Catalysis Science & Technology

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/catalysis

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Mohammad Gholinejad,*^{*a*} Mehran Razeghi,^{*a*} Arash Ghaderi,*^{*b*}, Pullithadathil Biji^{*c*}

A novel phosphinite functionalized magnetic (Fe_3O_4) nanoparticles having silica nanoshells, containing imidazolium ionic liquid moiety has been successfully synthesized and used as a support and stabilizer for palladium nanoparticles. The obtained compound was characterized by SEM, TEM, EDX, solid UV, VSM, XRD, XPS, FT-IR, and N₂ adsorption–desorption analyses. This magnetic composite has been applied as the catalyst in Suzuki-Miyaura coupling reaction of aryl halides (I, Br,CI) with arylboronic acids in aqueous media under mild reaction conditions and low palladium loading. The air stable catalyst could be easily separated from the reaction mixture using an external magnet and reused for eight consecutive times with small drops in its catalytic activity.

Introduction

In recent years, transition metals have had an important impact on the development of organic chemistry by evolving different new reactions. Palladium is one of the precious noble metal which catalyzes various important coupling reactions such as Suzuki-Miyaura,¹ Heck-Mizoroki² and Sonogashira-Hagihara³ reactions. Among the different palladium catalyzed reactions, the cross coupling between aryl, vinyl or alkyl (pseudo)halides and organoboron reagents, known as Suzuki-Miyaura reaction, is one of the substantial palladium catalyzed reactions for the formation of different types of compounds found in many building blocks of pharmaceuticals and natural products. From the green chemistry point of view, contamination of the products in Suzuki-Miyaura reaction with heavy and toxic palladium metal is very undesirable.⁴ Furthermore, isolation and reusing expensive palladium catalysts are important from the economic standpoint. To address these challenges, many efforts have been made by heterogenization of the catalysts using immobilization of homogeneous palladium catalysts on different supports such as polymers,⁵ modified silicas,⁶ mesoporous materials⁷ and ionic ligiuids.⁸ Despite the significant progress in

heterogenization of palladium catalysts, separation of these heterogeneous catalysts from the reaction mixture using conventional methods such as filtration or centrifugation is not an easy task. However, magnetic nanoparticles with unique physical properties such as high surface area, superparamagnetism and low toxicity have been distinguished as promising supports for stabilization of palladium nanoparticles.⁹

lonic liquids (ILs) with special properties, such as non-volatility, non-flammability and a wide temperature range over the liquid phase, are classified as green solvents.¹⁰ However, most of ionic liquids are expensive materials and their use as a solvent is not desirable economically. Nevertheless, by immobilization of ILs onto the surface of a solid support, organic reactions can proceed on the thin IL layer on the surface of the support and minimize the amount of the employed ILs.¹¹

Recently, we have reported clay composite carrying phosphinite-functionalized ionic liquid moieties as a support for stabilization of palladium nanoparticles and its applications in Suzuki-Miyaura and Sonogashira-Hagihara coupling reactions.¹² Also, very recently, we have reported magnetic nanoparticles supported oxime palladacycle¹³ and palladium nanoparticles supported on magnetic modified with carbon quantum nanodots¹⁴ as efficient and separable catalysts for Suzuki-Miyaura coupling reaction. In continuation of our interest on magnetic supported palladium catalysts, herein, we wish to report the synthesis and characterization of phosphinite-functionalized magnetic nanoparticles containing imidazolium ionic liquid moiety for stabilization of palladium nanoparticles (Scheme 1) and its application as a catalyst in

(AL SOCIETY **CHEMISTRY**

^{a.} Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), P. O. Box 45195-1159, Gavazang, Zanjan 45137-6731, Iran. Email:

gholinejad@iasbs.ac.ir ^b Department of Chemistry, College of Sciences, Hormozgan University, Bandar Abbas, 71961, Iran. Fax: +98-761-766-0032; Tel: +98-761-766-0042; Email: <u>aahaderi@hormozaan.ac.ir</u>

 $^{^{\}rm c}$ Nanotech Research, Innovation and Incubation Center, PSG Institute of Advanced Studies, Coimbatore-641 004, India.

