cu^{2+}-O^{-}+O_{2}^{-}-Ce^{4+}-Cu^{2+}-O_{2}^{-}\rightarrow 2Ce^{4+}-O^{2-}-Cu^{2+}+2O_{2}$$
 (3)

$$O_2^-Ce^{4+}-Cu^{2+}-O_2^- \to Ce^{3+}-\blacksquare -Cu^++2O_2$$
 (4)

It was obvious that the α -O₂ desorption was directly related to the oxygen species adsorbed on the oxygen vacancy, so the amount of α -O₂ species could be considered as a measure of the density of oxygen vacancies. Whereas those recorded above 700°C were known as β -O₂ desorption, and two distinct β -O₂ peaks centered at β_1 -O₂ (715-750°C) and β_2 -O₂ (770-860°C) were liberated from the surface and bulk lattice leaving oxygen vacancies and the reduced cations, respectively ³⁹. This β_1 -O₂ peak appeared in O₂-TPD patterns through this step:

$$\begin{array}{c} \operatorname{Ce}^{4^{+}} \operatorname{-O}^{2^{-}} \operatorname{-Cu}^{2^{+}} \xrightarrow{} \operatorname{Ce}^{3^{+}} \operatorname{-} \operatorname{-} \operatorname{Cu}^{+} + \frac{1}{2} \operatorname{O}_{2} \\ \text{surface} & \text{surface} \end{array}$$
(5)

203 The bulk β_2 -O₂ desorption firstly proceeded via the diffusion of oxygen from bulk to 204 surface (Eq. (6)).

$$Ce^{4+}-O^{2-}-Cu^{2+}+Ce^{3+}-\blacksquare-Cu^{+}\rightarrow Ce^{4+}-O^{2-}-Cu^{2+}+Ce^{3+}-\blacksquare-Cu^{+}$$
bulk surface surface bulk (6)

Thereafter, β_2 -O₂ desorption in O₂-TPD proceeded through Eq. (5). The O₂ desorption behavior also indeed indicated that the evolution of oxygen vacancies was related to formation of Cu-Ce-Zr solid solution. Meanwhile, lattice oxygen mobility could be reflected by the amount as well as the onset temperature of β -O₂ desorption.

3.3 Catalytic performance of catalysts for NH₃ oxidation

Fig. 6 shows the catalytic performance of the catalysts prepared by different methods for NH₃ oxidation. In all cases, the N₂ selectivity was above 90% (Fig. 6B).

C	
U	
0	
()	
S	
C	
ech	
ech	
Tech	
Tech	
& Tech	
& Tech	
& Tech	
e & Tech	
ce & Tech	
ce & Tech	
nce & Tech	
ince & Tech	
ence & Tech	
ience & Tech	
cience & Tech	
cience & Tech	
Science & Tech	
Science & Tech	
Science & Tech	
s Science & Tech	
is Science & Tech	
sis Science & Tech	
/sis Science & Tech	
ysis Science & Tech	
Ilysis Science & Tech	
alysis Science & Tech	
talysis Science & Tech	
atalysis Science & Tech	
atalysis Science & Tech	
Catalysis Science & Tech	

212	Cu-Ce-Zr (SOL) catalyst demonstrated the highest activity. $T_{50\%}$ and $T_{90\%}$ (the
213	reaction temperatures of 50% and 90% NH_3 conversion) are listed in Table 1.
214	Apparently, the Cu-Ce-Zr (SOL) catalyst showed the lowest $T_{50\%}$ (160°C) and $T_{90\%}$
215	(190°C). The $T_{90\%}$ of Cu-Ce-Zr (HP), Cu/CeO ₂ -ZrO ₂ (IW) and Cu/Ce-Zr (IW)
216	increased by 40, 70 and 100°C than Cu-Ce-Zr (SOL), respectively. In order to verify
217	the TOF was in the kinetic regime and not affected by heat and mass transport
218	limitations, the Madon-Boudart test of Cu-Ce-Zr (SOL), which was an effective
219	verification method, was carried out in Fig. S1-S2. All slopes from plots of ln r vs. ln
220	$f_{\rm m}$ were about unity, suggesting the absence of any heat and mass transfer limitations
221	in NH ₃ -SCO over Cu-Ce-Zr catalysts. From Table 1 and Fig. 7, it was found that the
222	TOF order at 180°C was Cu-Ce-Zr (SOL) (1.33 h^{-1}) > Cu-Ce-Zr (HP) (1.03 h^{-1}) >
223	Cu/CeO ₂ -ZrO ₂ (IW) (0.85 h^{-1}) > Cu/Ce-Zr (IW) (0.72 h^{-1}). Among these catalysts,
224	Cu-Ce-Zr (SOL) catalyst demonstrated the highest TOF value, which suggested that
225	Cu-Ce-Zr (SOL) catalyst contained the largest amount of active Cu species of the per
226	unit mass in NH ₃ oxidation reaction.

Table 2 shows the catalytic performance of different catalysts in NH₃ oxidation. It could be seen that except for CuO/RuO₂ catalyst with a high amount of RuO₂⁶, the catalytic performance of Cu-Ce-Zr (SOL) catalyst was superior to that of other Cu catalysts, especially for NH₃ conversion ^{10, 40, 41}. Compared with other transition metal catalysts, the Cu-Ce-Zr (SOL) always exhibited perfect NH₃ conversion and N₂ selectivity ⁴²⁻⁴⁴. The $T_{100\%}$ of Cu-Ce-Zr (SOL) catalyst was even lower 280°C than that of MoO₃/SiO₂ catalyst. Moreover, the TOF of Cu-Ce-Zr (SOL) catalyst (1.33 h⁻¹,

Catalysis Science & Technology Accepted Manuscript

180°C) was larger than that of Mn/SiO₂ catalyst (1.01 h⁻¹, 230°C) ⁴³. The Cu-Ce-Zr (SOL) catalyst was more active in transition metal catalysts. For noble metal catalysts, CuO/RuO₂ and Ir/Al₂O₃ catalyst showed the lower $T_{100\%}$ than Cu-Ce-Zr (SOL) catalyst ⁴⁵. The $T_{100\%}$ of Au/Al₂O₃ was 380°C, which was higher than that of Cu-Ce-Zr (SOL) catalyst ⁴⁶. However, the N₂ selectivity of Pt-ZSM-5 and Ir/Al₂O₃ catalysts was poor ^{45, 47}. Therefore, the Cu-Ce-Zr (SOL) catalyst was a very potential catalyst for NH₃ oxidation.

