This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Effect of preparation method on the solid state properties and the deN₂O performance of CuO-CeO₂ oxides

The present work aims at investigating the catalytic decomposition of N₂O over CuO-CeO₂ single or mixed oxides prepared by different synthesis routes, i.e., impregnation, precipitation and exotemplating. To gain insight into the particular role of CeO₂ as well as of CuO-CeO₂ interactions, three different types of materials are prepared and tested for N₂O decomposition both in the absence and presence of excess O₂: (i) bare CeO₂ prepared by precipitation and exotemplating, (ii) CuO/CeO₂ oxides synthesized by impregnation of CeO₂ samples prepared in (i) with CuO and (iii) single stage synthesized CuO-CeO₂ mixed oxides employing the co-precipitation and exotemplating methods. The corresponding commercial samples were also examined for comparison purposes. All materials were characterized by N₂ adsorption at -196 °C, X-ray diffraction (XRD), H₂ temperature-programmed reduction (H₂-TPR), X-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy (micro-Raman) and scanning electron microscopy (SEM). The results demonstrated the key role of preparation procedure on the direct catalytic decomposition of N₂O. Among the bare CeO₂ samples, the best performance was obtained with the samples prepared by the precipitation method, followed by exotemplating, while commercial CeO₂ showed the lowest performance. All bare oxides demonstrated low N₂O conversion, never exceeding 40% at 600 °C. Amongst the CuO-CeO₂ oxides, the optimum performance was observed for those prepared by co-precipitation, which achieved complete N₂O conversion at 550 °C. In the presence of excess oxygen in the feed stream, a slight degradation is observed, with the sequence of deN₂O performance to remain unchanged. The superiority of Cu-Ce mixed oxides prepared by precipitation compared to all other materials can be mainly ascribed to their excellent redox properties, linked to Ce⁴⁺/Ce³⁺ and Cu²⁺/Cu⁺ redox pairs. A redox mechanism for N₂O catalytic decomposition is proposed involving N₂O adsorption on Cu⁺ sites and their regeneration through Cu-ceria interactions.

Introduction

Nitrous oxide (N₂O) is recognized as one of the six most powerful greenhouse gases, with a high global warming potential (around 300 times higher compared to CO₂) and a long lifetime in atmosphere (almost 150 years), that severely contributes to the destruction of stratospheric ozone layer¹,². According to recent studies, the ozone depleting potential of N₂O is comparable to that of hydrochlorofluorocarbons (HCFCs), which are known as the most important ozone depleting agents³. Although N₂O is emitted by both natural and anthropogenic sources, the significant annual increase of its concentration in the atmosphere is mainly attributed to human activities, such as adipic and nitric acid plants, fuel combustion processes, etc⁴,⁵. Therefore, the effective control of N₂O stationary...
and mobile emissions is nowadays a challenging environmental issue.

Several after-treatment techniques have been developed for N\textsubscript{2}O abatement, including thermal decomposition4, non-selective catalytic reduction3, selective catalytic reduction7,8 and direct catalytic decomposition8-12. Among these, direct catalytic decomposition of N\textsubscript{2}O (deN\textsubscript{2}O) is the most promising method, due to its high efficiency and low energy requirements. The decomposition of N\textsubscript{2}O has been studied on various catalytic systems, such as transition and noble metal catalysts, perovskites, hexaluminates, spinels, zeolites, etc13-20. In spite of the excellent catalytic performance of noble metals (NMs)-based catalysts, their high cost and sensitivity to oxygen poisoning limit their practical applications9. Therefore, the development of NMs-free catalysts of low cost and adequate de-N\textsubscript{2}O performance is of crucial importance from both practical and economical point of view4.

Recently, it has been reported that mixed oxides could be possible alternatives for N\textsubscript{2}O catalytic decomposition20,21. In most of these studies, Ce\textsubscript{2}O\textsubscript{3} is used as a basic component in mixed oxides, due to its unique physicochemical properties linked to high oxygen storage-release capacity via Ce4+/Ce3+ redox cycles22. In this regard, several Ce\textsubscript{2}O\textsubscript{3}-based mixed oxides, such as Fe\textsubscript{2}O\textsubscript{3}-Ce\textsubscript{2}O\textsubscript{3}20, Co\textsubscript{3}O\textsubscript{4}-Ce\textsubscript{2}O\textsubscript{3}23, CuO-Co\textsubscript{3}O\textsubscript{4}24, CuO-CeO\textsubscript{2}24-27, were tested for N\textsubscript{2}O decomposition. An enhanced performance of mixed oxides compared to individual counterparts is usually obtained, which is ascribed to better redox properties through synergistic metal-support interactions.

Lately, Cu-based catalysts have also received considerable attention in heterogeneous catalysis due to their adequate performance and low cost28. Cu-based catalysts have shown great potential as alternatives to NMs for several applications such as oxidation of volatile organic compounds (VOCs), water-gas-shift (WGS) reaction, CO oxidation, preferential oxidation (PROX), steam reforming, among others29-34.

In the line of the above aspects, it has been clearly verified that CuO-CeO\textsubscript{2} oxides confer a synergistic interaction effect toward enhanced reducibility and catalytic performance35-40. The intrinsic reactivity of mixed oxides counterparts (e.g. CuO, CeO\textsubscript{2}, Co\textsubscript{3}O\textsubscript{4} etc) is very important, but the synthesis procedure is also expected to have a critical role on the interactions between oxides and consequently on the redox properties and catalytic performance. Adamski et al.25, investigated the impact of preparation method of Cu/CeO\textsubscript{2} catalysts on deN\textsubscript{2}O performance. It was reported that 5 mol% Cu/CeO\textsubscript{2} sample prepared by impregnation demonstrated the best deN\textsubscript{2}O performance. Zhou et al.26 found that 67 mol% Cu/CeO\textsubscript{2} catalyst prepared by citrate method provided the highest N\textsubscript{2}O conversion. Zabilski et al.27 studied the N\textsubscript{2}O decomposition in a series of Cu/CeO\textsubscript{2} samples with different Cu content, prepared by applying a hard template replication approach, using silica KIT-6 as template. They showed that Cu loadings in the range of 20-40 mol% resulted in the optimum deN\textsubscript{2}O performance. A close correlation between catalytic activity and reducibility was revealed27.