<code>+Electronic Supplementary Information (ESI)</code> available: [FT-IR of Fe₃O₄@SiO₂ and ¹H NMR and ¹³C NMR of all products]. See DOI: 10.1039/x0xx00000x

Page 2 of 13

ARTICLE

Journal Name

Results and discussion

Fe₃O₄ NPs were prepared in a co-precipitation step based on the procedure of Massart *et al.* using FeCl₃.6H₂O and FeCl₂.4H₂O salts.¹⁵ The prepared Fe₃O₄ nanoparticles were coated with a thin layer of silica using tetraethyl orthosilicate to impart core/shell Fe₃O₄ nanoparticles (SiO₂@Fe₃O₄ NPs). FT-IR analysis showed typical Si-O bond (Si-O-Fe) characteristics at 1090 cm⁻¹ (Figure 1, supporting information).¹⁶ The core/shell structure was further confirmed by TEM analysis (Figure 1). Further, SiO₂@Fe₃O₄ core/shell nanospheres were treated with 3-glycidoxypropyltrimethoxysilane to afford epoxyfunctionalized SiO₂@Fe₃O₄(1).

Fig. 1 TEM image of SiO₂@Fe₃O₄ NPs

Formation of material 1 was confirmed using thermogravimetric analysis which showed three step weight losses (Figure 2). First weight loss is related to water and physically adsorbed solvents. Second and third ones are related to the organic resides attached to the surface of the support. In order to add the ionic and phosphinite moieties, epoxy-functionalized SiO₂@Fe₃O₄ was reacted with 1-methyl imidazole and chlorodiphenylphosphine to afford material 2 which is referred to as Im-Phos-SiO₂@Fe₃O₄ throughout the text of this article. Thermogravimetric analysis of material 2 showed an increase in loading which is probably related to the added organic groups (Figure 3).

Fig. 2 Thermogravimetric diagram of the compound ${\bf 1}$

Finally, Pd NPs supported material (**3**) was easily obtained by dissolving and sonicating $PdCl_2$ in hot water followed by treating with Im-Phos-SiO₂@Fe₃O₄. Palladium loading on the composite **3** was determined using ICP analysis to be 0.32 mmolg⁻¹. SEM image of the material **3** showed the formation of uniform and mono-dispersed nanoparticles (Figure 4).

Fig. 4 SEM image of the prepared Pd NPs (3)

Solid state UV-Vis spectrum of the composite **3** did not show the characteristic peak of Pd(II) at 280 nm indicating the conversion of Pd(II) to Pd(0).¹⁷ Moreover, increasing the absorption bands in the higher regions indicates the presence of nanoparticles in the structure of the material **3** (Figure 5).¹⁸

Fig. 5 Solid state UV-Vis spectra of the composite 3

X-ray diffraction (XRD) analysis of the catalyst showed the presence of Pd nanoparticles by appearing Bragg's reflections related to palladium at 2θ = 40.1, 46.7, 68.1, and 82.1.¹⁹ Also, Bragg's reflections related to spinel structure of Fe₃O₄ (JCPDS card no. 85-1436) and SiO₂ are evident in the diagram²⁰ (Figure 6).

ARTICLE

Fig. 6 XRD pattern of the material 3

In order to get some information about the oxidation state of palladium in the composite, X-ray photoelectron spectrum (XPS) of the material was studied (Figure 7). The results showed the presence of two intensive doublets at 335 and 340 eV related to Pd(0) and peaks at 337 and 342 eV related to Pd(II) corresponding to Pd $3d_{5/2}$ and Pd $3d_{3/2}$, respectively. These results indicates that around 62% of palladium particles exists in the form of Pd(0).^{21,22}

Fig. 7 XPS spectrum of the composite 3

TEM images of the material **3** showed the attachments of palladium nanoparticles to the IL-modified Fe_3O_4 NPs (Figure 8).

Fig. 8 TEM images of Pd NPs supported on IL-modified Fe₃O₄ NPs.

The presence of palladium species in the structure of the composite **3** was also confirmed by energy-dispersive X-ray spectroscopy (EDS) obtained from TEM analysis (Figure 9). It is worth mentioning that EDS analysis was also confirmed the presence of phosphorus in the structure of the material.