241

3.4 The resistance to SO₂, H₂O and CO₂ poisoning as well as thermal stability of Cu-Ce-Zr (SOL)

In industrial application, the resistances to SO₂, H₂O and CO₂ poisoning as well 244 245 as the thermal stability were very important. So the correlation studies were carried 246 out over Cu-Ce-Zr (SOL) catalyst at 220°C, and these results are shown in Fig. 8. It was noticeable that the presence of 5% H₂O slightly decreased the NH₃ conversion 247 due to the competitive adsorption of H_2O with NH_3 on the same active sites ⁴⁸. The 248 249 presence of 100 ppm SO₂ inhibited the NH₃-SCO reaction, and the NH₃ conversion decreased to about 94%, which was probably ascribed to the sulfation of active phase 250 and deposition of ammonium sulfate ⁴⁹. The coexistence of SO₂ and H₂O implied the 251 252 synergistic inhibit effect on the NH₃-SCO performance, and approximate 92% of NH₃ conversion was obtained, which was probably due to the enhanced degree of sulfation 253 for Cu-Ce-Zr (SOL) catalyst ⁵⁰. Upon switching off the H₂O or SO₂, respectively, the 254 activity was rapidly restored to above 97% of its original level. However, when 5% 255

256	CO_2 was added, the NH ₃ conversion decreased significantly to ~81%. Upon removal
257	of the CO ₂ supply, only \sim 90% NH ₃ conversion was gradually restored. In addition,
258	the TOF in the presence of SO_2 , H_2O and CO_2 was calculated from the conversion
259	plots using only data in the kinetic region at 180°C, as shown in Fig S3. Note that the
260	TOF in presence of H_2O , SO_2 , $SO_2 + H_2O$ and CO_2 was 1.25, 1.17, 1.09, 0.81 h ⁻¹ ,
261	respectively. The presence of CO ₂ induced a significant decrease of TOF. And it was
262	found that the NH ₃ conversion was still higher than 93% at 220°C after hydrothermal
263	treatment over fresh Cu-Ce-Zr (SOL) at 800°C for 24 h. The above results suggested
264	that Cu-Ce-Zr (SOL) catalyst exhibited the excellent SO ₂ /H ₂ O poisoning resistance
265	and hydrothermal stability.

267 **4 Discussion**

268 In NH₃ oxidation, several factors were associated with the catalytic activity. The catalytic activity was thought to be related to be reducibility and dispersion of active 269 phase for NH₃ oxidation. Amblard et al. ⁵¹ have proposed that the Mn/Al₂O₃ and 270 271 Fe/Al₂O₃ were more active than Ni/Al₂O₃ for NH₃ oxidation, possibly because of the 272 enhanced redox properties. The presence of small Co₃O₄ crystallites in the 273 silica-supported Co₃O₄ catalyst resulted in a higher effective utilization of cobalt in NH₃ oxidation mainly due to the higher dispersion ⁵². Gang et al. ⁴⁵ also suggested the 274 275 higher activity of NH₃ oxidation was probably due to the small particle size and better dispersion of copper oxide on the support. Importantly, ammonia oxidation activity at 276 low temperatures was also related to the dissociative or non-dissociative adsorption 277

ability of oxygen on the catalyst ^{53, 54}. According to the results reported by Long et al. 278 ⁵⁵, the variable valence of Cu^+/Cu^{2+} in Cu-ZSM-5 catalyst might be beneficial to 279 280 oxygen adsorption and activation, therefore, a high activity for the NH₃-SCO reaction was expected. According to the above investigated results, the promotional effect 281 aspects in NH₃-SCO over Cu-Ce-Zr catalysts were further discussed in the following. 282 In our research, the H₂-TPR analysis (Fig. 2B) indicated that the relative content 283 284 of finely dispersed CuO on catalysts was varied in the order of Cu-Ce-Zr (SOL) > Cu-Ce-Zr (HP) > Cu/CeO_2-ZrO_2 (IW) > Cu/Ce-Zr (IW), and the reduction 285 286 temperature of CuO species shared the opposite sequence. Usually, the higher the dispersion was, the lower the reduction temperature of CuO species ⁵⁶. The surface 287 Cu/Ce atomic ratio estimated by XPS (Fig. 4) is presented in Table 3. Compared 288 289 with the bulk compositions of all samples, it could be observed that the surface Cu/Ce 290 atomic ratio was more than three times higher, indicating a significant enrichment of 291 the surface highly dispersed CuO species. The surface Cu/Ce atomic ratio was varied in the order of Cu-Ce-Zr (SOL) > Cu-Ce-Zr (HP) > Cu/CeO2-ZrO₂ (IW) > Cu/Ce-Zr 292 (IW), whose result was in agreement with the H₂-TPR analysis result (Fig. 2B). 293 Moreover, the EPR results in Fig. 3B also showed the gradual decrease of B signal 294 295 intensity from (a) to (d) catalysts, which suggested the amount decrease of finely 296 dispersed CuO species in different catalysts. Combining with the TOF results (Fig. 7 297 and Table 1), the order of TOF was consistent with the varieties of finely dispersed 298 CuO, and the higher dispersion of CuO species induced the higher TOF value. Thus, the finely dispersed CuO species in catalysts was an important reason for the 299

300	enhanced NH_3 -SCO activity. Meanwhile, the lower TOF in Cu/CeO ₂ -ZrO ₂ (IW) and
301	Cu/Ce-Zr (IW) catalysts should be related with the formation of bulk CuO species
302	revealed by XRD and H ₂ -TPR. Generally, reducibility was also an important factor
303	influencing the catalytic activity of a material ⁵⁷ . Fig. 2B shows the quantitative
304	analysis result of H ₂ -TPR. The temperature of reduction peak (T_{red}) was taken as a
305	measure to evaluate the redox ability of catalyst. It was known that the lower was the
306	temperature of reduction peaks ($T_{\rm red}$), the stronger was the redox ability of catalyst ⁵⁸ .
307	It was observed that T_{red} for all copper species increased in sequence of Cu-Ce-Zr
308	(SOL) < Cu-Ce-Zr (HP) < Cu/CeO ₂ -ZrO ₂ (IW) < Cu/Ce-Zr (IW). The Cu-Ce-Zr
309	(SOL) catalyst with the best reducibility led to the excellently high catalytic
310	performance.