Taking into account the unique properties of CuO-CeO\textsubscript{2} mixed oxides, as well as the critical role of synthesis procedure on their solid state properties, the present work aims at systematically exploring the catalytic decomposition of N\textsubscript{2}O over CuO-CeO\textsubscript{2} single or mixed oxides prepared by different routes, i.e., impregnation, precipitation and exotemplating. To gain insight into the particular role of CeO\textsubscript{2} properties as well as on CuO-CeO\textsubscript{2} interactions three different types of materials are prepared and tested for N\textsubscript{2}O decomposition both in the absence and presence of O\textsubscript{2} excess: (i) bare CeO\textsubscript{2} prepared by precipitation and exotemplating, in comparison to commercial CeO\textsubscript{2}, (ii) CuO/CeO\textsubscript{2} mixed oxides synthesized by impregnation of CeO\textsubscript{2} samples prepared in (i) with CuO and (iii) CuO-CeO\textsubscript{2} mixed oxides prepared at one stage through impregnation, co-precipitation and exotemplating. Several characterizations techniques (BET, XRD, SEM, TPR, micro-Raman and XPS) were employed to reveal the influence of synthesis procedure on the physicochemical properties of the prepared samples and their impact on N\textsubscript{2}O decomposition.

Experimental

Materials Synthesis

Preparation of bare CeO\textsubscript{2}

CeO\textsubscript{2} was synthesized by two different methods: precipitation and exotemplating. The first method is consisting in adding 0.5 M NaOH solution to 0.5 M of cerium nitrate solution (Ce(NO\textsubscript{3})\textsubscript{3}·6H\textsubscript{2}O) with stirring, until pH= 841,42. The resulting precipitate was aged at room temperature overnight, filtered, washed with distilled water and dried at 100 ºC. Then the samples were calcined for 5 h at 600 ºC (100 cm3/min air flow) with a heating rate of 2 ºC/min. Ce-pp samples was obtained by this route.
Exotemplating was based on the procedure proposed by Schwickardi et al.,
which was similar to that used in other works. A carbon xerogel prepared by condensation of resorcinol and formaldehyde at pH= 6, following the method described in previous works, was used as template. Its BET surface area was 650 m2/g and the mesopore size equaled to 25 nm. Particle sizes between 0.05 and 0.25 mm were used. A saturated solution of a cerium nitrate precursor (Sigma-Aldrich) was added to the template by impregnation. Excess precursor solution was then removed by vacuum filtration and residual liquid on the surface of the template material was removed by sandwiching the solid phase between two sheets of filter paper and squeezing gently. Then the impregnated template material was dried in an oven overnight at 100 ºC and calcined for 5 h at 600 ºC in air (100 cm3/min). Total carbon template removal was achieved and the Ce-exo sample was obtained. A commercial ceria (Fluka) was also used for comparison purposes (Ce-com sample). This sample was calcined at the same conditions as the other samples.

Preparation of CuO/ceria samples
The ceria materials obtained above were impregnated in an aqueous solution of Cu(NO$_3$)$_2$·6H$_2$O (Sigma Aldrich) with appropriate concentration, so as to yield 20 wt.% Cu loading. The resulting suspension was heated under stirring until water evaporation, dried at 120 ºC overnight and calcined at 600 ºC for 5 h at the same conditions as the ceria materials. Following the aforementioned procedure the Ce-pp+Cu, Ce-exo+Cu and Ce-com+Cu materials were synthesized.

Preparation of Ce-Cu mixed oxides
Ce-Cu mixed oxides with 20 wt.% Cu loading were prepared by using cerium and copper nitrates (Sigma Aldrich) as precursors. Samples were prepared by precipitation and exotemplating, following the procedure described above for the ceria materials. Briefly, during the precipitation method, NaOH was added to the mixture of Ce and Cu nitrate precursors of appropriate concentration, in order to obtain 20 wt.% Cu loading. The resulting suspension was aged at room temperature overnight, filtrated, washed, dried at 100 ºC and calcined at 600 ºC for 5 h. Ce-Cu-pp samples were obtained by this route.

For the preparation of Ce-Cu mixed oxides by exotemplating, the carbon xerogel template was co-impregnated with a mixture of saturated solutions of Ce and Cu nitrate precursors, in order to obtain catalysts with 20 wt.% Cu. The excess solution was removed by vacuum filtration; the residual liquid was eliminated by sandwiching the solid phase between two sheets of filter paper with squeezing gently, followed by drying overnight at 100 ºC and calcination at 600 ºC for 5 h. Ce-Cu-exo materials were obtained.

For comparison, commercial CeO$_2$ (Fluka) and commercial CuO (Riedel-de Haën) were mechanically mixed in order to obtain Ce-Cu oxide with 20 wt.% Cu loading (Ce-Cu-com). The mixture was calcined at 600 ºC for 5 h, as followed for the mixed oxides prepared by precipitation and exotemplating.

For all samples the Cu loading was kept constant at 20 wt.%, corresponding on atomic basis to ~18 at%. This specific loading was selected taking into account the sufficient catalytic performance of Cu/Co$_2$O$_2$ samples with a Cu loading in the range of 10-20 at%.

Materials Characterization
The prepared metal oxides were characterized by N$_2$ adsorption at -196 ºC, scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS), X-ray diffraction (XRD), temperature programmed reduction (TPR), micro-Raman spectroscopy (micro-Raman) and X-ray photoelectron spectroscopy (XPS). TG-DSC was carried out in a Netzsch STA 409 PC Luxx1 apparatus for the exotemplated materials. The mass used for each test was around 15 mg. This amount of sample was weighed and placed in a ceramic crucible. Experiments were carried out in air with a heating rate of 10 ºC/min until 800 ºC. This technique allowed checking the presence of residual carbon template in the samples after calcination.

Textural characterization (BET)
The textural characterization was obtained from the N$_2$ adsorption isotherms measured in a Quantachrome Instruments Nova 4200e apparatus. All samples were previously degassed at 160 ºC for 5 h before analysis. The specific surface area (S$_{BET}$) was calculated by the Brunauer–Emmett–Teller (BET) equation.

Structural characterization (XRD)
XRD analysis was carried out in a PAN’alytical X’Pert MPD equipped with a X’Celerator detector and a secondary
monochromator (Cu Kα = 0.154 nm, 50 kV, 40 mA). The collected spectra were analysed by Rietveld refinement using PowderCell software, allowing the determination of crystallite sizes.

Morphological characterization (SEM)

Surface analysis for morphological characterisation was carried out by SEM, using a FEI Quanta 400 FEG ESEM (15 keV) electron microscope. The sample powders were mounted on a double-sided adhesive tape and observed at different magnifications under two different detection modes, secondary and back-scattered electrons. EDXS confirmed the nature of the components.