Fig. 9 EDS image of the material 3

Page 4 of 13

Journal Name

In order to obtain information about superparamagnetic property of the prepared materials, magnetization curves of Fe₃O₄ NPs, SiO₂@Fe₃O₄ NPs, Im-Phos-SiO₂@Fe₃O₄ (2), and the composite (3) was determined at room temperature (Figure 10).²² In all four samples, zero coercivity and remanence on the magnetization loop was observed without the presence of hysteresis loop which confirmed superparamagnetic property and the ability of the material to be separated from the reaction mixture by an external magnet (Figure 10). It is worth mentioning that, the decrease in the magnetization value of the SiO₂@Fe₃O₄ (38 emug⁻¹) in comparison with Fe₃O₄ NPs (61 emug⁻¹) confirms the silica coating and formation of core/shell nanoparticles. Furthermore, a decreases in the magnetization value of the $SiO_2@Fe_3O_4$ functionalized phosphiniteimidazolium (2) (32 emug⁻¹), confirms the immobilization of organic groups on the surface. However, immobilization of palladium nanoparticles in the composite 3 does not change the magnetization compared to material 2.

Fig. 10 Magnetization curves Fe_3O_4 NPs, $SiO_2@Fe_3O_4$, Im-Phos- $SiO_2@Fe_3O_4$, catalyst, and recycled catalyst after 3rd run.

The catalytic activity of the prepared material 3 was evaluated in Suzuki-Miyaura coupling reaction. In order to find the optimized reaction conditions, the reaction of 4-bromoanisole with phenylboronic acid was selected as the model reaction. The effect of different factors such as solvents, bases, amount of the catalyst and temperature were studied (Table 1). Initially, the reaction was studied using K₂CO₃ as a base in different solvents such as H₂O, DMF, EtOH, toluene, CH₃CN, THF, and a mixture of H₂O/EtOH. Results indicated that in aqueous ethanol (1:1) the reaction took place quantitatively in 1 h at 60 °C (Table 1, entry 6). By lowering the reaction temperature to 30 °C, the yield of the product was decreased to 84% (Table 1, entry 9). Using other bases such as DABCO, K₃PO₄, Et₃N, and NaOAc in H₂O/EtOH at 60 °C gave low yields for the reaction (Table 1, entries 10-16). In the absence of the catalyst, only 5% of the desired product was detected by GC (Table 1, entry 17).

 Table 1. Optimization of the reaction conditions for the reaction of 4bromoanisol and phenylboronic acid.^a

Entry	Base	Solvent	Temp. (°C)	Time (h)	Yield(%) ^b
1	K_2CO_3	H ₂ O	60	15	91
2	K_2CO_3	Toluene	60	15	7
3	K_2CO_3	DMF	60	15	2
4	K_2CO_3	CH ₃ CN	60	15	7
5	K_2CO_3	THF	60	15	1
6	K_2CO_3	H ₂ O/EtOH	60	1	100
7	K_2CO_3	EtOH	60	5	90
8	K_2CO_3	H ₂ O/EtOH	50	2	78°
9	K_2CO_3	H ₂ O/EtOH	30	24	84
10	Et ₃ N	H ₂ O/EtOH	30	24	5
11	DABCO	H ₂ O/EtOH	30	24	49
12	NaOAc	H ₂ O/EtOH	30	24	12
13	K ₃ PO ₄	H ₂ O/EtOH	30	24	86
14	t-ButOK	H ₂ O/EtOH	30	24	97
15	t-ButOK	H_2O	30	24	70
16	t-ButOK	EtOH	30	24	88
17	K_2CO_3	H ₂ O/EtOH	60	24	5°

 $^{\rm a}$ Reactions performed on a 0.5 mmol scale. $^{\rm b}$ GC yields. $^{\rm c}$ Reaction in the absence of the catalyst.

With the optimized reaction conditions in hand, the substrate scope of the Suzuki-Miyaura coupling reaction was evaluated employing different aryl halides and arylboronic acids (Table 2). Reactions of bromobenzene, 4-bromobiphenyl and 1bromo naphthalene with phenylboronic acid proceeded well and the desired products were obtained in excellent yields (Table 2, entries 1, 3-4). Reaction of 5-bromopyrimidine as a heterocyclic aryl bromide with phenylboronic acid proceeded very well and corresponding coupling product were obtained in 97 % isolated yield (Table 2, entry 2). Also, reactions of aryl bromides containing electron donating group such as 4bromophenol and 4-bromoanisole were performed efficiently giving the coupling products in 88-96% yields (Table 2, entries 5-7). Aryl bromides containing electron withdrawing groups such as 2-bromobenzaldehyde, 4-bromobenzaldehyde, 4bromobenzonitril, 4-bromonitrobenzene, and 4bromoacetophenone with phenylboronic acid were proceed smoothly and the desired coupling products were obtained in high to excellent yields (Table 2, entries 9-13). We have also studied the reactions of aryl iodides under the optimized reaction conditions at room temperature giving the coupling products in excellent isolated yields (Table 2, entries 16-20). Different arylboronic acids such as 1-naphthylboronic acid, 3,5diflourophenylboronic acid, 2-fluorophenylboronic acid and 3nitrophenylboronic acid were reacted efficiently with aryl bromides and iodides to give the products in high to excellent yields (Table 2, entries 7-8,14-15,17-18,20). We have also studied the reactions of aryl chlorides with phenylboronic acid under the optimized reaction conditions. However, the desired products were isolated in low vields. Therefore, the temperature of the reactions was raised to 120 °C and the