311 To achieve deeper insight into the role of finely dispersed CuO species, the NH₃-TPD experiment was carried out (Fig. 9). Two peaks of ammonia desorption 312 appeared, indicating that two major ammonia species with different thermal stability 313 existed on the catalyst surface. The lower temperature peak (155°C) should be 314 attributable to the physically adsorbed NH₃, while the higher temperature peak (230°C) 315 should correspond to the chemisorbed NH₃⁴⁴. The relative desorption amount of NH₃ 316 317 was calculated by the fitting area of NH_3 desorption peak (**Table 3**). It was observed 318 that the total desorption amount, especially the desoprtion amount of chemisorbed NH₃, were ranked as follows: Cu-Ce-Zr (SOL) > Cu-Ce-Zr (HP) > Cu/CeO₂-ZrO₂ 319 (IW) > Cu/Ce-Zr (IW). This was in parallel with the amount of the highly dispersed 320 321 CuO species (Fig. 2B). The formation of finely dispersed CuO species was suggested

to be in favor of the adsorption of NH₃, which could significantly improve in the NH₃
adsorption capacity and TOF for NH₃ oxidation.

324 In order to investigate the transition of different active phase during NH₃ 325 oxidation process, the in-situ EPR spectrum of Cu-Ce-Zr (SOL) catalyst under different reaction conditions are shown in Fig. 10. The addition of NH₃ flow at room 326 327 temperature on Cu-Ce-Zr (SOL) sample (Fig. 10b) did not cause any change in the intensity or shape of the EPR spectrum (A₁, A₂, B and K signals). In contrast, up to 328 230°C in a flow of He on original Cu-Ce-Zr (SOL) sample, all signal intensity and the 329 330 hyperfine structure (Fig. 10c) increased compared with that of original spectrum (Fig. 331 10a), which should be related to the impurities removal after high temperatures treatment. When the original Cu-Ce-Zr (SOL) catalyst was carried out under a flow of 332 333 NH_3 instead of He at 230°C (Fig. 10d), an important increase in the B signal was 334 observed compared with EPR spectrum of Cu-Ce-Zr (SOL) sample treated by He at 335 230°C (Fig. 10c). It was known that the intensity of B signal was correlated with the highly dispersed copper oxide on the surface ⁵⁹. Particularly, the higher was the 336 337 dispersion of CuO species, the larger fraction of copper oxide was detected by EPR. The H_2 -TPR result (Fig. S4) showed that the reduction temperature of finely 338 339 dispersed CuO over Cu-Ce-Zr (SOL) treated in NH₃ at 230°C shifted toward lower 340 temperature, and the amount was also increased. Thus, NH₃ atmosphere could 341 promote the dispersion of finely dispersed CuO in the catalyst during NH₃ oxidation. 342 However, when the Cu-Ce-Zr (SOL) sample treated by NH₃ at 230°C was re-oxidized (Fig. 10e), the A_2 signal remained stable and the decrease of A_1 and B signals 343

Ö
()
U
2
<u> </u>
0
~
X
U
5
č
U
hne
chne
echne
echne
Techno
. Techno
& Techno
& Techno
e & Techno
ce & Techno
ice & Techno
nce & Techno
ence & Techno
ience & Techno
cience & Techno
science & Techne
Science & Techno
Science & Techno
s Science & Techno
is Science & Techno
sis Science & Techno
ysis Science & Techno
Iysis Science & Techno
alysis Science & Techno
talysis Science & Techno
atalysis Science & Techno
atalysis Science & Techno
Catalysis Science & Techne

344	intensities was recorded compared with EPR spectrum of Cu-Ce-Zr (SOL) sample
345	treated by NH_3 at 230°C (Fig. 10d). However, the intensity of K signal was observed
346	to be significantly increased. In order to clarify the evolution of Cu species in
347	re-oxidized Cu-Ce-Zr (SOL) catalyst, the H2-TPR experiment was also carried out
348	(Fig. S4). It was observed that the reduction temperature of finely dispersed CuO
349	species shifted to higher temperature, so the lower dispersion of CuO species induced
350	the decrease of B signal intensity. It was known that the Cu^{2+} ions (A ₁) was
351	surrounded by fewer oxygen anions than Cu^{2+} ions (A ₂), the difference in the
352	coordination number determined that the Cu^{2+} ions corresponding to the A_1 signal
353	were more accessible towards the oxygen than that corresponding to the A_2 signal ⁵⁹ .
354	In addition, the Cu^{2+} ion monomers (A ₁) was the precursor of the dimmer (K) due to
355	the similar g value for the two signals and the double hyperfine splitting constants of
356	A_1 compared with K signal ^{60, 61} . So the monomeric Cu^{2+} ions of A_1 signal were more
357	accessible to combine with O_2 to form copper (II) ions dimers, which could induce a
358	migration of Cu^{2+} ions from their sites (A ₁ signal) to copper (II) ions dimers (K
359	signal). So the increase of K signal and the decrease of A_1 signal intensities were
360	observed in Fig. 10e. As shown in Fig. 3B, the A1 signal became very weak and
361	unresolved from Cu-Ce-Zr (SOL) to Cu-Ce-Zr (HP) catalyst, and then disappeared for
362	Cu/CeO ₂ -ZrO ₂ (IW) and Cu/Ce-Zr (IW) catalysts. The variation of A_1 signal in
363	different catalysts also paralleled the reaction TOF. However, the A2 signal always
364	appeared for all catalysts. Thus, the isolated Cu^{2+} locating in octahedral sites with
365	tetragonal distortion (A_1) was more active compared with that of locating in