Redox characterization (TPR)

TPR experiments were carried out in a fully automated AMI-200 Catalyst Characterization Instrument (Altamira Instruments) under H2 atmosphere, to acquire information on the reducibility of the samples. In a typical TPR experiment, 50 mg of sample was placed in a U-shaped quartz tube located inside an electrical furnace and heated to 100 °C at 10 °C/min under He flow of 29 cm³/min and H2 flow of 1.5 cm³/min.

Surface characterization (XPS)

The XPS analysis was performed using a Kratos AXIS Ultra HSA, with VISION software for data acquisition and CASAXPS software for data analysis. The analysis was carried out with a monochromatic Al Kα X-ray source (1486.7 eV), operating at 15kV (90 W), in FAT mode (Fixed Analyser Transmission), with a pass energy of 40 eV for regions ROI and 80 eV for survey. Data acquisition was performed with a pressure lower than 1x10⁻⁶ Pa, and it was used a charge neutralisation system. The effect of the electric charge was corrected by the reference of the carbon peak (285 eV).

Structural/surface characterization (micro-Raman)

Unpolarized micro-Raman spectra were recorded at room conditions using a LamRam Jobin Yvon spectrometer and the 532 nm laser line as excitation. The spectral resolution was about 2 cm⁻¹. The laser power was kept at 10 mW in order to avoid sample heating.

Catalytic activity measurements

Catalytic activity experiments were performed in a cylindrical, quartz U-shaped fixed-bed reactor, with an inner diameter of 8 mm. The reactor loading was 100 mg, diluted with an equal amount of quartz. The total gas flow rate was 150 cm³(STP)/min corresponding to a Gas Hourly Space Velocity (GHSV) of 40000 h⁻¹. The feed composition during N₂O catalytic decomposition experiments was 1000 ppm N₂O or 1000 ppm N₂O + 2.0 v/v% O₂, balanced with He. The N₂O conversion performance was monitored in the temperature range of 200 to 600 °C. Effluents’ composition was analyzed by a gas chromatograph (Shimadzu 14B) equipped with a thermal conductivity detector (TCD) and a combination of Porapak QS and Molecular Sieve 5A columns.

Results and discussion

Textural characterization

The textural properties of the materials are listed in Table 1. Among the bare CeO₂ samples, the superior textural characteristics, in terms of surface area, of Ce-pp (68 m²/g) and Ce-exo (42 m²/g) samples compared to Ce-com (15 m²/g), is revealed, in accordance to previous studies. Addition of Cu to ceria by impregnation results in a decrease of the surface area, due to the blockage of support porous structure by CuO. The latter can be mainly ascribed to the relatively large crystallite size of CuO compared to CeO₂, as revealed by XRD (Table 1). In relation to Ce-Cu mixed oxides, exotemplate method results in a high surface area (119 m²/g), which is double to that achieved with the precipitation method (57 m²/g). The materials prepared by mechanically mixing commercial ceria and copper (Cu-Ce-com) have very low surface area (9 m²/g), which is lying in values expected for a physical mixture.

Structural characterization (XRD)

Figure 1 depicts the XRD patterns of all samples. In Table 1 the main phases detected along with their crystallite sizes are presented. In all samples the presence of cerianite CeO₂ is confirmed (Figure 1 and Table 1). In samples containing both ceria and copper, CeO₂ cerianite along with CuO tenorite phases were identified. Among the bare ceria samples, Ce-com had the larger crystallite size (~54 nm), while those prepared in the lab (Ce-pp and Ce-exo) demonstrated a significantly lower size (around 16 nm). The latter is in accordance with the higher surface area of Ce-pp and Ce-exo samples, compared to Ce-com (Table 1). In Cu/CeO₂ samples prepared by the impregnation of copper phase on the differently prepared ceria precursors (Ce-pp+Cu, Ce-exo+Cu, Ce-com+Cu), the crystallite size of CeO₂ slightly changed compared to that of the corresponding bare CeO₂. The smallest CeO₂ crystallites (11.8 nm) were found for co-precipitated Ce-Cu-pp sample, which showed however the largest CuO particle size (43.7 nm). The size of CuO seems, in general, to follow an opposite trend to that of CeO₂.
Table 1. Summary of textural (BET), structural/surface (XRD, XPS, micro-Raman) and redox (TPR) characteristics of the prepared samples.

<table>
<thead>
<tr>
<th>Samples</th>
<th>S_{BET} (m2/g)</th>
<th>Phase detected</th>
<th>Crystallite size (nm)</th>
<th>TPR peaks (°C)a</th>
<th>H_2 consumption (mmol g$^{-1}$)b</th>
<th>H_2 excess (mmol g$^{-1}$)c</th>
<th>Ce (III) %d</th>
<th>Cu(I) %d</th>
<th>Raman peakse (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ce-pp</td>
<td>68</td>
<td>CeO$_2$ cerianite</td>
<td>15.3</td>
<td>277, 493, 776</td>
<td>-</td>
<td>-</td>
<td>32</td>
<td>-</td>
<td>471</td>
</tr>
<tr>
<td>Ce-exo</td>
<td>42</td>
<td>CeO$_2$ cerianite</td>
<td>16.9</td>
<td>279, 495, 773</td>
<td>-</td>
<td>-</td>
<td>39</td>
<td>-</td>
<td>471</td>
</tr>
<tr>
<td>Ce-com</td>
<td>15</td>
<td>CeO$_2$ cerianite</td>
<td>54.2</td>
<td>377, 492, 764</td>
<td>-</td>
<td>-</td>
<td>36</td>
<td>-</td>
<td>471</td>
</tr>
<tr>
<td>Cu-com</td>
<td>6</td>
<td>CuO tenorite</td>
<td>35</td>
<td>171, 230, 320</td>
<td>12.1</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Ce-pp+Cu</td>
<td>36</td>
<td>CeO$_2$ cerianite</td>
<td>15.5, 40.1</td>
<td>175, 210, 227, 752</td>
<td>3.25</td>
<td>0.83</td>
<td>28</td>
<td>3</td>
<td>456</td>
</tr>
<tr>
<td>Ce-exo+Cu</td>
<td>29</td>
<td>CeO$_2$ cerianite</td>
<td>20.0, 35.2</td>
<td>167, 206, 233, 722</td>
<td>3.50</td>
<td>1.08</td>
<td>19</td>
<td>5</td>
<td>462</td>
</tr>
<tr>
<td>Ce-com+Cu</td>
<td>10</td>
<td>CeO$_2$ cerianite</td>
<td>37.3, 33.3</td>
<td>215, 232, 271, 765</td>
<td>2.89</td>
<td>0.47</td>
<td>30</td>
<td>0</td>
<td>468</td>
</tr>
<tr>
<td>Ce-Cu-pp</td>
<td>57</td>
<td>CeO$_2$ cerianite</td>
<td>11.8, 43.7</td>
<td>136, 157, 197, 750</td>
<td>3.45</td>
<td>1.03</td>
<td>45</td>
<td>12</td>
<td>448</td>
</tr>
<tr>
<td>Ce-Cu-exo</td>
<td>119</td>
<td>CeO$_2$ cerianite</td>
<td>33.3, 36.3</td>
<td>141, 159, 224, 721</td>
<td>3.05</td>
<td>0.63</td>
<td>25</td>
<td>7</td>
<td>460</td>
</tr>
<tr>
<td>Ce-Cu-com</td>
<td>9</td>
<td>CeO$_2$ cerianite</td>
<td>41.7, 36.0</td>
<td>160, 185, 246, 297, 765</td>
<td>3.52</td>
<td>1.10</td>
<td>31</td>
<td>0</td>
<td>456</td>
</tr>
</tbody>
</table>