ARTICLE

solvent was switched to DMF. Under these conditions, aryl chlorides reacted effectively affording the corresponding biphenyl in 74-95% isolated yields (Table 2, entry 21-23).

For showing the practical applicability of the catalyst, we have scaled up the reaction of 4-bromoanisol up to 10 mmol with 15

mmol phenylboronic acid under the optimized reaction conditions. Results indicated that the reaction performed effectively and the desired product was obtained in 87% isolated yield.

Table 2. The reactions of structurally different aryl halides with arylboronic acids in the presence of the catalyst

Catalysis Science & Technology

^aReaction conditions: Aryl halide (1 mmol), arylboronic acid (1.5 mmol), K2CO3 (1.5 mmol), EtOH:H2O (1:1, 2 mL), catalyst (0.3 mol%).

For getting information about heterogeneity or homogeneity of the catalyst, we have studied hot filtration test for the reaction of 4-bromoanisol and phenylboronic acid under the optimized reaction conditions. For this purpose, after 4 h the reaction mixture was filtered at the reaction temperature and filtrate allowed reacting for 24 h. GC analysis of reaction mixture after 4 h showed 43% conversion and GC analysis of reacted filtrate after 24 h showed 49% conversion to desired coupling product. Also, addition of Hg(0) to the reaction of 4bromoanisol and phenylboronic (mercury test) caused decrease of the yield from 96% (Table 2, entry 6) to 35% after 24h. These results indicate that the catalyst acts mostly heterogeneously in these reactions.²³

In order to test the recycling ability of this novel magnetic supported palladium catalyst, the coupling reaction of iodobenzene with phenylboronic acid under the optimized reaction conditions was studied. In each cycle, magnetically separable catalyst was easily separated using an external magnet, washed with ethanol and used directly for a subsequence round of the reaction. The catalyst is recyclable for at least eight consecutive times with small drops in catalytic activity (Figure 11).

Fig. 11 Recycling of the catalyst for the reaction of iodobenzene with phenylboronic acid at room temperature

Leaching of palladium to the reaction mixture after 8th run was determined using ICP analysis to be 2.5% which indicated the stability of the catalyst during the reaction. In addition, thermogravimetric analysis of the catalyst after 8th run showed the presence of organic groups in the structure of the catalyst indicating its stability during the reaction courses (Figure 12).

SEM image of the recycled catalyst after 3rd run showed that the morphology and structure of the catalyst has been preserved during the reaction (Figure 13). Solid UV-Vis spectrum of the reused catalyst after 3rd run (Figure 3) was the same as the fresh catalyst.

Fig. 13 SEM image of reused catalyst after 3rd run

TEM images of the reused catalyst after 3rd run showed preservation of the structures with highly mono-dispersed Pd NPs in the core/shell surface of magnetic nanoparticles (Figure 14).

ARTICLE

Fig. 14 TEM images of reused catalyst after 3rd in different magnifications

Additionally, EDS analysis of the reused catalyst after 3rd run confirmed the presence of Pd, Si, Fe, and P species in the catalyst structure (Figure 15).

Fig. 15 EDS analysis of the reused catalyst.

FT-IR study of the catalyst after 3^{rd} run confirmed its stability showing the Si-O-Fe bond as a strong peak at 1084 cm⁻¹ (Figure 2, supporting information). Furthermore, X-ray diffraction (XRD) analysis of the reused catalyst after 3^{rd} run showed that the structure has been preserved during the reaction. Presence of Pd, Fe₃O₄ and SiO₂ in catalyst structure was confirmed by XRD spectrum (Figure 16).

Fig. 16 XRD pattern of the reused catalyst after 3rd run

X-ray photoelectron spectroscopy (XPS) of the catalyst after 3^{rd} run was also revealed the presence of the related peaks for Pd(0) (64%) and Pd(II) (36%) at 335-340 and 337-342 eV, respectively (Figure 17).