Catalysis Science & Technology Accepted Manuscript

366 square-planar pyramidal sites, and it induced the more formation of Cu-Ce-Zr solid solution. Apparently, Cu-Ce-Zr (SOL) catalysts showed the strongest K signal 367 368 (Cu-Ce-Zr) in Fig. 3B, and the K signal became unobvious in the spectrum of Cu-Ce-Zr (HP) and almost absent in the case of other catalysts. Furthermore, 369 combining with the reaction TOF (Fig. 7) and the O_2 desorption behavior (Fig. 5), it 370 would indicate that the Cu-Ce-Zr solid solution was the important supporter of 371 372 oxygen transfer. More importantly, when the Cu-Ce-Zr (SOL) sample re-oxidized by 230°C (Fig. 10e) was re-treated again by NH₃ at 230°C (Fig. 10f), the evolution of K, 373 A_1 and B signal intensities was opposite of the result in Fig. 10e. Similarly, the 374 375 increase in the B signal intensity should be attributed to the higher dispersion of CuO in the role of NH_3 . Since the NH_3 could be mainly adsorbed on the surface of finely 376 377 dispersed CuO, the decrease of K signal intensity should be due to the reaction of the adsorbed NH₃ with active oxygen species in Cu-Ce-Zr solid solution (K). Meanwhile 378 the K signal was transformed into the A_1 signal, and more Cu^{2+} ions in octahedral 379 sites with tetragonal distortion $(A_1 \text{ signal})$ was formed (Fig. 10f). It was further 380 defined that finely dispersed CuO, monomeric Cu²⁺ ions locating in octahedral sites 381 (A₁) and Cu-Ce-Zr solid solution were active sites in NH₃ oxidation reaction. 382

Meanwhile, it seemed that oxygen species was responsible for the coupling of the two Cu^{2+} (A₁ signal) making up the dimer (Cu-Ce-Zr solid solution) in NH₃ oxidation reaction. Yet, the relatively total amount of oxygen adspecies followed the orders of Cu-Ce-Zr (SOL) (1.00) > Cu-Ce-Zr (HP) (0.91) > Cu/CeO₂-ZrO₂ (IW) (0.86) > Cu/Ce-Zr (IW) (0.57) (**Table 3**), which was also in accordance with the TOF value. Therefore, the following section was required to analyze the role of oxygenduring NH₃-SCO reaction.

390 The substitution of Cu and Zr for Ce generated an electronic unbalance, and as a 391 consequence, the oxygen vacancies could be produced to preserve the charge neutrality. The transient generation of oxygen vacancy for fresh samples from Eq. (1) 392 indicated that the relative surface content of Ce^{3+} also reflected the amount of oxygen 393 vacancies. Moreover, the O_{ads} (α - O_2) species were adsorbed at oxygen vacancies. 394 Thus, on the basis of the surface content of Ce^{3+} and O_{ads}/O_{latt} values (**Table 3**), one 395 396 could see that the concentration of oxygen vacancies decreased in the order Cu-Ce-Zr (SOL) > Cu-Ce-Zr (HP) $> Cu/CeO_2-ZrO_2$ (IW) > Cu/Ce-Zr (IW), coinciding with the 397 reaction TOF (Fig. 7). That was to say, the oxygen vacancies was a significant factor 398 399 to sustain the higher reaction TOF.

Apart from α -O₂ species, the reaction TOF was also often discussed in terms of 400 the mobility and activated ability of lattice oxygen (β -O₂). Usually, the β -O₂ species 401 was related to the reducibility of metal ions 62 . The above analysis indicated that the 402 403 Cu-Ce-Zr solid solution was the important supporter of β -O₂. By comparing the reducibility of Cu-Ce-Zr solid solution (Fig. 2), it was found that this reducibility 404 405 decreased according to the sequence of Cu-Ce-Zr (SOL) > Cu-Ce-Zr (HP) > 406 Cu/CeO₂-ZrO₂ (IW) > Cu/Ce-Zr (IW). The result agreed well with the amount of β -O₂ species and was inconsistent with the desorption temperature of β -O₂ species (Table 407 408 3). It could be realized that the easier reduction of Cu-Ce-Zr solid solution induced the strong mobility and activated ability of lattice oxygen (β -O₂) (Fig. 5), finally led 409

410 to the higher TOF (Fig. 7). Thus, the lattice oxygen species played an important role 411 under reaction conditions, especially for the Cu-Ce-Zr (SOL) catalyst. In order to 412 clarify the role of oxygen species in NH_3 oxidation, the effect of O_2 concentration on 413 the catalytic performance over Cu-Ce-Zr (SOL) sample was also studied in this work, 414 as shown in Fig. 11A. With the increase of O_2 concentration from 1 to 4 vol.% in the 415 reactants, the NH₃ conversion showed the monotonic increase at 220° C. When O₂ 416 concentration reached above 4 vol.%, the NH₃ conversion did not show monotonic 417 increase at 220°C. This indicated that the O_2 molecule and adsorbed oxygen species 418 achieved a balanced state at this value (4 vol.%). Interestingly, the NH₃ conversion only declined to 90% when 4 vol.% O₂ was cut off (inset in Fig. 11A). And then, it 419 420 took a long time (nearly 3 h) to decrease from 90 to 26%. When the O_2 molecular was 421 introduced into the reactants again, and an immediate rebound of NH₃ conversion to 422 100% was observed. In order to clarify the variation of oxygen species in this process 423 (inset in Fig. 11A), the *in-situ* O₂-TPD experiment was also carried out for the 424 Cu-Ce-Zr (SOL) at the point of O₂-A, O₂-B, O₂-C and O₂-D in **Fig. 11B**. Compared 425 with the original Cu-Ce-Zr (SOL) catalyst (Fig. 5a), a clear shift of α -O₂ species 426 toward lower temperature was observed in the profile of O_2 -A (Fig. 11B), however, 427 the desorption of β_1 -O₂ species was not observed. This phenomenon suggested that 428 the adsorbed oxygen species than bulk lattice oxygen were more important in oxygen cycles. However the α -O₂ species disappeared in the pattern of O₂-B. Meanwhile, the 429 430 desorption peak of β_2 -O₂ also shifted to higher temperatures, which should be related to the deactivation of oxygen mobility when α -O₂ species disappeared. After this, the 431