aTPR onset (bold), shoulders (italic) and peak maxima (plain text) temperatures
bestimated by the quantification of H_2 uptake in the low temperature range (100-400 °C) of TPR profiles
cestimated by the subtraction of H_2 required for CuO reduction in 20 wt.% Cu/CeO$_2$ samples (2.42 mmol g$^{-1}$) from the total H_2 consumption
destimated by Cu2p and Ce3d XPS spectra
eF$_{2d}$ mode of the cubic fluorite cerianite structure

Figure 1. XRD diffractograms of ceria only and Ce-Cu mixed oxide samples.

Reducibility studies (H$_2$-TPR)

Figure 2 and Table 1 show the TPR results of the Ce containing samples. Figure 2a shows the TPR profiles of bare ceria samples. The TPR curves of Ce-pp and Ce-exo are very similar, characterized by two broad bands, while sharper peaks are obtained for Ce-com. Two characteristic peaks are observed: the peak centered at around 500 °C, corresponding to the reduction of surface oxygen (or reduction of surface oxygen species) and the peak at ~780 °C, related to the bulk oxygen.29,42,45,47,49
Figure 2. TPR profiles of ceria only samples (a) and Ce-Cu mixed oxide samples (b) with a closer detail at lower temperatures (c).

Figure 2b shows the TPR profiles of Cu-Ce samples. It is obvious that when Cu is added to CeO$_2$, the surface oxygen shell reduction is facilitated, resulting in a downward shift of TPR profiles29. This indicates that the presence of Cu improves the reducibility of the surface oxygen on CeO$_2$ which, in turn, facilitates oxygen transfer across the solid–gas interface during reaction29. It is known that Cu oxide can show two reduction peaks (a main peak and a peak shoulder), around 150-300 °C, which correspond to the CuO → Cu$_2$O and Cu$_2$O → Cu transitions29,58, as seen in Table 1. Therefore, the peaks shown in the spectra of Ce-Cu samples (Figure 1c) are due to the improved reduction of surface oxygen of ceria, together with the reduction of CuO.

Interestingly, the mixed Ce-Cu oxides are more easily reducible than the Ce oxide materials impregnated with Cu, since their reduction peaks appear at lower temperatures (Table 1 and Figure 1c). Ce-Cu materials prepared by precipitation show better redox properties compared to those prepared by exotemplating. As expected, the materials prepared using commercial ceria and CuO exhibit the worst behavior, being the most difficult to be reduced.

Moreover, it is worth noting that Ce-Cu-pp samples, and to a lesser extent also Ce-Cu-exo samples, display a low temperature (LT) peak at ca. 160 °C, which is usually ascribed to the reduction of finely dispersed CuO species closely interacting with CeO$_2$27,59. These species have been found to be very active for CO oxidation59. Interestingly, Ce-Cu-pp catalysts exhibited the optimum deN$_2$O performance (see below), implying a possible correlation between the low temperature reducibility and the catalytic performance, as will be discussed later.

To further gain insight into the impact of the preparation procedure on the redox properties of as prepared samples, the H$_2$ consumption in the low temperature range of TPR profiles (100-400 °C, Figure 2), which corresponds to the surface oxygen reduction of copper and ceria species, is estimated. Results are shown in Table 1. By comparing the actual with the theoretical amount of H$_2$ consumption in bare CuO (Table 1), it is evident that the real H$_2$ uptake is very close to the theoretical one, implying a nearly complete reduction of CuO to Cu0. However, the amount of H$_2$ required for the reduction of Cu-CeO$_2$ mixed oxides is always higher compared to that required for the complete reduction of CuO (2.42 mmol/g based on the nominal Cu loading of 20 wt.%). This “extra H$_2$”, related mainly to ceria reduction, varies between 0.47 to 1.1 mmol H$_2$/g depending on the preparation procedure (Table 1). However, no obvious correlation between the H$_2$ amount related to ceria reduction and the preparation procedure is obtained (Table 1).
The superior reducibility of mixed oxides compared to single oxides can be mainly interpreted in terms of the strong interaction between copper and ceria, which in turn facilitates the reduction of CeO₂. In particular, the reduction of CeO₂ via the redox equilibrium: Cu²⁺ + Ce³⁺ → Cu⁺ + Ce⁴⁺ can be considered responsible for the enhanced reducibility of Cu/CeO₂ samples, in terms of H₂ consumption, compared to bare oxides. More specifically, the superior reducibility of Cu/CeO₂ samples can be interpreted by taking into account two apparently alternative explanations: i) hydrogen spillover from Cu to the surface of ceria; dissociation of molecular hydrogen on Cu surface results in highly mobile atomic hydrogen which then reduces ceria by subtracting O²⁻ from its surface; ii) electronic metal support interactions (EMSI) between Cu and CeO₂. In the last case, the metal perturbs the electronic band structure of metal oxide, which is reduced directly by gas-phase H₂. In this regard, a correlation has been established between the reduction temperature of ceria and the work function of the metal. A “junction effect theory” had been proposed earlier by Frost in order to explain the mechanism by which noble metals electronically promote the redox characteristics of n-type metal oxides.

Surface morphology (SEM)

Samples were also analyzed by SEM. Figure 3 shows that Ce-pp has a “cotton-like” appearance (Figure 3a) and Ce-exo is more porous (Figure 3b), while Ce-com ceria has some nice flower-like features (Figure 3c), being more compact with some “holes”.

