Catalysis Science & Technology

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/catalysis

1 2 3	Pt-Au/CeO ₂ catalysts for the simultaneous removal of carbon monoxide and formaldehyde							
4	Xiaowei Hong ^a , Ye Sun ^a , Tianle Zhu ^{*a} and Zhiming Liu ^{*b}							
5 6	^a Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of							
7	Chemistry and Environment, Beihang University, Beijing 100191, China.							
8	^b State Key Laboratory of Chemical Resource Engineering, Beijing University of							
9	Chemical Technology, Beijing 100029, China.							
10	*Corresponding author: Prof. Tianle Zhu, E-mail: <u>zhutl@buaa.edu.cn</u> ; Fax: +86 10							
11	82314215; Tel: +86 10 82314215;							
12	Prof. Zhiming Liu, E-mail: liuzm@mail.buct.edu.cn; Fax: +86 10 64427356; Tel: +86							
13	10 64427356.							
14	Abstract: A series of Pt-Au/CeO ₂ catalysts were prepared by impregnation							
15	deposition-precipitation (IDP) and reduction-deposition precipitation (RDP) methods.							
16	The performances of the catalysts for the simultaneous removal of carbon monoxide							
17	(CO) and formaldehyde (HCHO) at room temperature were evaluated. The results							
18	showed that Pt-Au/CeO2 catalyst prepared by the RDP method exhibited higher							
19	catalytic activity. The catalyst characterization results revealed that two factors							
20	accounted for the phenomenon. The first factor was that more negatively charged							
21	metallic Pt nanoparticles were obtained by the liquid phase NaBH4 reduction							
22	treatment during preparation process. The second one was that more Au^+ species were							
23	formed by using urea as precipitant in Au deposition-precipitation. More of negatively							
24	charged metallic Pt nanoparticles and Au^+ species resulted in abundant chemisorbed							
25	oxygen, which contributed to the co-oxidation of HCHO and CO. In addition, water							
26	exhibited a negative effect on the simultaneous removal of CO and HCHO. Based							

upon the results, a possible mechanism for the simultaneous removal of CO and

27

Catalysis Science & Technology Accepted Manuscript

HCHO at room temperature was also proposed. 28 **Keywords:** CO; HCHO; Simultaneous removal; Pt-Au/CeO₂; Room temperature 29 1. Introduction 30 CO is mainly produced due to the metabolism of human body and HCHO is 31 32 released from the degradation products of chemical compounds in the apace cabin. 33 Long-term exposure to CO [1] and HCHO [2, 3] can result in detrimental effects on 34 human health and also threaten the safety of humans. Therefore, removal of CO and 35 HCHO has attracted significant attention. For the removal of CO and HCHO, catalytic oxidation is recognized as one of the most effective methods [4]. 36 Recently, a number of efforts have been made to eliminate CO and HCHO at room 37 temperature. Numerous studies related to complete oxidation of HCHO over 1 wt.% 38 Pt/TiO₂ [5], 0.1 wt.% Pt/TiO₂ [6], 0.8 wt.% Pt/AlOOH [7], 1 wt.% Pt/Fe₂O₃ [8] and 1 39 wt.% Pt/SiO₂ [9] showed that metallic Pt was more active than the oxidized Pt and 40 removal of 100% can be obtained over Pt/TiO₂ at the gas hourly space velocity 41 (GHSV) of 50,000 h⁻¹ [5]. For the removal of CO, Au catalysts have been reported to 42 be more active. CO could be oxidized completely at room temperature over 1wt.% 43 44 Au/TiO₂ [10], 5 wt.% Au/MnO_x [11], 1 wt.% Au/Fe₂O₃ [12], 2.8 wt.% Au/CeO₂ [13], and 2.8 wt.% Au/MOx/CeO₂-Al₂O₃ [14]. And catalytic activity increased with an 45 increase of the amount of cationic Au species for Au catalysts [12, 15, 16]. 46 47 There exist both HCHO and CO in space cabin. So it is necessary to develop novel catalysts with high activity for the simultaneous removal of HCHO and CO. Since Pt 48

49	and Au are active for the individual oxidations of HCHO and CO respectively, a
50	Pt-Au based bimetallic catalyst was naturally proposed. However, CO could be
51	adsorbed on Pt active sites, which makes the bimetallic catalyst prone to being
52	poisoned [17-20]. Such poisoning inhibits the co-oxidization of HCHO and CO as the
53	reaction going on. In our previous study, Pt-Au/TiO ₂ bimetallic catalyst with separate
54	Pt and Au active sites presented high catalytic activity for the simultaneous removal
55	of HCHO and CO at the GHSV of 90,000 h^{-1} at room temperature [21]. However,
56	Pt-Au/TiO ₂ bimetallic catalyst could not afford the simultaneous removal of HCHO
57	and CO at higher GHSV, whereas small reactor volume is important for space cabin.
58	Therefore, simultaneous removal of HCHO and CO with high activity and stability at
59	relatively higher GHSV at room temperature still remains to be challenging.
60	The preparation method of catalysts significantly affected their physiochemical

61 properties [15, 21-24]. It was found that reduction treatment enhanced the catalytic activity of Pt catalysts due to affording more metallic Pt [25-27]. Previous research 62 showed that precipitants had a significant influence on the size, dispersion, and 63 chemical states of Au species over catalysts. Urea has been found to be a good 64 precipitant [15, 24]. In addition, CeO_2 was found to be an excellent support for the 65 66 oxidation of both CO [13, 14] and HCHO [15, 28, 29]. Ordered CeO₂ supported Au 67 catalyst, having higher surface area and better dispersion of active sites, were more active than the disordered CeO₂ supported catalyst [15]. Moreover, nanostructured 68 CeO₂ could enhance the oxygen transfer to active Pt sites [30]. 69