Catalysis Science & Technology

432 β_2 -O₂ species in the pattern of O₂-C significantly decreased compared with that of O₂-B. When 4 vol.% O₂ was added into the stream again, the α -O₂ and β_2 -O₂ species 433 sharply increased in the pattern of O_2 -D. From the above analysis, it was concluded 434 that the α -O₂ species could be quickly consumed when O₂ was cut off, which induced 435 the NH₃ conversion sharply dropped to 90%. In the subsequent process, the β_2 -O₂ 436 437 species gradually reacted with NH_3 and the NH_3 conversion finally decreased to 26%, 438 indicating that the adsorbed oxygen species could result in the higher NH₃ oxidation 439 activity than bulk lattice oxygen. When O_2 was re-added to the reactants, the oxygen cycle was recovered in NH₃-SCO reaction. 440

As stated above, Fig. 12 shows the reaction models of NH₃ oxidation on 441 442 Cu-Ce-Zr (SOL) catalyst. The NH_3 was mainly adsorbed on the surface of finely dispersed CuO species. In the absence of gaseous O2, the surface adsorbed O2 in 443 444 Cu-Ce-Zr solid solution could be reacted with adsorbed NH₃, and meanwhile the oxygen vacancies was formed in Cu-Ce-Zr solid solution. When the surface adsorbed 445 446 O_2 was consumed, the lattice oxygen constantly transferred from bulk to surface in Cu-Ce-Zr solid solution, which was involved in the NH₃ oxidation. Moreover, it 447 448 seems that the adsorbed oxygen species were more active than bulk lattice oxygen species. In the presence of gaseous O2, compared with monomeric Cu2+ in 449 square-planar pyramidal sites, the Cu²⁺ ions in octahedral sites were more accessible 450 451 towards the oxygen to form Cu-Ce-Zr solid solution in NH₃ oxidation. Meanwhile, the surface oxygen vacancies was readily replenished by gaseous O₂ with 452 regeneration of surface active oxygen, which would promote the adsorption and 453

454 dissociation of oxygen molecule and facilitate the NH₃ oxidation reaction.

455

456 **5** Conclusions

The Cu-Ce-Zr catalyst prepared by citric acid sol-gel method (SOL) exhibited 457 the best catalytic activity ($T_{90\%}=190^{\circ}$ C). The excellent activity could be attributed to 458 the finely dispersed CuO, Cu-Ce-Zr solid solution and monomeric Cu²⁺ ions in 459 460 octahedral sites. During the NH₃-SCO reaction, the finely dispersed CuO species 461 acted as the crucial adsorption sites of NH₃, meanwhile, the NH₃ also favored the 462 dispersion of CuO species. The Cu-Ce-Zr solid solution was an important intermediate in oxygen transfer from bulk to surface in NH₃ oxidation. Compared 463 with monomeric Cu^{2+} in square-planar pyramidal sites, the Cu^{2+} ions in octahedral 464 465 sites were more accessible towards the oxygen to form Cu-Ce-Zr solid solution. Meanwhile, in situ O₂-TPD result showed that both adsorbed oxygen and bulk lattice 466 oxygen were active oxygen adspecies, and the adsorbed oxygen were more active 467 468 than bulk lattice oxygen for NH₃ oxidation.

469

470 Acknowledgements

This work was sponsored financially by the National Nature Science Foundation of China (No. 21377016, 21577014), the Natural Science Foundation of Liaoning Province (No.2014020011), the Doctoral Fund of Shandong Province (BS2015HZ003) and the Open Foundation of Key Laboratory of Industrial Ecology and Environmental Engineering, MOE (KLIEEE-15-05).

476	References
477	1. L. Chmielarz, M. Jabłońska, A. Strumiński, Z. Piwowarska, A. Węgrzyn, S.
478	Witkowski and M. Michalik, Appl. Catal. B: Environ., 2013, 130-131, 152.
479	2. S. M. Lee, H. H. Lee and S. C. Hong, Appl. Catal. A: Gen., 2014, 470, 189.
480	3. C. M. Hung, Powder Technol., 2009, 196, 56.
481	4. L. Chmielarz, P. Kuśtrowski, A. Rafalska-Łasocha and R. Dziembaj, Appl. Catal.
482	<i>B: Environ.</i> , 2005, 58 , 235.
483	5. L. Chmielarz, A. Węgrzyn, M. Wojciechowska, S. Witkowski and M. Michalik,
484	<i>Catal. Lett.</i> , 2011, 141 , 1345.
485	6. X. Cui, J. Zhou, Z. Ye, H. Chen, L. Li, M. Ruan and J. Shi, J. Catal., 2010, 270,
486	310.
487	7. J. C. Lou, C. M. Hung and S. F. Yang, J. Air & Waste Manage. Assoc., 2004, 54,
488	68.
489	8. Z. Wang, Z. Qu, X. Quan and H. Wang, Appl. Catal. A: Gen., 2012, 411-412, 131.
490	9. W. Chen, Y. Ma, Z. Qu, Q. Liu, W. Huang, X. Hu and N. Yan, Environ. Sci.
491	Technol., 2014, 48 , 12199.
492	10. Z. Wang, Z. Qu, X. Quan, Z. Li, H. Wang and R. Fan, Appl. Catal. B: Environ.,
493	2013, 134–135 , 153.
494	11. A. V. Kucherov, C. P. Hubbard, T. N. Kucherova and M. Shelef, Appl. Catal. B:
495	Environ., 1996, 7, 285.