Addition of Cu to these materials by impregnation did not result in significant changes in their morphology (Figures 3d-f). However some darker and lighter zones are observed (not shown in Figure 3, since the same amplification is shown for all samples), which are similar to those observed in Figure 3i (Ce-com+Cu-com). EDS reveals that the darker zones are Cu-rich areas (Figure 3i), while the lighter are Ce-rich areas (Figure 3k). On the other hand, Ce-Cu-pp (Fig. 3g) and Ce-Cu-exo (Fig. 3h) are uniform, without lighter/darker zones. The latter is ascribed to the uniform distribution of Ce and Cu, achieved when employing the co-precipitation and exotemplating methods, as the corresponding EDS reveals.

Surface/structural characterization (XPS & micro-Raman)

To obtain information about the elemental chemical states and the surface composition, XPS measurements were performed. Figure 4 shows Ce 3d XPS results for all samples. The theoretical basis for all the components has been reported in the literature. The complex spectra can be resolved into eight components by deconvolution with the assignment of each component defined in the figure (ν represent the Ce 3dₓ⁄₂ contributions and u represent the Ce 3d₃⁄₂ contributions). For Ce 3dₓ⁄₂ of Ce⁴⁺, a mixing of the Ce 3d⁹⁴f¹Lₙ⁻¹ and Ce 3d⁹⁴f¹Lₙ⁻₂ states produces the peaks labelled ν and ν‴, and the Ce 3d⁹⁴f²Lₙ final state forms the peak ν‴. For 3d₃⁄₂ of Ce⁴⁺, the Ce 3d⁹⁴f²Lₙ⁻¹ and Ce 3d⁹⁴f²Lₙ states correspond to peaks ν and ν′. For Ce 3d₃⁄₂ level with the u structure, the same assignment can be carried out.

A relationship between the area of CeO₂ in the Ce 3d spectra and the % of u‴ peak (which arises from a transition of the 4f′” final state from the 4f′” initial state) was established by Shyu et al., from which the % CeO₂ (Ce⁴⁺) was calculated using the equation: % CeO₂
The concentration of Ce\(^{3+}\) can be also determined from the ratio: Ce\(^{3+}\)/(Ce\(^{4+}\)+Ce\(^{3+}\)), where Ce\(^{4+}\) and Ce\(^{3+}\) represent the sums of the integrated XPS peak areas related to Ce\(^{4+}\) (v, v'', v''', u, u'' and u''') and Ce\(^{3+}\) (v', u') signals, respectively\(^{29}\). In Table 1 the obtained values for Ce\(^{3+}\) (%) are depicted, estimated using the equation: % Ce (III) = 100-% u''''/0.144.

Among the samples examined, the higher concentration of Ce\(^{3+}\)species (45%) is obtained by Ce-Cu-pp sample. This can be attributed to the synergistic interaction between copper and ceria, which in turn results to the facilitation of redox cycles between Cu\(^{2+}/Cu^{+}\) and Ce\(^{3+}/Ce^{4+}\). This is in agreement with the coexistence of Cu\(^{2+}\) and Cu\(^{+}\) ions in this sample, as revealed by Cu 2p XPS spectra (Figure 5).

![Figure 4](image-url) Ce 3d XPS results of indicated samples.

![Figure 5](image-url) Cu 2p XPS results of indicated samples.

In this point, the difficulty in the unambiguous assignment of the Cu oxidation state based only on XPS results should be mentioned. Discrimination of Cu oxidation states is usually performed on the by two main peaks of Cu2p\(_{1/2}\) (approximately at 954 eV) and Cu2p\(_{3/2}\) (around 934 eV), along with shake-up satellite peaks centered at ~943 eV. All samples are characterized by a Cu 2p\(_{3/2}\) band at ca. 934 eV, which can be attributed to fully oxidized Cu\(^{2+}\) species\(^{29,56,68}\). The latter is further confirmed by shake-up satellites at 944.5 eV, typically assigned to Cu\(^{3+}\) species. According to relevant literature studies, the Cu2O/Cu at ~934 eV, in combination with the appearance of shake-up peaks are typical characteristics of CuO, while lower energies at ca. 932–933 eV and absence of shake-up peaks are characteristic of further reduced copper species, mainly Cu\(_{2}O\)^{29,56,68-70}. The latter is confirmed in the present study by comparing the spectral features of CuO and Cu\(_{2}O\) samples (Figure 5). It should be noted, however, that the appearance of low intensity shake-up satellites is obvious even in the case of Cu\(_{2}O\) sample, implying the partial oxidation of Cu\(_{2}O\) sample under “measuring” conditions. This is further confirmed by the XRD analysis of the Cu\(_{2}O\) sample, which reveals the co-existence of CuO and Cu\(_{2}O\) phases.
basis of Cu2p peak position along with the evolution of Auger Cu LVV spectra; comparison of Cu2p BE and Auger parameter values in Wagner plots can provide insights toward discrimination of Cu oxidation states. Nevertheless, the great difficulty in the unambiguous assignment of the Cu state by XPS peaks position and Auger parameters has been well documented71,72. However, according to several comprehensive studies on XPS interpretation of Cu2p spectra73,74, the accurate surface Cu(I)/Cu(II) ratio for samples containing both Cu(I) and Cu(II) can be obtained by estimating the ratio of the main peak/shake-up peak areas (A1/B) for a 100% pure Cu(II) sample (such as CuO). Then, the relative concentrations of Cu(I) and Cu(II) species present on the surface can be obtained by the following equations:

\[\% \text{Cu(I)} = \frac{A-(A1/B)B}{A+B} \times 100 \]
\[\% \text{Cu(II)} = \frac{B(1+(A1/B))}{A+B} \times 100 \]

where B is the area of the shake-up peak and A is the area of the main Cu2p\textsubscript{3/2} peak (Figure 5).

The qualitative analysis of pure CuO sample (Figure 5) gives an A1/B value of 1.89, in perfect agreement with the literature73. Based on this value the % Cu(I) in Cu-containing samples can be estimated (Table 1). It is evident that Cu-Ce mixed oxides prepared by exotemplating or precipitation, either at one stage or by subsequent incorporation of Cu into ceria, demonstrate the higher values of Cu(I) species. On the other hand, the use of commercial ceria results exclusively in Cu(II) species, independently of the preparation procedure. Among the samples examined, the highest concentration of Cu(I) species is found for Ce-Cu-pp (12%). In particular, the following order in relation to Cu(I) abundance is obtained: Ce-Cu-pp > Ce-pp+Cu > Ce-exo+Cu > Ce-Cu-exo > Ce-com+Cu ≈ Ce-Cu-com, in excellent agreement with the deN\textsubscript{2}O performance (see below). This finding implies the key role of Cu+ species in the deN\textsubscript{2}O process, as will be discussed in the sequence.