Fig. 17 XPS spectrum of the reused catalyst after 3rd run

Furthermore, study of superparamagnetic property of the recycled catalyst after 3^{rd} run showed very slight decrease in the magnetization value (Figure 10). Finally, the nitrogen adsorption–desorption isotherm for catalyst and also the reused catalyst after 3^{rd} run were studied (Figure 18). Results showed that both samples are same and possess type-III isotherms with H3 hysteresis loops. The BET surface area for catalyst and reused one are 44 and 46 m²g⁻¹, respectively. According to BJH calculation, pore diameters for the catalyst and the reused catalyst were obtained to be 2.42 and 2.6 nm confirming the mesoporous structure of the materials.

Fig. 18 N_2 adsorption/desorption isotherms of the catalyst and reused catalyst after 3rd run.

Conclusion

In conclusion, we have modified the surface of Fe_3O_4 with the phosphinite-functionalized ILs producing a novel solid material. This material which contains chelating groups has been used as the effective support for palladium nanoparticles. This inorganic-organic composite showed high catalytic activity in Suzuki-Miyaura coupling reaction of aryl halides with arylboronic acids in aqueous media. Reactions of aryl iodides and bromides were performed at room temperature and 60 °C, respectively. However, reactions of aryl chlorides were performed at higher temperature. The catalyst showed good stability and was recycled for several times with small decrease in its catalytic activity. The fresh and also recovered catalyst were characterized by spectroscopic and microscopic techniques.

Experimental Section General

All chemicals were purchased from Sigma-Aldrich, Acros and Merck and were used without further purification. ¹H NMR spectra were recorded at 400 MHz and ¹³C NMR spectra were recorded at 100 MHz in CDCl₃ using TMS as internal standard. Thermogravimetric analysis (TGA) was conducted from room temperature to 700 °C in an oxygen flow using a NETZSCH STA 409 PC/PG instrument. Transmission Electron Microscopy was carried out by JEOL JEM-2010, instrument (Japan). FT-IR spectra were recorded on a Bruker Vector 22. Energy dispersive X-ray analysis (EDX) was obtained using Carl Zeiss ΣiGMA instrument. Adsorption-desorption analyses were recorded using (BELsorp-max (Japan)). DRS-UV-Vis spectra was determined by Perkin-Elmer, Lambda 25 instrument. The content of copper and palladium in the catalyst was determined using atomic absorption spectrometry (Varian). Xray diffraction (XRD) analysis were obtained using (Simens D-5000 diffractometer, Germany).

Journal Name

10 | J. Name., 2012, 00, 1-3

Synthesis of Fe₃O₄ nanoparticles:

Magnetite (Fe₃O₄) nanoparticles were prepared according to the reported method in the literature.^{13,14} Typically, FeCl₃.6(H₂O) (11.0 g) and FeCl₂.4H₂O (4.0 g) were dissolved in 250 mL deionized water under argon with vigorous stirring using mechanical stirrer. Then, aqueous ammonia (25%, 40 mL) was added dropwise under argon atmosphere and mixture was stirred at 80 °C for 4 h. A black precipitate (Fe₃O₄) were collected by external magnet and washed three times with deionized water and ethanol and dried under vacuum.

Synthesis of silica-coated $\mbox{Fe}_3\mbox{O}_4$ nanoparticles

To the 30 min sonicated Fe_3O_4 nanoparticles (1 g) in ethanol (200 mL), were added tetraethyl orthosilicate (2 mL) and 6 mL aqueous ammonia (6 mL) and mixture was stirred for 24 h at room temperature. Produced $SiO_2@Fe_3O_4$ nanoparticles were separated by an external magnet and washed with H_2O (3×10 mL) and EtOH (3×10 mL) and dried under vacuum.

Synthesis of epoxy-functionalized magnetic nanoparticles (2)

Silica-coated Fe₃O₄ nanoparticles (1 g) were sonicated in 40 mL dry toluene and 3-glycidoxypropyltrimethoxysilane (4 mmol, 0.9 mL) was added. The resulting mixture was refluxed for 24 h under argon atmosphere. Then, the reaction mixture was subjected to magnetic separation, and obtained product (**2**) was washed sequentially with H₂O (3×10 mL) and EtOH (3×10 mL) and finally dried under vacuum.