70

In the present study, Pt-Au/CeO2 bimetallic catalysts were prepared by the

71 reduction-deposition precipitation (RDP) (see Scheme 1) and impregnation deposition-precipitation (IDP). Physicochemical properties of the Pt-Au/CeO₂ 72 73 bimetallic catalysts were characterized by N₂ adsorption, high-resolution transmission 74 electron microscopy (HRTEM), temperature programmed reduction by H_2 (H_2 -TPR), X-ray photoelectron spectra (XPS), and in-situ Diffuse Reflectance Infrared Fourier 75 76 Transform Spectroscopy (in-situ DRIFTS). The relationship between the 77 physicochemical properties and the activity for CO and HCHO oxidation of the 78 catalysts has also been discussed.

79 **2. Experimental**

80 **2.1. Preparation of the catalysts**

The CeO₂ nanospheres were obtained by hydrothermal method. 13 g Ce(NO₃)₃·6H₂O, 390 mL glycol, 13 mL ultra-pure water and 13 mL propionic acid were added into a teflon-sealed autoclave and then kept at 180 °C for 10 h. After hydrothermal treatment, the suspension was centrifuged and washed with ultra-pure water. The precipitate was dried at 100 °C for 12 h and then calcined in air at 400 °C for 4 h to get the CeO₂ nanospheres.

The Pt-Au/CeO₂ (IDP) catalyst was prepared by the impregnation deposition– precipitation (IDP) method [21]. 4 g CeO₂ was added to 40 mL H₂PtCl₆ solution containing 0.04 g Pt and was stirred for 2 h. Water was removed by rotary evaporator under vacuum at 60°C and the precipitate was dried at 80 °C for 12 h. Pt/CeO₂ was obtained after the solid was calcined at 400 °C for 4 h in air. The pH value of the Pt/CeO₂ suspension was adjusted to 9-10 by using aqueous NaOH solution. 10 mL

Catalysis Science & Technology

93	HAuCl ₄ solution containing 0.02 g Au was added to this suspension and was
94	vigorously stirred for 2 h. After the suspension was aged at 75 °C for 2 h, the
95	suspension was filtered and washed with ultra-pure water. Then the solid was dried
96	under vacuum at 80 °C for 12 h. Subsequently, Pt-Au/CeO2 (IDP) catalyst was
97	obtained after the precipitate was calcined at 200 °C in air for 4 h.

Pt-Au/CeO₂ (RDP) catalyst was acquired by reduction-deposition precipitation 98 99 (RDP) method. 4 g CeO₂ was uniformly dispersed into the H₂PtCl₆ solution containing 0.04 g Pt and was stirred for 2 h. After adjusting the pH value of the 100 101 suspension to 10 by using aqueous NaOH solution, NaBH₄ (molar ratio of NaBH₄ to 102 Pt=10) solution was quickly added to the suspension. The solution was continuously 103 stirred for 2 h. The suspension was filtered and washed with ultra-pure water. It was 104 dried under vacuum at 120 °C for 12 h to obtain Pt/CeO₂. Urea solution (molar ratio 105 of urea to Au=125) and 2 g Pt/CeO₂ were uniformly dispersed into the HAuCl₄ 106 solution containing 0.02 g Au. The solution was stirred at 80 °C for 8 h. After the suspension was aged for 12 h at room temperature, it was filtered and the precipitant 107 was washed with ultra-pure water. The solid was dried at room temperature under 108 109 vacuum for 12 h to obtain Pt-Au/CeO₂ (RDP) catalyst.

110

2.2. Characterization of the catalysts

Surface areas of the catalysts were determined according to the BET method by using a Micromeritics' ASAP 2000 instrument. HRTEM micrographs were obtained with a JEM-2100F microscope at 200 kV. The surface chemical states of Pt-Au/CeO₂ catalysts were investigated by XPS (PHI Quantro SXM ULVAC-PHI, Japan) using an 115 Al K α X-ray source (1486.7 eV) at 15 kV and 25 W with the binding energy 116 calibrated by C 1s at 284.8 eV.

117 In-situ DRIFTS spectra were obtained in a Nicolet 6700 FTIR spectrometer. Before the experiments, all the catalysts were pretreated with Ar at 100 °C for 1 h. 118 After being cooled to 25 °C, the reactant gas, containing 100 ppm HCHO, 800 ppm 119 CO and synthetic air at 100 mL min⁻¹, was introduced into the DRIFT cell. All spectra 120 were recorded by accumulating 32 scans with a resolution of 4 cm⁻¹. H₂-TPR 121 122 measurements were carried out in a fixed bed microreactor, which was equipped with a quadrupole mass spectrometer (Omnistar, GSD-301-O₂). 0.2 g sample was 123 pretreated under Ar at 100 °C for 1 h. After being cooled to 25 °C, the catalyst was 124 reduced by 5% H₂/N₂ at 50 mL·min⁻¹ in the temperature range of 30 to 350 °C with a 125 heating rate of 10 °C min⁻¹. Prior to the characterization, the pretreatments were 126 performed as follows: fresh Pt-Au/CeO₂ (IDP) catalyst was pretreated by 5% H₂/N₂ at 127 100 mL min⁻¹ at 200 °C for 1 h, while the Pt-Au/CeO₂ (RDP) fresh catalyst was 128 pretreated with Ar at 100 °C for 1 h. Pt⁰ species are more active than Pt²⁺ species for 129 130 the oxidation of HCHO, so reduction treatment for the catalyst (IDP) is necessary. For the catalyst (RDP), it is not necessary for H_2 pretreatment because the Pt species have 131 132 already been reduced by NaBH₄.