To obtain further information regarding lattice defects and surface oxygen vacancies, micro-Raman experiments were carried out. The unpolarized Raman spectra of all samples are shown in Figure 6. All bare CeO\textsubscript{2} samples, prepared by different routes, present a main band at ca. 471 cm-1, which is attributed to the F\textsubscript{2g} vibrational mode of the cubic fluorite-type structure of cerianite75,76. However, the frequency of the F\textsubscript{2g} mode decreases upon Cu incorporation to the samples, following the sequence Ce-Cu-pp (448 cm-1) < Ce-pp+Cu (456 cm-1) < Ce-Cu-com (458 cm-1) < Ce-Cu-exo (460 cm-1) < Ce-exo+Cu (462 cm-1) < Ce-com + Cu (468 cm-1). Besides the Raman shift, the F\textsubscript{2g} band becomes broader in mixed oxides Ce-Cu-pp, Ce-Cu-exo and Ce-pp+Cu, clearly revealing disorder in the system. The latter is most likely associated with the random distribution of Cu in the lattice, creating structural defects and oxygen vacancies75,76.

More importantly, the present results match well the Cu+/Ce3+ abundance (Table 1) as well as the deN\textsubscript{2}O activity sequence (see below), justifying the key role of oxygen vacancies on deN\textsubscript{2}O performance as well as their relation with the formation of Ce4+/Ce3+ and Cu2+/Cu+ redox pairs.

Figure 6. Raman spectra of indicated samples, recorded at room temperature, in the 200 - 800 cm-1 spectral range.

Catalytic activity measurements

Figure 7 depicts the deN\textsubscript{2}O performance in typical light-off experiments, in the absence of O\textsubscript{2}, over the single CeO\textsubscript{2} and Ce-Cu mixed oxides prepared by different routes. Significant differences among the samples are obtained, implying the strong influence of synthesis procedure on N\textsubscript{2}O decomposition. The worst behaviour is
observed for the Ce-com sample, which offers maximum N₂O conversion of about 15% at 600 °C. Ce-exo and Ce-pp samples show better de-N₂O performance, most probably due to their improved textural characteristics, providing ~40% N₂O conversion at 600 °C.

Cu-Ce samples display generally better catalytic performance compared to single oxides. However, significant variations are observed amongst these samples depending on the preparation method. The samples prepared by employing commercial CeO₂ (Ce-Cu-com and Ce-com+Cu) exhibit the worst performance, similar to that obtained for single CeO₂. In contrast, very active composites can be obtained by employing Ce-pp and Ce-exo as supporting carriers. Furthermore, the preparation method which is followed for CuO incorporation into the CeO₂ (by impregnation or co-precipitation) notably affects the deN₂O performance. The optimum performance is observed for Ce-Cu-pp, prepared by co-precipitation, which achieved complete N₂O conversion at temperatures as low as 550 °C. The following sequence, in terms of conversion performance, is recorded: Ce-Cu-pp>Ce-pp+Cu>Ce-Cu-exo>Ce-exo+Cu>Ce-Ce-com+Cu>Ce-Ce-com>Ce-pp>Ce-exo>Ce-com. Generally, the precipitation method results in the optimum de-N₂O performance, followed by the exotemplating one. The worst behaviour is obtained for Cu-Ce samples prepared by employing commercial ceria.

The corresponding deN₂O performance under oxygen excess conditions is depicted in Figure 8. The enhanced performance under oxidizing conditions is a prerequisite for practical applications, taking into account the presence of oxygen under real exhaust conditions. In this regard, it has been reported that the activity of the most catalytic systems so far developed is drastically hindered by adsorbed oxygen species⁴⁵. Therefore, it is of particular importance to develop catalytic materials capable to sufficiently abate nitrous oxide emissions under oxygen excess conditions.

By comparing the conversion profiles in the absence of oxygen (Figure 7), with those obtained in the presence of oxygen (Figure 8), some important remarks can be drawn:

i) All catalysts are suppressed by the presence of oxygen excess.

ii) The sequence of deN₂O performance remains unchanged both in the absence and presence of oxygen excess.

iii) Bare CeO₂ is almost inactive under oxidizing conditions, independently of the preparation procedure.

iv) Ce-Cu catalysts based on commercial CeO₂ are inactive, regardless the preparation technique (mechanical or impregnation).

v) Ce-Cu catalysts prepared by exotemplating or precipitation are very active for N₂O decomposition, with the latter being more active.

vi) The optimum performance is obtained for Ce-Cu-pp catalysts, which offers 100% N₂O conversion at ~600 °C.

The influence of space velocity on the catalytic performance was investigated over the most effective Ce-Cu-pp catalyst. Figure 9 depicts the N₂O conversion as a function of temperature at three different values of GHSV, which are varied in the range of real exhaust systems⁷⁷, and commonly employed in several literature studies. As it can be seen the N₂O conversion profile is shifted to...
slightly higher temperatures upon increasing GHSV from 10,000 to 40,000 h\(^{-1}\). However, at temperatures higher than about 500 °C, the Ce-Cu-pp is active enough, resulting in a complete elimination of N\(_2\)O, independently of the GHSV value utilized. This indicates that at high temperatures the decomposition rate is sufficiently high for completely remove N\(_2\)O, independently of the employed GHSV values. In contrast, at lower temperatures, where the reaction rate is slower, the residence time required for a certain N\(_2\)O conversion is higher, so, the influence of GHSV is more distinct\(^{77}\).

Figure 9. Effect of GHSV on N\(_2\)O conversion over Ce-Cu-pp catalysts. Reaction conditions: 1000 ppm N\(_2\)O balance He.

Long-term stability tests were finally carried out over the optimal Ce-Cu-pp materials in order to assess their potential for N\(_2\)O abatement in practical applications. Figure 10 depicts the N\(_2\)O conversion as a function of time-on-stream (TOS) at 550 °C under oxygen excess conditions (1000 ppm N\(_2\)O + 2.0 v/v% O\(_2\)). It is obvious that the N\(_2\)O conversion remains stable at about 80% during the whole testing period (12 h). The obtained results clearly demonstrate that the Ce-Cu-pp catalysts are able to self-regenerate, through oxygen desorption from active sites even in net oxidizing conditions. However, the presence of other substances, co-existing with N\(_2\)O in real exhaust streams, such as H\(_2\)O, SO\(_2\) and NO, should be considered in order to conclude about the practical applicability of as prepared composites. Work is in progress towards this direction.