12. R. Bulánek, B. Wichterlová, Z. Sobalík and J. Tichý, Appl. Catal. B: Environ., 496 497 2001, **31**, 13.

- 498 13. G. A. El-Shobaky, H. M. A. Hassan, N. S. Yehia and A. R. A. A. Badawy, J.
- 499 Non-Cryst. Solids, 2010, **356**, 32.
- 500 14. A. Bueno-López, K. Krishna and M. Makkee, Appl. Catal. A: Gen., 2008, 342,
- 501 144.
- 502 15. A. Y. Khodakov, W. Chu and P. Fongarland, *Chem. Rev.*, 2007, **107**, 1692.
- 503 16. B. Jiang, Y. Liu and Z. Wu, J. Hazard. Mater., 2009, 162, 1249.
- 504 17. K. Dyrek and M. Che, *Chem. Rev.*, 1997, **97**, 305.
- 505 18. A. Martínez-Arias, M. Fernández-García, V. Ballesteros, L. N. Salamanca, J. C.
- 506 Conesa, C. Otero and J. Soria, *Langmuir*, 1999, **15**, 4796.
- 507 19. C. J. G. Van Der Grift, A. F. H. Wielers, B. P. J. Jogh, J. Van Beunum, M. De Boer,
- 508 M. Versluijs-Helder and J. W. Geus, J. Catal., 1991, **131**, 178.
- 509 20. M. A. Gómez-García, V. Pitchon and A. Kiennemann, Environ. Sci. Technol.,
- 510 2005, **39**, 638.
- 511 21. B. M. Reddy, P. Bharali, P. Saikia, S. E. Park, M. W. E. Van Den Berg, M. Muhler
- 512 and W. Grünert, J. Phys. Chem. C, 2008, **112**, 11729.
- 513 22. J. Giménez-Mañogil, A. Bueno-López and A. García-García, Appl. Catal. B:
- 514 *Environ.*, 2014, **152-153**, 99.
- 515 23. L. Xu, H. Song and L. Chou, *Int. J. Hydrogen Energy*, 2012, **37**, 18001.
- 516 24. T. Sukonket, A. Khan, B. Saha, H. Ibrahim, S. Tantayanon, P. Kumar and R. Idem,
- 517 *Energy Fuels*, 2011, **25**, 864.
- 518 25. A. P. Jia, G. S. Hu, L. Meng, Y. L. Xie, J. Q. Lu and M.-F. Luo, J. Catal., 2012,
- **289**, 199.

- 520 26. L. Xie, F. Liu, L. Ren, X. Shi, F. S. Xiao and H. He, *Environ. Sci. Technol.*, 2013,
 521 48, 566.
- 522 27. A. A. Kaïs, A. Bennani, C. F. Aïssi, G. Wrobel and M. Guelton, J. Chem. Soc.,
- 523 *Faraday Trans.*, 1992, **88**, 1321.
- 524 28. G. R. Rao, H. R. Sahu and B. G. Mishra, Colloids Surfaces A. 2003, 220, 261.
- 525 29. A. Aboukais, A. Bennani, C. F. Aissi, M. Guelton and J. C. Vedrine, *Chem. Mater.*526 1992, 4, 977.
- 527 30. A. Aboukaïs, A. Bennani, C. F. Aïssi, G. Wrobel, M. Guelton and J. C. Vedrine, J.
- 528 *Chem. Soc., Faraday Trans.*, 1992, **88**, 615.
- 529 31. F. B. Noronha, E. C. Fendley, R. R. Soares, W. E. Alvarez and D. E. Resasco,
 530 *Chem. Eng. J.*, 2001, **82**, 21.
- 531 32. X. Liu, K. Zhou, L. Wang, B. Wang and Y. Li, J. Am. Chem. Soc., 2009, 131,
- **532** 3140.
- 33. S. Tsunekawa, K. Ishikawa, Z. Q. Li, Y. Kawazoe and A. Kasuya, *Phys. Rev. Lett.*,
 2000, **85**, 3440.
- 535 34. G. Avgouropoulos and T. Ioannides, Appl. Catal. B: Environ., 2006, 67, 1.
- 35. L. Kundakovic and M. Flytzani-Stephanopoulos, Appl. Catal. A: Gen., 1998, 171,
- 537 13.
- 538 36. F. Wang, H. Dai, J. Deng, G. Bai, K. Ji and Y. Liu, *Environ. Sci. Technol.*, 2012,
 539 46, 4034.
- 540 37. J. Deng, H. Dai, H. Jiang, L. Zhang, G. Wang, H. He and C. T. Au, Environ. Sci.
- 541 *Technol.*, 2010, **44**, 2618.

- 542 38. R. Zhang, H. Alamdari and S. Kaliaguine, J. Catal., 2006, 242, 241.
- 543 39. A. Machocki, T. Ioannides, B. Stasinska, W. Gac, G. Avgouropoulos, D.
- 544 Delimaris, W. Grzegorczyk and S. Pasieczna, J. Catal., 2004, 227, 282.
- 545 40. S. He, C. Zhang, M. Yang, Y. Zhang, W. Xu, N. Cao and H. He, Sep. Purif.
- 546 *Technol.*, 2007, **58**, 173.
- 547 41. M. Yang, C. Wu, C. Zhang and H. He, *Catal. Today*, 2004, 90, 263.
- 42. L. Lietti, G. Ramis, G. Busca, F. Bregani and P. Forzatti, *Catal. Today*, 2000, 61,
 187.
- 550 43. P. Fabrizioli, T. Buergi and A. Baiker, J. Catal., 2002, 207, 88.
- 551 44. R. Long and R. Yang, *J Catal.*, 2002, **207**, 158.
- 45. L. Gang, B. Anderson, J. Van Grondelle and R. Van Santen, *Catal. Today*, 2000,
 61, 179.
- 46. S. D. Lin, A. C. Gluhoi and B. E. Nieuwenhuys, *Catal. Today*, 2004, **90**, 3.
- 555 47. M. S. Kim, D. W. Lee, S. H. Chung, Y. K. Hong, S. H. Lee, S. H. Oh, I. H. Cho
- 556 and K. Y. Lee, J. Hazard. Mater., 2012, 237-238, 153.
- 48. H. Sjövall, L. Olsson, E. Fridell and R. J. Blint, Appl. Catal. B: Environ., 2006,
- **64**, 180.
- 49. S. Royer, A. Van Neste, R. Davidson, S. McIntyre and S. Kaliaguine, *Ind. Eng.*
- 560 *Chem. Res.*, 2004, **43**, 5670.
- 561 50. G. Qi, J. E. Gatt and R. T. Yang, J. Catal., 2004, 226, 120.
- 562 51. M. Amblard, R. Burch and B. Southward, *Appl. Catal. B: Environ.*, 1999, 22,
 563 159.