133 **2.3. Measurement of the catalytic activities**

Activity evaluation for the simultaneous removal of CO and HCHO was carried out by using 0.36 g catalyst at 25 °C. Before evaluating the activity, Pt-Au/CeO₂ (IDP) catalyst was pretreated at 200 °C by 5% H_2/N_2 at 100 mL·min⁻¹ for 1 h, while

137	Pt-Au/CeO ₂ (RDP) catalyst was pretreated at 100 °C by Ar at 100 mL·min ⁻¹ for 1 h.
138	After the catalyst was cooled to 25 °C, the reaction gas, comprising of 100 ppm CO,
139	50 ppm HCHO and air with 50% relative humidity (RH), was introduced to the
140	reactor at a rate of 1800 mL \cdot min ⁻¹ (which corresponds to a GHSV of 250,000 h ⁻¹). CO
141	and CO_2 were detected by a gas chromatograph (GC) equipped with CH_4 converter,
142	while HCHO was analyzed by an acetylacetone-based spectrophotometric method.

143 **3. Results and discussion**

144 **3.1.** Catalytic activities of the catalysts

Fig. 1 presents the activities of the Pt-Au/CeO2 catalysts for the catalytic 145 co-oxidation of CO and HCHO. 97% conversion of CO and 80% conversion of 146 HCHO are observed over Pt-Au/CeO₂ (IDP) catalyst. It is worth noting that the 147 148 conversions of both CO and HCHO gradually decrease, which can be attributed that CO cannot completely be removed from Au active sites, resulting in CO accumulation 149 150 on Au active sites and CO self-poisoning over Pt active sites [20, 21, 31]. In contrast, 100% conversions of CO and HCHO are obtained for Pt-Au/CeO₂ (RDP) catalyst. 151 152 More importantly, it shows high stability, which is very important for the practical applications. 153

Fig. 2 shows the effect of Au content on the catalytic performance of Pt-Au/CeO₂ (RDP) catalyst with Pt content of 1 wt.%. Conversions of CO and HCHO increase with increasing Au content. This is due to the reason that more Au species enhance the removal of CO and decrease the CO poisoning effect on the Pt active sites. When Au content is 1 wt.%, CO and HCHO conversion of 100% can obtained. Therefore, the optimized Au content is 1 wt.% for a 1 wt.% Pt content in the catalyst. The effect of RH on the catalytic performance of Pt-Au/CeO₂ (RDP) catalyst was investigated after the catalyst was exposed to 100 ppm CO + 50 ppm HCHO + Synthetic air at the GHSV of 250,000 h⁻¹ for 60 min and the results were presented in **Fig. 3**. It can be seen that the catalytic activity decreases with the increase of RH. This is attributed to that the accumulation of water occupied the Pt and Au active sites [32] at relatively high RH and thus, hinder the co-oxidation of CO and HCHO.

3.2. Physicochemical properties of the catalysts

Pore size distributions of CeO_2 nanospheres are shown in Fig. 4. It shows that 167 CeO₂ nanospheres' pore size is mainly distributed near 2 nm and 5 nm. BET surface 168 area and pore volume results for CeO₂ nanospheres and Pt-Au/CeO₂ catalysts are 169 170 presented in **Table 1**. The results show that CeO_2 nanospheres have high surface area (184.3 m²·g⁻¹). In addition, the decrease of surface areas of Pt-Au/CeO₂ catalysts is 171 due to the deposition of Pt and Au nanoparticles on CeO₂ nanospheres. Values for the 172 dispersion of metal on catalyst (IDP) and catalyst (RDP) are 51.7% and 62.3% 173 174 respectively. This indicates that the RDP method affords a higher dispersion. It can be 175 seen that many CeO_2 crystallite particles constitute the CeO_2 nanospheres, which have 176 a diameter in the range of 70-100 nm (as shown in Fig. 5a). Moreover, BET results show significant voids. Fig. 5b shows that CeO₂ nanospheres present (111) plane 177 based on the FFT results, which is the same as the result of Ma et al. [33]. Fig. 5c and 178 179 Fig. 5d present the EDX spectra for Pt-Au/CeO₂ (IDP) and Pt-Au/CeO₂ (RDP) catalysts respectively. The content of Pt and Au in Pt-Au/CeO₂ (IDP) catalyst and 180

181	Pt-Au/CeO ₂ (RDP) catalyst are close to the theoretical value (1 wt.%), which suggests
182	that both of the preparation methods can afford a low loss of Pt and Au species.
183	Compared to the XPS results presented in Table 1, the contents of Pt and Au in
184	Pt-Au/CeO ₂ (IDP) catalyst are close to the EDX results, indicating that Pt and Au are
185	mainly distributed on the outer surface of the CeO2 nanospheres. However, the
186	contents of Pt and Au in Pt-Au/CeO ₂ (RDP) catalyst are less than the EDX results,
187	suggesting that most of Pt and Au are well distributed on the inner surface of CeO_2
188	nanospheres. The quantity of surface Au species and Pt species on $Pt-Au/CeO_2$ (RDP)
189	catalyst are smaller than that on Pt-Au/CeO ₂ (IDP) catalyst, however the dispersion of
190	Au species and Pt species on Pt-Au/CeO2 (RDP) catalyst are higher than that on
191	Pt-Au/CeO ₂ (IDP) catalyst. Different dispersion methods of Pt and Au species on
192	Pt-Au/CeO ₂ catalyst may cause the significant decrease in the specific surface area.
193	The H ₂ -TPR profiles of the CeO_2 nanospheres and Pt-Au/CeO ₂ catalysts are