Figure 10. N\(_2\)O conversion as a function of time on stream (12 h) at 550 °C, in the presence of excess oxygen. Reaction conditions: 1000 ppm N\(_2\)O, 2.0 v/v% O\(_2\) balance He. GHSV=40,000 h\(^{-1}\).

In Table 3 the deN\(_2\)O performance of most effective Ce-Cu-pp catalysts, prepared in the present work, is compared with that of literature reported Cu-Ce oxides and noble-metals (NMs)-based catalysts. The comparison is performed in terms of T\(_{50\%}\), i.e., the temperature required for 50% conversion. Although, the comparison is not straightforward due to the great variations in reaction conditions among the different research groups, a general overview can be obtained. It is evident that the half conversion temperature of Ce-Cu-pp catalysts is lower or even similar to that observed in other mixed oxides, demonstrating their superior performance. However, NMs-based catalysts, and especially Rh-based catalysts, demonstrate much lower T\(_{50}\) temperatures, due to the excellent intrinsic characteristics of Rh. The lower cost of mixed oxides compared to particularly expensive NMs, could however counterbalance their inferior performance.

On the light of the above results, it can be noticed that the preparation procedure notably affects the N\(_2\)O decomposition performance of CuO-CeO\(_2\) mixed oxides. It was clearly revealed that all Cu-Ce mixed oxides prepared at one stage, demonstrated better deN\(_2\)O performance compared to the corresponding ones prepared by Cu incorporation to ceria via impregnation. Furthermore the superiority of CuO-CeO\(_2\) mixed oxides prepared by co-precipitation, compared to those obtained by impregnation or exo-templating was clearly revealed.
Table 3. \(\text{N}_2\text{O}\) conversion performance of prepared samples in comparison to that reported in literature.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Reaction conditions</th>
<th>(T_{50}) (ºC)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 wt.% Rh/Al(_2)O(_3)</td>
<td>0.1% (\text{N}_2\text{O}); GHSV=10,000 h(^{-1})</td>
<td>340</td>
<td>[78]</td>
</tr>
<tr>
<td>0.5 wt.% Rh/CeO(_2)</td>
<td>0.1% (\text{N}_2\text{O}); GHSV=10,000 h(^{-1})</td>
<td>275</td>
<td>[78]</td>
</tr>
<tr>
<td>0.5 wt.% Pd/Al(_2)O(_3)</td>
<td>0.1% (\text{N}_2\text{O}); GHSV=10,000 h(^{-1})</td>
<td>>500</td>
<td>[78]</td>
</tr>
<tr>
<td>0.5 wt.% Pd/CeO(_2)</td>
<td>0.1% (\text{N}_2\text{O}); GHSV=10,000 h(^{-1})</td>
<td>475</td>
<td>[78]</td>
</tr>
<tr>
<td>0.5 wt.% Pt/Al(_2)O(_3)</td>
<td>0.1% (\text{N}_2\text{O}); GHSV=10,000 h(^{-1})</td>
<td>500</td>
<td>[78]</td>
</tr>
<tr>
<td>0.5 wt.% Pt/CeO(_2)</td>
<td>0.1% (\text{N}_2\text{O}); GHSV=10,000 h(^{-1})</td>
<td>465</td>
<td>[78]</td>
</tr>
<tr>
<td>2.0 wt.% Rh/Al(_2)O(_3)</td>
<td>0.095% (\text{N}_2\text{O}); WHSV=60,000 cm(^3) g(^{-1}) h(^{-1})</td>
<td>240</td>
<td>[79]</td>
</tr>
<tr>
<td>5 wt.% Ru/MCM-41</td>
<td>10% (\text{N}_2\text{O}); GHSV=4,000 h(^{-1})</td>
<td>360</td>
<td>[80]</td>
</tr>
<tr>
<td>2 wt.% Rh/Al(_2)O(_3)</td>
<td>0.05% (\text{N}_2\text{O}); WHSV=30,000 cm(^3) g(^{-1}) h(^{-1})</td>
<td>350</td>
<td>[81]</td>
</tr>
<tr>
<td>67 mol% Cu/CeO(_2)</td>
<td>0.26% (\text{N}_2\text{O}); GHSV=19,000 h(^{-1})</td>
<td>370</td>
<td>[26]</td>
</tr>
<tr>
<td>35.5 mol% Cu/CeO(_2)</td>
<td>0.25% (\text{N}_2\text{O}); GHSV=45,000 h(^{-1})</td>
<td>440</td>
<td>[27]</td>
</tr>
<tr>
<td>5 mol% Cu/CeO(_2)</td>
<td>5.0% (\text{N}_2\text{O}); WHSV= 5,100 cm(^3) g(^{-1}) h(^{-1})</td>
<td>430</td>
<td>[25]</td>
</tr>
<tr>
<td>10 wt.% Cu/CeO(_2)</td>
<td>0.25% (\text{N}_2\text{O}); WHSV= 60,000 cm(^3) g(^{-1}) h(^{-1})</td>
<td>380</td>
<td>[24]</td>
</tr>
<tr>
<td>20 wt.% Cu/CeO(_2)</td>
<td>0.10 % (\text{N}_2\text{O}); GHSV=40,000 h(^{-1})</td>
<td>465</td>
<td>This work</td>
</tr>
<tr>
<td>40 mol% Cu (CeO(_2) balance)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 wt.% Cu/CeO(_2)</td>
<td>0.10 % (\text{N}_2\text{O}); GHSV=10,000 h(^{-1})</td>
<td>430</td>
<td>This work</td>
</tr>
</tbody>
</table>

Taking into account the results of physicochemical and surface characterizations, Ce-Cu-pp samples display the optimum redox properties in terms of reducibility (Figure 2) and Cu\(^{+}/\text{Ce}^{3+}\) species population (Table 1). These factors can be considered crucial for \(\text{N}_2\text{O}\) decomposition, given the redox mechanism of \(\text{N}_2\text{O}\) decomposition. More specifically, \(\text{N}_2\text{O}\) decomposition mechanism involves molecular adsorption of \(\text{N}_2\text{O}\), followed subsequently by N-O bond scission and \(\text{N}_2\) desorption\(^{82}\). In this particular type of mechanism the re-combination of neighbouring oxygen species toward molecular oxygen desorption and active sites regeneration, is of major importance for \(\text{N}_2\text{O}\) adsorption and consequent dissociation.