Synthesis of Im-Phos-SiO₂@Fe₃O₄ (2)

The prepared epoxy-functionalized magnetic nanoparticles **2** (1 g) were sonicated in CH_2Cl_2 for 30 min. 1-Methyl imidazole (4 mmol, 0.33 g) and chlorodiphenylphosphine (4 mmol, 0.88 g) were added under argon protection and reaction was stirred at 50 °C for 24 h. Then, produced phosphinite-imidazolium functionalized magnetite was separated by external magnet and washed three times with deionized water (2×10 mL) and EtOH (3×10 mL) and dried under vacuum.

Synthesis of magnetite supported palladium nanoparticle catalyst (3)

The prepared Fe₃O₄@SiO₂-Im-Phos (**2**) (1 g) was sonicated in 15 mL H₂O. In another batch, PdCl₂ (0.45 mmol, 0.08 g) were sonicated in H₂O (10 mL) at 80 °C until dissolving PdCl₂ salt. Then, the aqueous solution of PdCl₂ was added to Fe₃O₄@SiO₂-Im-Phos (**2**) and the mixture was stirred at 60 °C for 24 h. Next, the mixture was subjected to magnetic separation and the solid was washed with H₂O (3×10 mL) and EtOH (3×10 mL) and dried under vacuum.

Acknowledgements

The authors are grateful to Institute for Advanced Studies in Basic Sciences (IASBS) Research Council and Iran National Science Foundation (INSF-Grant number of 92027195) for the support of this work.

Notes and references

- (a) A. Suzuki, J. Organomet. Chem. 1999, 576, 147; (b) M. Blangetti, H. Rosso, C. Prandi, A. Deagostino and P. Venturello, Molecules 2013, 18, 1188. (c) F. Alonso, I. P. Beletskaya and M. Yus, Tetrahedron 2008, 64, 3047; (d) V. Polshettiwar, A. Decottignies, C. Len and A. Fihri, ChemSusChem. 2010, 3, 502; (e) D. A. Alonso and C. Najera, Chem. Soc. Rev. 2010, 39, 2891; (f) R. Rossi, F. Bellina and M. Lessi, Adv. Synth. Catal. 2012, 354, 1181. (g) G. A. Molander, S. R. Wisniewski and E. Etemadi-Davan, J. Org. Chem. 2014, 79, 11199.
- (a) R. F. Heck and J. P. Nolley, J. Org. Chem. 1972, 37, 2320; (b) I. P. Beletskaya and A. Cheprakov, Chem. Rev. 2000, 100, 3009; (c) K. C. Nicolau, P. G. Bulger and D. Sarlah, Angew. Chem., Int. Ed. 2005, 44, 4442; (d) F. I. Alonso, I. P. Beletskaya and M. Yus, Tetrahedron 2005, 61, 11771; (e) A. Kumar, K. R. Gyandshwar, and A, K Singh, RSC Adv., 2012, 2, 12552; (f) H. Lin and P K. Wong, Curr. Org. Synth. 2010, 7, 599.
- 3 (a) R. Chinchilla and C. Nájera, *Chem. Rev.* 2007, **107**, 874; (b) R. Chinchilla and C. Nájera, *Chem. Soc. Rev.* 2011, **40**, 5084; (c) R. Chinchilla and C. Nájera, *Chem. Rev.* 2014, **114**, 1783; (d) M. Karak, L. C. A. Barbosa and G. C. Hargaden, *RSC Adv.* 2014, **4**, 53442.
- 4 J. P. Christopher, W. Hau-to, F. C. Ferreira and A. G. Livingston, *Org. Process Res. Dev.*, 2008, **12**, 589.
- 5 S. Navalón, M. Álvaro and H. García, *ChemCatChem*. 2013, **5**, 3460.
- 6 V. Polshettiwar and A. Molnár, *Tetrahedron* 2007, **63**, 6949.
- 7 (a) H. Veisi, A. A. Manesh, N. Eivazi and A. R. Faraji, *RSC Adv.* 2015, **5**, 20098; (b) L. Duan, R. Fu, Z. Xiao, Q. Zhao, J.Q. Wang, S. Chen and Y. Wan, *ACS Catal.* 2015, **5**, 575; (c) H. Veisi, D. Kordestani, S. Hemmati, A. R. Faraji, H. Veisi, *Tetrahedron Lett.* 2014, **55**, 5311; (d) Z. Dong, K. Liang, C. Dong, X. Li, X. Lea and J. Ma, *RSC Adv.* 2015, **5**, 20987; (e) B. Karimi, H. Behzadnia and H. Vali, *ChemCatChem.* 2014, **6**, 745; (f) R. Ali Molla, M. A. Iqubal, K. Ghosh, A. Singha Roy, Kamaluddin and Sk. M. Islam, *RSC Adv.* 2014, **4**, 48177; (g) P. Puthiaraj and K. Pitchumani, *Green Chem.* 2014, **16**, 4223; (h) H. Veisi, M. Hamelian, S. Hemmati, *J. Mol. Catal. A: Chem.* 2014, **395**, 25; (i) H. Veisi, A. Amini Manesh, N. Eivazi, A. R. Faraji, *RSC Adv.*, 2015, **5**, 20098.
- 8 (a) F. Bellina and C Chiappe, *Molecules* 2010, **15**, 2211;
 (b) S.B. Park, H. Alper, *Chem. Commun.* 2004, 1306, (c)
 N. Iranpoor, H. Firouzabadi and Y. Ahmadi, *Eur. J, Org. Chem.* 2012, 305; (d) P. Nehra, B. Khungar, K. Pericherla, S. C. Sivasubramaniana and A. Kumar, *Green Chem.* 2014, **16**, 4266.
- (a) H. Firouzabadi, N. Iranpoor, M. Gholinejad, S. Akbari and N. Jeddi, RSC Adv. 2014, 4, 17060; (b) F. Parra da Silva and L. Marcia Rossi, Tetrahedron 2014, 70, 3314; (b) J. Kim, J. E. Lee, J. Lee, Y. Jang, S.-W. Kim, K. An, J. H. Yu and T. Hyeon, Angew. Chem. Int. Ed. 2006, 45, 4789; (c) S. Verma, D. Verma, A. K. Sinha and S. L. Jain, Appl. Catal. A: General 2015, 489, 17; (d) Z. Yinghuai, S. C. Peng, A. Emi, S. Zh. Monalisa and R. A. Kemp, Adv. Synth. Catal. 2007, 349, 1917; (e) C. G. Tan and R. N. Grass, Chem. Commun. 2008, 4297; (f) S. Shylesh, L. Wang and W. R. Thiel, Adv. Synth. Catal. 2010, 352, 425; (g) D. Yuan, Q. Zhang and J. Dou, Catal. Commun. 2010, 11, 606; (h) R. Cano, D. J. Ramón and M. Yus, Tetrahedron 2011, 67, 5432; (i) R. Cano, M. Yus and D. J. Ramón, Tetrahedron 2011, 67, 8079; (j) P. Li, L. Wang, L. Zhang, and G. W. Wang, Adv. Synth. Catal.