194 presented in Fig. 6. Pure CeO₂ shows no reduction peak at 20-350 °C [34]. For the Pt-Au/CeO₂ (IDP) catalyst, there are three reduction peaks at 72, 149 and 218 °C. The 195 196 Au reduction of Au/CeO₂ catalyst occurs at 100-200 °C [15, 35]. So, the reduction peak at 149 °C is ascribed to Au reduction, while the reduction peaks at 72 and 197 198 218 °C are assigned to surface oxygen reduction of CeO₂ and Pt reduction 199 respectively [36]. Hydrogen consumption is much more than that needed for the 200 reduction of PtO_x at 72 °C, indicating that most of the hydrogen is consumed by CeO₂ 201 contacting with Pt, which happened due to the hydrogen spillover from Pt species to 202 CeO₂ [8, 36]. For the Pt-Au/CeO₂ (RDP) catalyst, there is no Pt reduction peak,

203	indicating that cationic Pt is reduced to metallic Pt by NaBH ₄ . Compared to cationic
204	Pt, metallic Pt is much more active for absorbing and converting HCHO species to
205	formate by enhancing oxygen activation [6, 25]. Therefore, Pt-Au/CeO ₂ (RDP) is
206	more active than Pt-Au/CeO ₂ (IDP) for HCHO oxidation. The reduction peak at
207	125 °C is ascribed to Au reduction peak in Pt-Au/CeO2 (RDP) catalyst. Reduction
208	temperature Pt-Au/CeO ₂ (RDP) is lower than that of Pt-Au/CeO ₂ (IDP).The
209	acceleration of Au-reduction could be due to the hydrogen dissociation on metal-Pt.
210	To investigate the chemical states of the Pt and Au species on the activity of
211	catalysts, XPS characteristics for fresh Pt-Au/CeO2 catalyst were carried out, as
212	shown in Fig. 7 and in Table 2. The Pt 4f includes Pt $4f_{7/2}$ and Pt $4f_{5/2}$ and Pt $4f_{7/2}$ is
213	usually investigated to evaluate the activity of Pt catalyst. The BE values of Pt $4f_{7/2}$ at
214	70.7 and 72.4 are ascribed to Pt^0 and Pt^{2+} respectively, suggesting that there are two
215	chemical states in the Pt-Au/CeO ₂ (IDP) (Fig. 7a) [37]. The Au 4f includes Au $4f_{7/2}$
216	and Au $4f_{5/2}$, and Au $4f_{7/2}$ is investigated to evaluate the activity of Au catalyst. For
217	Pt-Au/CeO_2 (IDP) catalyst, the BE values of Au $4f_{7/2}$ at 83.6 eV and 84.5 eV are
218	assigned to Au^0 and Au^+ respectively (Fig. 7b) [38]. Fig. 7c shows that the BE of Pt
219	$4f_{7/2}$ at 70.7 eV corresponds to Pt^0 in the Pt-Au/CeO ₂ (RDP) catalyst and there is no
220	peaks assigned to Pt^{2+} , indicating that the cationic Pt is reduced to metallic Pt. Fig. 7d
221	shows a signal at the BE of 84.2 eV, which is assigned to Au^+ in the Pt-Au/CeO ₂ (RDP)
222	catalyst, and there is no peak assigned to Au^0 .
223	Based on the XPS results, the ratios of both Pt^0 to the total surface $Pt (Pt^0 \text{ and } Pt^{2+})$

Based on the XPS results, the ratios of both Pt^0 to the total surface $Pt (Pt^0 \text{ and } Pt^{2^+})$ and that of Au^+ to the total surface $Au (Au^0 \text{ and } Au^+)$ are calculated (see **Table 2**). The

<u> </u>	
uscr	
U	
D	
2	
0	
U	
ţ	
Ð	
C	
CCO	
6	
0	
0	
0	
Ž	
hn	
hn	
chn	
echn	
echn	
chn	
. Techn	
Techn	
& Techn	
e & Techn	
& Techn	
ce & Techn	
nce & Techn	
ence & Techn	
ience & Techn	
ence & Techn	
ience & Techn	
cience & Techn	
Science & Techn	
s Science & Techn	
is Science & Techn	
sis Science & Techn	
sis Science & Techn	
lysis Science & Techn	
lysis Science & Techn	
alysis Science & Techn	
atalysis Science & Techn	
atalysis Science & Techn	
atalysis Science & Techn	

225	BE of metallic Pt (Pt^{0}) appears to be negatively shifted from 71.1 eV to 70.7 eV in
226	$Pt-Au/CeO_2$ (IDP) and $Pt-Au/CeO_2$ (RDP) catalysts due to the charge transfer, which
227	enhances the activation of oxygen [6]. The amount of negatively charged metallic Pt
228	in Pt-Au/CeO ₂ (RDP) catalyst is more than that in Pt-Au/CeO ₂ (IDP) catalyst, leading
229	to a higher catalytic activity for HCHO oxidation [25]. The cationic Au can more
230	easily adsorb O_2 than Au^0 and thus, possesses higher activity for CO oxidation, which
231	has been verified in the previous report [10, 16, 39-41]. In addition, Au^+ carbonyls are
232	the most stable gold carbonyls in the form of Au^+ -CO species [16, 42, 43]. The
233	amount of Au^+ in Pt-Au/CeO ₂ (RDP) catalyst is five times higher than that in
234	Pt-Au/CeO ₂ (IDP) catalyst, indicating that Pt-Au/CeO ₂ (RDP) catalyst can afford
235	higher catalytic activity for CO oxidation.