- 564 52. W. K. Fung, M. Claeys and E. van Steen, *Catal.Lett.*, 2012, **142**, 445.
- 565 53. L. Gang, B. Anderson, J. Van Grondelle and R. Van Santen, Appl. Catal. B:
- 566 *Environ.*, 2003, **40**, 101.
- 567 54. L. Zhang and H. He, J. Catal., 2009, 268, 18.
- 568 55. R. Q. Long and R. T. Yang, Chem. Commun., 2000, 1651.
- 569 56. A. Łamacz, A. Krztoń and G. Djéga-Mariadassou, Catal. Today, 2011, 176, 126.
- 570 57. B. Levasseur and S. Kaliaguine, *Appl. Catal. B: Environ.*, 2009, **88**, 305.
- 571 58. Y. C. Wei, J. Liu, Z. Zhao, A. J. Duan and G. Y. Jiang, J. Catal., 2012, 287, 13.
- 572 59. A. A. Kaïs, R. Bechara, D. Ghoussoub, C. F. Aïssi, M. Guelton and J. P. Bonnelle,
- 573 J. Chem. Soc., Faraday Trans., 1991, 87, 631.
- 60. G. Wagner, R. Schumacher and S. Friedberg, *Physical Review*, 1966, 150, 226.
- 575 61. G. F. Kokoszka, H. C. Allen Jr and G. Gordon, J. Chem. Phys., 2004, 46, 3013.
- 576 62. D. C. Sayle, S. A. Maicaneanu and G. W. Watson, J. Am. Chem. Soc., 2002, 124,
- 577 11429.
- 578
- 579

581 Table 1 Physicochemical properties, *T*_{50%}, *T*_{90%}, Cu dispersion and TOF for NH₃

-	o	n
Э	ō	Z

oxidation at 180°C

Catalysts	BET	V	Р	T _{50%}	<i>T</i> _{90%}	Cu dispersion (D_{Cu})	TOF
	(m ² /g)	(cm^3/g)	(nm)	(°C)	(°C)	(%)	(h ⁻¹)
Cu-Ce-Zr (SOL)	95.64	0.15	3.77	160	190	53.3	1.33
Cu-Ce-Zr (HP)	84.85	0.20	3.80	190	230	51.7	1.03
Cu/CeO ₂ -ZrO ₂ (IW)	124.3	0.25	6.58	220	260	49.3	0.85
Cu/Ce-Zr (IW)	117.4	0.31	9.64	245	290	43.1	0.72

L.		<i>,,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•	
Catalysts	Composition of testing gas	Conditions	<i>T</i> _{100%} (°C)	N ₂ selectivity (%)	References
Cu-Ce-Zr (SOL)	1000 ppm NH ₃ , 10% O ₂ , He balance	40000 h ⁻¹	220	98	This study
CuO/RuO ₂	1000 ppm NH ₃ , 2% O ₂ , He balance	75000 ml h ⁻¹ g ⁻¹	180	97	6
CuO-CeO ₂ (6 wt% Cu)	1000 ppm NH ₃ , 10% O ₂ , He balance	40000 h ⁻¹	250	95	10
10 wt% Cu/Al ₂ O ₃	1% vol NH ₃ , 10%O ₂ , He balance	0.8 g	350	98	41
10 wt% Cu/TiO ₂	400 ppm NH ₃ , 10% O ₂ , He balance	50000 h ⁻¹	275	95	40
12 wt% MoO ₃ /SiO ₂	960 ppm NH ₃ , 0.9% O ₂ , 0.15% Ar, He balance	0.128 g, 120 ml/min	500	71	42
6.1 wt% Mn/SiO ₂	2000 ppm NH ₃ , 2% O ₂ , He balance	24000 h ⁻¹	325	30	43
			1.01 h ^{-1a}		
3.5 wt% Fe/TiO ₂	1000 ppm NH ₃ , 2% O ₂ , He balance	200000 h ⁻¹	400	91	44
1.46 wt% Pt-ZSM-5	1000 ppm NH ₃ , 2% O ₂ , He balance	1.2×10 ⁻³ g min ml ⁻¹	225	65	47
1.2 wt% Ir/Al ₂ O ₃	1000 ppm NH ₃ , 10% O ₂ , He	50 ml/min, 0.1 g	200	84	45
4.7 wt % Au/Al ₂ O ₃	2 vol % NH ₃ , 2% O ₂ . He balance	30 ml/min	380	_	46

Table 2 Comparison of the complete conversion temperature $(T_{100\%})$ over different catalysts in the literatures for NH₃ oxidation

586 ^a TOF of Mn/SiO₂ catalyst at 230° C.

588	Table 3 Surface compositions, the relative desorption amount of O ₂ and NH ₃								
589		Cu/Ce		Surface content (%) ^b		Relative content ^c		Relative desorption amount ^d	
590	Catalysis	Bulk ^a	Surface ^b	$Ce^{3+}/(Ce^{3+}+Ce^{4+})$	Oads/Olatt	total O ₂	β - O ₂	total amount	chemisorbed
504	Cu-Ce-Zr (SOL)	0.20	0.87	15.5	1.72	1.00	1.00	1.00	1.00
591	Cu-Ce-Zr (HP)	0.19	0.71	11.1	1.25	0.72	0.71	0.72	0.69
592	Cu/CeO ₂ -ZrO ₂ (IW)	0.21	0.67	10.0	0.87	0.67	0.64	0.67	0.62
593	Cu/Ce-Zr (IW)	0.20	0.59	7.5	0.62	0.49	0.46	0.65	0.58
594	^a Calculated by ICP.								
595	^b Calculated by XPS.								
596	^c Calculated by O ₂ -TPD								
597	^d Calculated by NH ₃ -TP	D.							