2012, 354, 1307; (k) L. Zhang, P. Li, H. Li and L. Wang, Catal. Sci. Technol. 2012, 2, 1859; (I) M. Ma, Q. Zhang, D. Yin, J. Dou, H. Zhang and H. Xu, Catal. Commun. 2012, 17, 168; (m) X. Jin , K. Zhang , J. Sun, J. Wang, Z. Dong and R. Li, Catal. Commun. 2012, 26, 199; (n) D. Rosario-Amorin, M. Gaboyard, R. Clerac, L. Vellutini, S. Nlate and K. Heuze, Chem. Eur. J. 2012, 18, 3305; (o) R. Cano, M. Yus and D. J. Ramón, Tetrahedron 2012, 68, 1393; (p) L. M. Rossi, N. J. S. Costa, J. Limberger, A. L. Monteiro, V. Polshettiwar, T. Asefa, Eds., Wiley: Hoboken, Nanocatalysis Synthesis and Applications 2013; (q) Z. Wang, Y. Yu, Y. X. Zhang, S. Z. Li, H. Qian and Z. Y. Lin, Green Chem. 2015, 17, 413; (r) J. Yang, D. Wang, W. Liu, X. Zhang, F. Bian and W. Yu, Green Chem. 2013, 15, 3429; (s) B. R. Vaddula, A. Saha, J. Leazer and R. S. Varma, Green Chem. 2012, 14, 2133; (t) B. Karimi, F. Mansour and H. Vali, Green Chem. 2014, 16, 2587; (u) H. Veisi, J. Gholami, H. Ueda, P. Mohammadi, M. Noroozi, J. Mol. Catal. A: Chem. 2015, 396, 216. (v) D. Wang, C. Deraedt, L. Salmon, C. Labrugere, L. Etienne, J. Ruiz, D. Astruc, Chem. Eur. J. 2014, 20, 1; (w) B. Karimi, F. Mansouri, H. Mirzaei, ChemCatChem, 2015, 7, 1736.