236 To study the chemical states of oxygen in fresh samples, O1s XPS spectra are 237 studied, as shown in Fig. 8 and Table 3. The O1s XPS spectra show two peaks at 529.3 and 531.3 eV. The former is ascribed to lattice oxygen (O_I) and the latter is 238 attributed to the oxygen (O_{II}) chemisorbed on the surface [6]. It is apparent that the 239 O_{II}/(O_{II}+O_I) ratio over Pt-Au/CeO₂ (RDP) is much higher than that over 240 241 Pt-Au/CeO₂(IDP)(48% vs 19%), which suggests that both the negatively charged 242 metallic Pt and Au⁺ enhance the capacity of O₂ adsorption and the absorbed O₂ is also 243 activated during the charge transfer [44-46]. A larger quantity of oxygen, chemisorbed on the surface, is beneficial to activate the HCHO and CO, which facilitates the 244 catalytic oxidation reaction [6, 42, 43, 47]. Therefore, the abundant chemisorbed 245 246 oxygen is mainly responsible for the high activity of Pt-Au/CeO₂ (RDP) catalyst for the co-oxidation of HCHO and CO.

Based upon the XPS results, it can be seen that Pt⁰ species can be obtained after 248 the H₂ treatment for Pt-Au/CeO₂ (IDP) catalyst. However, The RDP method could 249 provide more Pt⁰ species than that of IDP method, due to the reduction by NaBH₄. 250 251 During the deposition-precipitation of Au species, urea, which is used as a precipitant, could afford more cationic Au species than that of NaOH. This is due to the reason 252 253 that urea affords the gradual and homogeneous addition of hydroxide ions throughout 254 the whole solution, which helps avoid local increase in pH and the precipitation of metal hydroxide in the solution. The reaction of urea in water can be presented as: 255

256
$$\operatorname{CO}(\operatorname{NH}_2)_2 + 3\operatorname{H}_2\operatorname{O} \rightarrow 2\operatorname{NH}_4^+ + \operatorname{CO}_2 + 2\operatorname{OH}^-$$

To further investigate the relationship between the catalyst activity and the 257 258 catalyst physicochemical properties, in-situ DRIFT spectra of the Pt-Au/CeO₂ 259 catalysts obtained upon exposure to CO, HCHO and synthetic air at 25 °C are shown in Fig. 9. The peaks at 1580-1575 cm^{-1} and 1365-1361 cm^{-1} are ascribed to 260 antisymmetrical and symmetrical stretching bands of formate [15, 21, 35]. The peak 261 at 2080-1856 cm⁻¹ is ascribed to CO species adsorbed on Pt sites [48], while the peak 262 at 2160-2107 cm⁻¹ is assigned to CO species adsorbed on Au sites [49, 50]. HCHO can 263 264 be oxidized over two kinds of Pt-Au/CeO₂ catalysts because no peaks, ascribed to HCHO, are detected in Fig. 9a and 9c. The intensity of the peak at 1575 cm⁻¹ 265 gradually increases, indicating that high concentration CO is mainly chemisorbed and 266 oxidized on Au sites, while HCHO is oxidized on Pt active sites. The intensity of the 267 peak at 1575 cm⁻¹ (0.38 km) on Pt-Au/CeO₂ (RDP) catalyst is higher than that (0.3 km) 268

269	on Pt-Au/CeO ₂ (IDP) catalyst, indicating that more HCHO is absorbed and oxidized
270	on Pt sites over Pt-Au/CeO ₂ (RDP) catalyst, which is in accordance with the XPS
271	result. Fig. 9b presents two peaks at 2127 and 2016 cm ⁻¹ ascribed to CO species
272	adsorbed on Au and Pt sites in Pt-Au/CeO ₂ (IDP) catalyst. However, the peaks at 2160
273	cm ⁻¹ and 2080 cm ⁻¹ are ascribed to CO species adsorbed on Au and Pt sites in
274	Pt-Au/CeO ₂ (RDP) catalyst. It is obvious that the red shift appears on the peaks of CO
275	species adsorbed on Au and Pt sites on Pt-Au/CeO ₂ (RDP) catalyst, indicating that the
276	intermediate O_2 -Au ⁺ -CO is more stable [50, 51], which contributes to the CO
277	oxidation. In addition, the accumulated amount of CO on Pt-Au/CeO ₂ (RDP) catalyst
278	is less than that on the Pt-Au/CeO ₂ (IDP) catalyst, suggesting that more cationic Au
279	active sites promote the oxidation of CO. Previous research has shown that cationic
280	Au plays a crucial role in catalyzing CO oxidation over Au catalysts [10, 16, 52].
281	Previous researches have proposed that the mechanism of HCHO oxidation over
282	Pt catalysts is that HCHO is absorbed, oxidized into formate and then decomposed
283	into CO_2 and H_2O , successively [53]. And oxygen was first absorbed on the surface of

Pt catalysts is that HCHO is absorbed, oxidized into formate and then decomposed into CO₂ and H₂O, successively [53]. And oxygen was first absorbed on the surface of the catalyst and then acted as the active centers for HCHO oxidation[6]. A number of mechanisms have been proposed for CO oxidation on Au catalyst. A widely accepted mechanism is that CO is adsorbed on metallic Au sites in the form of O₂-Au⁺-CO as intermediates for CO oxidation [11]. Base on the mechanism for individual oxidation of CO and HCHO, one possible mechanism for the co-oxidation of CO and HCHO, has been proposed (see **Fig. 10**). As shown in **Fig. 10**, two kinds of intermediate are supposed to be formed on Pt-Au/CeO₂ catalyst and the chemisorbed oxygen (O_{II})

291 plays an important role in the co-oxidation of CO and HCHO.