	\mathbf{O}
1.0	
	<u> </u>
	\mathbf{O}
	U)
	\mathbf{O}
	U.
	1
	Y
	\mathbf{C}
	-
	C
	\bigcirc
1	
	Chh
	SChn
	echn
1	echn
•	lechn
•	lechn
	x lechn
ł	& lechn
H	& lechn
-	e & lechn
ŀ	e & lechn
H	ce & lechn
ŀ	ICE & LECHN
H	nce & lechn
H	nce & lechn
-	ence & lechn
-	ience & lechn
ł	cience & lechn
ł	cience & lechn
H	Science & lechn
	Science & lechn
	Science & lechn
	s science & lechn
	s science & lechn
	is science & lechn
	sis science & lechn
	vsis science & lechn
	ysis Science & Lechn
	Iysis Science & Lechn
	alysis Science & Techn
	alysis Science & Lechn
	talysis Science & Lechn
	atalysis Science & Lechn
	atalysis Science & Lechn
	Jatalysis Science & Lechn
	Catalysis Science & Lechn

	Catalysis Science & recimology
599	Figure captions
600	Fig. 1 XRD patterns of catalysts prepared by different methods.
601	Fig. 2 (A) H_2 -TPR profiles of catalysts prepared by different methods and (B) the
602	quantitative analysis results of H2-TPR: a Cu-Ce-Zr (SOL); b Cu-Ce-Zr (HP); c
603	Cu/CeO ₂ -ZrO ₂ (IW); d Cu/Ce-Zr (IW).
604	Fig. 3 (A) EPR spectra recorded at room temperature for Cu-Ce-Zr (SOL) catalyst
605	and (B) EPR spectra of different catalysts: a Cu-Ce-Zr (SOL); b Cu-Ce-Zr (HP); c
606	Cu/CeO ₂ -ZrO ₂ (IW); d Cu/Ce-Zr (IW).
607	Fig. 4 (A) Ce 3d, (B) Cu 2p and (C) O 1s XPS spectra of a Cu-Ce-Zr (SOL); b
608	Cu-Ce-Zr (HP); c Cu/CeO ₂ -ZrO ₂ (IW); d Cu/Ce-Zr (IW).
609	Fig. 5 O ₂ -TPD profiles of different catalysts: a Cu-Ce-Zr (SOL); b Cu-Ce-Zr (HP); c
610	Cu/CeO ₂ -ZrO ₂ (IW); d Cu/Ce-Zr (IW).
611	Fig. 6 NH_3 conversion (A) and N_2 selectivity over catalysts prepared by different
612	methods.
613	Fig. 7 TOF of NH_3 oxidation with the reaction temperature over the catalysts prepared
614	by different methods.
615	Fig. 8 Influence of H ₂ O, SO ₂ , CO ₂ and hytrothermal treatment on NH ₃ conversion
616	over Cu-Ce-Zr (SOL) catalyst.
617	Fig. 9 NH ₃ -TPD profiles over different catalysts.
618	Fig. 10 In-situ EPR spectra recorded at room temperature of Cu-Ce-Zr (SOL) samples
619	during different treatment: a fresh Cu-Ce-Zr (SOL); b after adsorption of NH3 at room
620	temperature over fresh Cu-Ce-Zr (SOL); c after treatment by He at 230°C over

_	
	0
	CD
	2
	Û
	U
	U
	\mathbf{O}
	\mathbf{O}
	č
	ğ
	u c
	chno
	chno
	echno
	echno
	l echno
	l echno
	lechno
-	x lechno
	& lechno
ŀ	x lechno
	e & lechno
	se & lechno
	ce & lechno
	ICE & LECHNO
	nce & lechno
	ince & lechno
	ence & lechno
	ience & lechno
	sience & lechne
-	cience & lechno
	cience & lechne
	Science & lechno
	Science & lechne
	Science & lechno
	s science & lechno
	s science & lechne
	IS SCIENCE & LECHNO
	sis science & lechno
	sis science & lechno
	vsis science & lechno
	ysis science & lechno
	Iysis Science & Techno
	alysis Science & Lechno
	alysis Science & Techno
	talysis science & lechno
	atalysis Science & Lechno
	atalysis science & lechno
	atalysis science & lechno
	Catalysis Science & Lechno

621	Cu-Ce-Zr (SOL); d	after treatment	of NH ₃ at 230°C	over Cu-Ce-Zr	(SOL); e after
-----	-------------------	-----------------	-----------------------------	---------------	----------------

- treatment of O_2 at 230°C following by step d; f after treatment of NH_3 at 230°C
- 623 following by step e.
- **Fig. 11** (A) Effect of O₂ concentration on the NH₃ conversion over Cu-Ce-Zr (SOL)
- catalyst at 220° C (Inset: NH₃ conversion in the presence/absence of O₂ as a function
- of time at 220° C); (B) The in-situ O₂-TPD profiles of O₂-A, O₂-B, O₂-C and O₂-D.
- **Fig. 12** The reaction models of NH₃ oxidation on Cu-Ce-Zr (SOL) catalyst.

630 Fig. 1

631

633

Catalysis Science & Technology Accepted Manuscript

644 **Fig. 3**

654 **Fig. 4**

663

664 Fig. 5

665

Catalysis Science & Technology Accepted Manuscript

667

Fig. 6 668

669

673 **Fig. 7**

674

675 Fig. 8

Catalysis Science & Technology Accepted Manuscript

676

Fig. 9 679

680

Fig. 10 681

Fig. 11

Graphical abstract