- (a) K. Kumari, P. Singh and G. K. Mehrotra, International Journal of Green Nanotechnology, 2012,
 4, 262; (b) Suresh and J. S. Sandhu, Green Chem. Lett. and Rev. 2011, 4, 289; (c) L. Á. de Cienfuegos, R. Robles, D. Miguel, J. Justicia and J. M. Cuerva, ChemSusChem 2011, 4, 1035; (d) D. Betz, P. Altmann, M. Cokoja, W. A. Herrmann and F. E. Kühn, Coord. Chem. Rev. 2011, 255, 1518; (e) R. D. Rogers and K. R. Seddon, Science 2003, 302; (f) J. S. Wilkes, Green Chem. 2002, 4, 73.
- (a) S. T. Gadge, E. N. Kusumawati, K. Harada, T. Sasaki, D. Nishio-Hamane and B. M. Bhanage, J. Mol. Catal. A: Chem. 2015, 400, 170; (b) N. Jiao, Z. Li, Y. Wang, J. Liu and Ch. Xia, RSC Adv. 2015, 5, 26913; (c) S. Ghosh, R. Dey, S. Ahammed and B. C. Ranu, Clean Tech. Environ. Pol. 2014, 16, 1767; (d) S. Kazemi Movahed, R. Esmatpoursalmani and A. Bazgir, RSC Adv. 2014, 4, 14586; (e) B. Karimi and A. Zamani, Org. Biomol. Chem., 2012, 10, 4531; (f) M. Gruttadauria, L. F. Liotta, A. M. Pia Salvo, F. Giacalone, V. La Parola, C. Aprile and R. Noto, Adv. Synth. Catal. 2011, 353, 2119; (g) H. Hagiwara, T. Nakamura, T. Hoshi, T. Suzuki, L. Rodríguez-Pérez, C. Pradel, P. Serp, M. Gómez and E. Teuma, ChemCatChem 2011, 3, 749; (h) H. Yang, X. Han, G. Lia and Y. Wang, Green Chem. 2009, 11, 1184.
- 12 H. Firouzabadi, N. Iranpoor, A. Ghaderi, M. Gholinejad, S. Rahimi, and S. Jokar, *RSC Adv.* 2014, **4**, 27674.
- 13 M. Gholinejad, M. Razeghi, C. Najera, RSC Adv. 2015, 5, 49568.
- M. Gholinejad, M. Seyedhamzeh, M. Razeghi, C. Najera, M. Kompany-Zareh, ChemCatChem. DOI: 10.1002/cctc.201500925
- 15 R. Massart, IEEE Trans. *Magn*. 1981, **17**, 1247.
- 16 Q. Zhang, H. Su, J. Luo and Y. Wei, *Green Chem.* 2012, 14, 201.
- 17 K. K. R. Datta, M. Eswaramoorthy and C. N. R. Rao, J. Mater.Chem. 2007, 17, 613.
- 18 B. M. Choudary, S. Madhi, N. S. Chowdari, M. L. Kantam and B. Sreedhar, J. Am. Chem. Soc. 2002, **124**, 14127.
- (a) M. Gholinejad, F. Hamed, P. Biji, *Dalton Trans.* 2015, 44, 14293; (b) M. Gholinejad, J. Ahmadi, *ChemPlusChem* 2015, 80, 973.
- 20 S. Li, W. Zhang, M.-H. So, C.-M. Che, R. Wang, R. Chen, J. Mol. Catal. A: Chem. 2012, 359, 81.

- 21 M. Zhu, Y. Wang, C. Wang, W. Lia, G. Diao, *Catal. Sci. Technol.* 2013, **3**, 952.
- 22 H. Yang, Y. Wang, Y. Qin, Y. Chong, Q. Yang, G. Li, L. Zhanga and W. Li, *Green Chem.* 2011, **13**, 1352.
- 23 M. Lamblin, L. Nassar-Hardy, J.-C. Hierso, E. Fouquet, F.-X. Felpin, *Adv. Synth. Catal.* 2010, **352**, 33.

Palladium Supported on Phosphinite Functionalized Fe₃O₄ Nanoparticles as a New Magnetically Separable Catalyst for Suzuki-Miyaura Coupling Reaction in Aqueous Media