292 Conclusions 293 present research shows that Pt-Au/CeO₂ catalyst prepared The by 294 reduction-deposition precipitation method presents high activity for the simultaneous 295 removal of HCHO and CO at room temperature. Over this catalyst, more negatively charged metallic Pt and Au⁺ could enhance the electron transfer, activation and the 296 297 mobility of oxygen species, resulting in formation of more chemisorbed oxygen (O_{II}). 298 The abundant chemisorbed oxygen (O_{II}) is mainly responsible for the higher activity 299 of Pt-Au/CeO₂ (RDP) catalyst for the simultaneous removal of CO and HCHO. In addition, the catalytic activity decreases with an increase of RH. The results obtained 300 301 in this study elaborate the possibility of the simultaneous removal of HCHO and CO 302 at relatively high GHSV. 303 Acknowledgments 304 This work has been financially supported by Special Foundation for Environmental 305 Public Sector Research of Ministry of Environmental Protection of People's Republic of China (No. 201409080). 306 307 References 308 [1] P.W. Seo, H.J. Choi, S.I. Hong, S.C. Hong, J. Hazard. Mater., 2010, 178, 917. 309 [2] L.F. Wang, M. Sakurai, H. Kameyama, J. Hazard. Mater., 2009, 167, 399. 310 [3] J.G. Yu, X.Y. Li, Z.H. Xu, W. Xiao, Environ. Sci. Technol., 2013, 47, 9928. 311 [4] X.F. Tang, J.L. Chen, X.M. Huang, Y. Xu, W.J. Shen, Appl. Catal. B, 2008, 81, 115. 312 [5] C.B. Zhang, H. He, K. Tanaka, Appl. Catal. B, 2006, 65, 37. 313 [6] H. Huang, D.Y.C. Leung, D. Ye, J. Mater. Chem., 2011, 21, 9647. 314 [7] Z.H. Xu, J.G. Yu, M. Jaroniec, Appl. Catal. B, 2015, 163, 306. 315 [8] N.H. An, Q.S. Yu, G. Liu, S.Y. Li, M.J. Jia, W.X. Zhang, J. Hazard. Mater., 2011, 186, 1392. 316 [9] N.H. An, W.L. Zhang, X.L. Yuan, B. Pan, G. Liu, M.J. Jia, W.F. Yan, W.X. Zhang, Chem. Eng. J., 2013, 317 215, 1. 318 [10] J. Yu, G.S. Wu, G.Z. Lu, D.S. Mao, Y. Guo, RSC Adv., 2014, 4, 16985.