In relation to CuO-CeO\(_2\) catalysts, the following reaction mechanism can be proposed:

\[
\text{Cu}^+ + \text{N}_2\text{O} \rightarrow \text{Cu}^+\text{-ONN} \quad (3)
\]
\[
\text{Cu}^+\text{-ONN} \rightarrow \text{Cu}^{2+}\text{-O}^+ + \text{N}_2 \quad (4)
\]
\[
\text{Cu}^{2+}\text{-O}^+ + \text{Cu}^{2+}\text{-O}^+ \rightarrow 2\text{Cu}^+ + \text{O}_2 \quad (5)
\]

However, in the case of isolated Cu\(^{2+}\text{-O}^+\) sites the recombination of oxygen species towards molecular oxygen desorption is notably hindered\(^{24}\). For that reason, the regeneration of active sites through mobile oxygen species derived from CeO\(_2\) could be also considered\(^{24}\):

\[
\text{Cu}^{2+}\text{-O}^+ + \text{Ce}^{3+} \rightarrow \text{Cu}^+ + \text{Ce}^{4+}\text{-O}^- \quad (6)
\]
\[
2\text{Ce}^{4+}\text{-O}^- \rightarrow 2\text{Ce}^{3+} + \text{O}_2 \quad (7)
\]
The superior deN2O performance of Ce-Cu-pp catalyst can be more thoroughly interpreted by taking into account the electronic metal support interaction (EMSI) effect, described previously. Based on the obtained results, it is evident that the Ce-Cu-pp catalyst demonstrated optimum reducibility, in terms of H2-TPR temperature, due to metal-support interactions. Moreover, the relative abundance of Cu+ and Ce3+ species in Ce-Cu-pp samples points to the synergistic interactions between copper and ceria, which in turn facilitate the redox cycles between Cu2+/Cu+ and Ce4+/Ce3+ pairs.

In particular, the modification of copper surface/redox properties could be considered as a consequence of perturbations in the electronic properties, originating from bonding interactions with ceria83. In a similar manner, it has been demonstrated that the strong interaction between Ni nanoparticles and ceria produces large electronic perturbations, with significant impact on the catalytic performance. More importantly, the alteration of the Ce3+/Ce4+ ratio in the CeO2 carrier results in a notable modification of the redox/surface properties of Ni particles, illustrating the key role of electronic metal–support interactions83. The stabilization of Cu+ clusters by cerium oxide, and, in turn, the increased active oxygen on cerium via the redox equilibrium Cu2+ + Ce3+ ↔ Cu+ + Ce4+ has been already invoked to explain the high oxidation activity of Cu/CeO2 catalysts84,85. The lowering of the redox potential of Cu species in the CeO2 matrix via the electronic interaction between Ce4f, O2p and Cu3d orbitals, has been also proposed86:

\[
\text{Ce}^{4+} - \text{O}^2_2 \rightarrow \text{Cu}^{2+} + \text{e}^- \leftrightarrow \text{Ce}^{4+} - \text{O}^2_2 - \text{Cu}^{+} \leftrightarrow \text{Ce}^{3+} - \text{O}^2_2 - \text{Cu}^{2+} \leftrightarrow \text{Ce}^{2+} - \text{O}^2_2 - \text{Cu}^{3+} + \text{e}^-
\]

Consequently, the better performance of Ce-Cu-pp samples can be ascribed to their superior reducibility at low temperatures in conjunction with the high concentration of Cu+/Ce3+ sites. These factors are crucial for N2O decomposition, since they contribute to the facilitation of oxygen ad-atoms desorption from the catalyst surface (reactions (5) and (7)) as well as to the regeneration of active sites (reaction (6)). The crucial role of the Ce3+/Ce4+ redox pair in the de-N2O process has been already mentioned in Rh/CeO287 and Cu-Ce mixed oxides24,26,88.

Conclusions

The N2O decomposition over bare or mixed CeO2 and CuO oxides was investigated in the present study, with particular emphasis on the impact of synthesis procedure (impregnation, precipitation, exo-templatting) on the surface and redox properties. The results clearly revealed that Ce-Cu samples display better catalytic performance compared to single oxides, which however depends notably on the preparation method. The optimum performance is observed for Ce-Cu mixed oxides, prepared by co-precipitation, which achieved complete N2O conversion at temperatures as low as 550 ºC. Moreover, these samples demonstrated excellent stability and tolerance toward excess oxygen presence. The results are mainly interpreted on the basis of characterization studies, which revealed that significant modifications on the surface and redox properties of catalysts can be induced by the synthesis procedure. The superiority of Ce-Cu mixed oxides prepared by precipitation can be ascribed to their excellent reducibility as well as to the facilitation of Ce4+/Ce3+ and Cu2+/Cu+ redox cycles. A redox mechanism of N2O decomposition was proposed involving N2O adsorption on Cu+ sites and their subsequent regeneration through Cu-ceria interactions.

Acknowledgements

The authors thank Fundação para a Ciência e Tecnologia (FCT) for financial support. SACC acknowledges Investigador FCT program (IF/01381/2013/CP1160/CT0007), with financing from the European Social Fund and the Human Potential Operational Program. This work was co-financed by FCT/MEC and FEDER under Programme PT2020 (Project UID/EQU/50020/2013). MK is thankful for Greece–Portugal Bilateral Educational Programme.

Authors are thankful to Dr. Carlos M. Sá (CEMUP) for assistance with XPS and SEM analyses.

References

Comparative studies of the nitric acid plants, compounds, decomposition of nitrous oxide over calcined hydrotalcite-like structural promotion and stabilizing effect of Mg in the catalytic decomposition of nitrous oxide over Fe-BEA zeolite in the presence of excess O₂, Catal. Lett., 2000, 69, 169.

B.M. Abu-Zied, S.A. Soliman, S.E. Abdellah, Enhanced direct N₂O decomposition over CuₓCo₁₋ₓO₄ (0.0 ≤ x ≤ 1.0) spinel-oxide catalysts, J. Ind. Eng. Chem., 2015, 21, 814.

M. Konsolakis, Z. Ioakeimidis, Surface/structure functionalization of copper-based catalysts by metal-support and/or metal–metal interactions, Appl. Surf. Sci., 2014, 320, 244.

Cu–CeO₂ Catalysts: Complex Interaction between Metallic Copper and Oxygen Vacancies of Ceria, *J. Catal.*, 2007, **246**, 52.

S. Parres-Esclapez, M.J. Illan-Gomez, C. Salinas-Martinez de Lecea, A. Bueno Lopez. Preparation and characterisation of γ-Al\textsubscript{2}O\textsubscript{3} particles-supported Rh/Co\textsubscript{9}Pr\textsubscript{1}O\textsubscript{2} catalyst for N\textsubscript{2}O decomposition in the presence of O\textsubscript{2}, H\textsubscript{2}O and NO, Int. J. Greenh. Gas Control, 2012, 11, 251.