Catalysis Science & Technology

319	[11] L.C. Wang, X.S. Huang, Q. Liu, Y.M. Liu, Y. Cao, H.Y. He, K.N. Fan, J.H. Zhuang, J. Catal., 2008, 259,							
320	66.							
321	[12] B. Qiao, J. Zhang, L. Liu, Y. Deng, Appl. Catal. A, 2008, 340, 220.							
322	[13] S. Carrettin, P. Concepcion, A. Corma, J.M. Lopez Nieto, V.F. Puntes, Angew. Chem. Int. Ed., 2004,							
323	43, 2538.							
324	[14] T.R. Reina, A.A. Moreno, S. Ivanova, J.A. Odriozola, M.A. Centeno, Chemcatchem, 2012, 4, 512.							
325	[15] B.B. Chen, C.A. Shi, M. Crocker, Y. Wang, A.M. Zhu, Appl. Catal. B, 2013, 132, 245.							
326	[16] G. Hutchings, M. Hall, A. Carley, P. Landon, B. Solsona, C. Kiely, A. Herzing, M. Makkee, J. Moulijn,							
327	A. Overweg, J. Catal., 2006, 242, 71.							
328	[17] T. Schmidt, Z. Jusys, H. Gasteiger, R. Behm, U. Endruschat, H. Boennemann, J. Electroanal. Chem.,							
329	2001, 501, 132.							
330	[18] H. Zhang, X. Liu, N. Zhang, J. Zheng, Y. Zheng, Y. Li, CJ. Zhong, B.H. Chen, Appl. Catal. B, 2016,							
331	180, 237.							
332	[19] J. Ayastuy, M. Gonzalez-Marcos, J. Gonzalez-Velasco, M. Gutierrez-Ortiz, Appl. Catal. B, 2007, 70,							
333	532.							
334	[20] G. Avgouropoulos, T. Ioannides, Appl. Catal. B, 2005, 56, 77.							
335	[21] H.B. Na, T. Zhu, Z.M. Liu, Catal. Sci. Technol., 2014, 4, 2051.							
336	[22] A.M. Da Silva, K.R. De Souza, G. Jacobs, U.M. Graham, B.H. Davis, L.V. Mattos, F.B. Noronha, Appl.							
337	Catal. B, 2011, 102, 94.							
338	[23] X. Li, P. Liu, Y. Mao, M. Xing, J. Zhang, Appl. Catal. B, 2015, 164, 352.							
339	[24] R. Zanella, S. Giorgio, C.R. Henry, C. Louis, J. Phys. Chem. B, 2002, 106, 7634.							
340	[25] Z.H. Li, K. Yang, G. Liu, G.F. Deng, J.Q. Li, G. Li, R.L. Yue, J. Yang, Y.F. Chen, Catal. Lett., 2014, 144,							
341	1080.							
342	[26] H.B. Huang, D.Y.C. Leung, D.Q. Ye, J. Mater. Chem., 2011, 21, 9647.							
343	[27] O.S. Alexeev, S.Y. Chin, M.H. Engelhard, L. Ortiz-Soto, M.D. Amiridis, J. Phys. Chem. B, 2005, 109,							
344	23430.							
345	[28] G. Li, L. Li, RSC Adv., 2015, 5, 36428.							
346	[29] Q.L. Xu, W.Y. Lei, X.Y. Li, X.Y. Qi, J.G. Yu, G. Liu, J.L. Wang, P.Y. Zhang, Environ. Sci. Technol., 2014,							
347	48, 9702.							
348	[30] G.N. Vayssilov, Y. Lykhach, A. Migani, T. Staudt, G.P. Petrova, N. Tsud, T. Skála, A. Bruix, F. Illas,							
349	K.C. Prince, Nat. Mater., 2011, 10, 310.							
350	[31] L.Q. Liu, B.T. Qiao, Y.D. He, F. Zhou, B.Q. Yang, Y.Q. Deng, J. Catal., 2012, 294, 29.							
351	[32] I.X. Green, W. Tang, M. Neurock, J.T. Yates, Angew. Chem. Int. Ed., 2011, 50, 10186.							
352	[33] L. Ma, D.S. Wang, J.H. Li, B.Y. Bai, L.X. Fu, Y.D. Li, Applied Catalysis B-Environmental, 2014, 148,							
353	36.							
354	[34] X. Cheng, A. Zhu, Y. Zhang, Y. Wang, C.T. Au, C. Shi, Appl. Catal. B, 2009, 90, 395.							
355	[35] H.F. Li, N. Zhang, P. Chen, M.F. Luo, J.Q. Lu, Appl. Catal. B, 2011, 110, 279.							
356	[36] I.D. Gonzalez, R.M. Navarro, W. Wen, N. Marinkovic, J.A. Rodriguez, F. Rosa, J.L.G. Fierro, Catal.							
357	Today, 2010, 149, 372.							
358	[37] M.J. Tiernan, O.E. Finlayson, Appl. Catal. B, 1998, 19, 23.							
359	[38] Q. Fu, H. Saltsburg, M. Flytzani-Stephanopoulos, Science, 2003, 301, 935.							
360	[39] G.C. Bond, D.T. Thompson, Gold Bull., 2000, 33, 41.							
361	[40] J. Guzman, B.C. Gates, J. Am. Chem. Soc., 2004, 126, 2672.							

362 [41] B. Yoon, H. Häkkinen, U. Landman, A.S. Wörz, J.-M. Antonietti, S. Abbet, K. Judai, U. Heiz, Science,

363	2005, 307, 403.
364	[42] F.M. S. Arrii, A. J. Renouprez, and J. L. Rousset, J. Am. Chem. Soc., 2004, 126, 1199.
365	[43] G.J. Hutchings, Dalton Trans., 2008, 5523.
366	[44] J.A. van Bokhoven, C. Louis, J.T. Miller, M. Tromp, O.V. Safonova, P. Glatzel, Angew. Chem. Int.
367	Ed., 2006, 45, 4651.
368	[45] T. Jacob, B.V. Merinov, W.A. Goddard, Chem. Phys. Lett., 2004, 385, 374.
369	[46] A.P. Farkas, T. Diemant, J. Bansmann, R.J. Behm, Chemphyschem, 2012, 13, 3516.
370	[47] L. Ma, D.S. Wang, J.H. Li, B.Y. Bai, L.X. Fu, Y.D. Li, Appl. Catal. B, 2014, 148, 36.
370	[47] L. Ma, D.S. Wang, J.H. El, B.H. Bal, L.X. Fu, F.D. El, Appl. Catal. B, 2014, 148, 50. [48] H.N. Evin, G. Jacobs, J. Ruiz-Martinez, U.M. Graham, A. Dozier, G. Thomas, B.H. Davis, Catal. Lett.,
372	2007, 122, 9.
372	[49] A. Chiorino, M. Manzoli, F. Menegazzo, M. Signoretto, F. Vindigni, F. Pinna, F. Boccuzzi, J. Catal.,
374 275	2009, 262, 169.
375	 [50] M. Comotti, WC. Li, B. Spliethoff, F. SchÜth, J. Am. Chem. Soc., 2006, 917. [51] F. Boccuzzi, A. Chiorino, J. Phys. Chem. B, 2000, 104, 5414.
376	
377	[52] A. Karpenko, R. Leppelt, J. Cai, V. Plzak, A. Chuvilin, U. Kaiser, R.J. Behm, J. Catal., 2007, 250, 139.
378	[53] C. Zhang, H. He, Catal. Today, 2007, 126, 345.
379	
380	
381	
382	
383	
384 285	
385 386	
387 388	
389	
389 390	
390 391	
392	
392 393	
393 394	
395	
396	
397	
398	
399	
400	
401	
402	
403	
404	
405	
406	

407						
408						
409						
410						
411						
412						
413						
414						
415	Table 1: Textur	al porositie	s and chemica	l composition		
	Sample	$\mathbf{S}_{\mathrm{BET}}$	Dispersion ^a	Pore Volume	Surface compo	sition ^b (wt.%)
_		$(m^2 g^{-1})$	(%)	$(cm^{3}g^{-1})$	Pt	Au
	CeO ₂ nanospheres	184.3	—	0.34	—	_
	Pt-Au/CeO ₂ (IDP)	175.1	51.7	0.34	0.68	0.73
_	Pt-Au/CeO ₂ (RDP)	156.4	62.3	0.33	0.35	0.31
416	^a Metal dispersion dete	ermined by C	O-chemisorptio	on. ^b Surface con	position determin	ned by XPS.
417						
418						
419						
420						
421						
422						
423						
424						
425						
426						
427						
428						
429						
430						
431						
432						
433						
434						
435						
436						
437						
438						
439						
440						
441						

446						
447						
448						
449						
450						
451						
452						
453	Ta	ble 2: Analysis of	TXPS data for Pt-A	Au/CeO ₂ c	atalysts	
453	Та	ble 2: Analysis of	XPS data for Pt-A	Au/CeO ₂ c	atalysts	
453	Ta	ble 2: Analysis of Peak position	XPS data for Pt-A		atalysts	Content
452 453 454					-	Content (at.%)
453		Peak position	Content		position	
453		Peak position (eV)	Content (at.%)	Peak p	position (eV)	(at.%)
453	Catalyst	Peak position (eV) Pt ⁰ Pt ²⁺	$\frac{\text{Content}}{(\text{at.\%})}$ $\frac{1}{\text{Pt}^{0}/\text{Pt}^{0}+\text{Pt}^{2+}}$	Peak p	position (eV) Au ⁺	$\frac{(at.\%)}{Au^+/Au^0 + Au^+}$
453	Catalyst Pt-Au/CeO ₂ (IDP)	Peak position(eV) Pt^0 Pt^{2+} 70.772.4	Content (at.%) Pt0/Pt0+Pt2+ 75	Peak p	cosition (eV) Au ⁺ 84.5	$\frac{(at.\%)}{Au^{+}/Au^{0}+Au^{+}}$ 18

lysts		anuscript
ition	Content	Š
V)	(at.%)	-
u ⁺ 4.5	$Au^+/Au^0 + Au^+$	B
4.5 4.2	18 100	ccepte
+. <i>L</i>	100	ð
		Ö
		0
		٩
		logy
		echne
		5
		Ū
		E.
		õ
		Ð
		nce
		Ð
		5
		S
		S
		Catalysis Scie
		Ň
		a
		at
		ö

			Au/CeO ₂ catalysts	
Catalysts	Peak pos	sition (eV)	Surface atomic rat	
	OII	O_{I}	$O_{II} \ / \ O_{II} + O_{I}$	
Pt-Au/CeO ₂ (IDP)	531.8	529.5	19	
Pt-Au/CeO ₂ (RDP)	531.4	529.2	48	

Scheme 1: Schematic illustration of the procedure for the preparation of Pt-Au/CeO₂ 523 524 (RDP) catalyst. Figure 1: Activities of Pt-Au/CeO₂ (IDP) and Pt-Au/CeO₂ (RDP) catalysts for 525 526 catalytic co-oxidation of HCHO and CO. Reaction conditions: 50 ppm HCHO/100 ppm CO/air (50% relative humidity); temperature: $25 \degree$ C; GHSV = 250,000 h⁻¹. 527 Figure 2: Effect of Au content on the catalytic activity of Pt-Au/CeO₂ (RDP) catalyst 528 529 for the co-oxidation of CO and HCHO. 530 Figure 3: Effect of RH on the catalytic activity of Pt-Au/CeO₂ (RDP) catalyst for the

- co-oxidation of CO and HCHO.
 Figure 4: (a) N₂ adsorption and desorption isotherms for CeO₂ nanospheres. (b) BJH
- pore size distribution curves for CeO_2 nanospheres.
- Figure 5: (a) TEM images of CeO_2 nanosphere. (b) HRTEM images of CeO_2 nanosphere (Bottom-right inset shows the corresponding FFT pattern). (c)TEM
- 536 images and EDX spectra of Pt-Au/CeO₂ (IDP) catalyst. (d) TEM images and EDX
- 537 spectra of Pt-Au/CeO₂ (RDP) catalyst.
- **Figure 6 :** H₂-TPR profiles of Pt-Au/CeO₂ catalysts. (a) Pt-Au/CeO₂ (RDP). (b)
- 539 Pt-Au/CeO₂ (IDP). (c) CeO₂ nanospheres.
- 540 Figure 7: Pt 4f and Au 4f XPS spectra of Pt-Au/CeO₂ catalysts.
- 541 **Figure 8:** O1s XPS spectra of different Pt-Au/CeO₂ catalysts.
- 542 Figure 9: In-situ DRIFTS of the Pt-Au/CeO₂ catalysts after being exposed to 800
- 543 ppm CO + 100 ppm HCHO + Synthetic air at 25 °C. (a) and (b): Pt-Au/CeO₂ (IDP)
- 544 catalyst. (c) and (d): Pt-Au/CeO₂ (RDP) catalyst.
- 545 Figure 10: A proposed mechanism for the catalytic co-oxidation of CO and HCHO
- 546
- 547
- 548 549
- 550
- 551
- 552
- 553
- 554
- 555
- 556
- 557
- 558
- 559
- 560
- 561 562
- 563
- 563
- 564
- 565
- 566

619 **Fig. 2**

636

Catalysis Science & Technology Accepted Manuscript

652

653 **Fig. 4**

659 Fig. 5

