Catalysis Science & Technology

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/catalysis

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

A review on oxidation of element mercury from coal-fired flue gas with selective catalytic reduction catalysts

Lingkui Zhao^{a,b}, Caiting Li^{*a,b}, Xunan Zhang^{a,b}, Guangming Zeng^{a,b}, Jie Zhang^{a,b}, Yin'e Xie^{a,b} Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

Catalytic technologies present a more environmentally and financially sound option in the removal of element mercury (Hg^0) from coal-fired flue gas. However, developing novel and efficient catalysts for Hg^0 oxidation is still in challenge. This paper reviews the catalytic oxidation of Hg^0 over a new kind of catalysts which were developed from selective catalytic reduction (SCR) catalysts of NO_x. In this review, 10 both noble metal catalysts and non-noble metal catalysts for Hg^0 oxidation were summarized. An

overview of mercury emissions including transformation and speciation of mercury in coal-fired flue gas was also presented. The possible mechanisms and kinetics of mercury oxidation, space velocity as well as the effects of flue gas components on activity and stability of the catalysts were examined. We expect this work will serve as a theoretical underpinning for the development of Hg^0 oxidation technology in flue

15 gas.

1 Introduction

Mercury (Hg) has been known for a long time to be an environmental contaminant which is toxic to human beings and other organisms. It is well known that, in anthropogenic activities, ²⁰ coal combustion is a major source of Hg emission ¹. Due to the

- harmful environmental impacts, Hg emission legislation becomes increasingly stringent. In 2013, the US Environmental Protection Agency (USEPA) updated the emission limits of Mercury and Air Toxics Standards (MATS), which requires that total emission
- ²⁵ of mercury from new coal-fired units burning low rank virgin coal must be controlled below the level of 0.003 lb/GWh ^{2, 3}. Furthermore, in January 2013, 140 nations adopted the first legally binding international treaty to set enforceable limits on emissions of Hg and exclude, phaseout, or restrict some products ³⁰ that contain Hg ⁴.
- To meet the stringent regulation, various technologies for controlling Hg emissions, including adsorption technology, corona discharge plasma technology, and electrocatalytic oxidization combined treatment technology, have been ³⁵ investigated ⁵⁻⁷. Unfortunately, it is difficult to apply these technologies widely because of the unaffordable cost. Hence, developing a low cost option for controlling Hg emissions from coal-fired power plants is indispensable. Due to the strict regulations for air pollution, most of the coal-fired power plants
- ⁴⁰ have been equipped with air pollution control devices (APCDs), such as fabric filters (FF) and electrostatic precipitators (ESPs) for particulate control, wet flue gas desulfurization (WFGD) for SO₂ control and selective catalytic reduction (SCR) for NO_x emission control ⁸. In flue gas, Hg primarily exists in three forms:
- ⁴⁵ elemental mercury (Hg⁰), oxidized mercury (Hg²⁺), and particleassociated mercury (Hg^p). It has been reported that the existing

APCDs can achieve the co-benefits of Hg capture ^{9, 10}. For example, Hg^p can be collected by ESPs and FF together with fly ash ¹¹. Highly water-soluble Hg²⁺ might be effectively captured ⁵⁰ by WFGD ¹²⁻¹⁴. However, it is difficult to remove Hg⁰ directly by existing APCDs because it's highly volatile and nearly insoluble in water ¹⁵⁻¹⁸. Therefore, combination of Hg⁰ oxidation and WFGD is considered as an effective option for Hg emission control ¹⁹⁻²¹.

SCR catalysts for NO_x removal were proved to be able to oxidize Hg⁰ to Hg²⁺ and lots of full-scale tests were carried out to evaluate the performances of these SCR catalysts on Hg⁰ oxidation ²²⁻²⁴. It is found that a combination of ESP, SCR and FGD is effective in removing appreciable levels of Hg^{0 19}. Overall 60 mercury removal efficiency of APCDs, on average, was about 61% and 47% with and without SCR system, respectively ²². Blythe ²⁵ compared the cost of catalytic oxidation technology and activated carbon injection (ACI). It was proved that the co-benefit effect of SCR system for oxidizing Hg⁰ makes the cost of Hg⁰ 65 removal lower than that of ACI. Hence, combining SCR system with WFGD is thought to be one of the most economic approaches for controlling Hg emissions from coal-fired power plants. Some researches on researching selective catalytic reduction of NO_x and Hg⁰ removal have been done in our group 17, 26-29

Understanding the transformation and speciation of Hg throughout the coal-fired process is crucial to the design of effective technologies for Hg⁰ removal. The oxidation of Hg⁰ is helpful to obtain greater mercury capture efficiency with the ⁷⁵ APCDs. Accordingly, this paper introduces the research progress on Hg⁰ oxidation over a new kind of catalysts which were developed from selective catalytic reduction (SCR) catalysts of NO_x. The transformation and speciation of Hg in coal-fired flue gas will be considered first, followed by a review on mechanistic

pathways and kinetics of mercury oxidation. At last, the influence of flue gas components, space velocity and temperature are summarized and reviewed.

2 Mercury emissions in flue gas

5 2.1. Mercury emissions

Table.1 Contribution of sources of anthropogenic mercury emissions expressed as a percentage (%) of total emissions [34]

ure are	with the increasing of temperature above 400°C. Fikleman et al.
	³⁹ showed that the volatilization rate of Hg in the Argonne
	⁴⁵ Premium Coal Samples is about 40%-75% at 550°C. Rizeq et al.
	⁴⁰ suggested that Hg could be volatilized completely when
	temperature was higher than 800°C. Therefore, while entering the
	furnace, most of Hg is rapidly volatilized. It moves through the
ons	convective section and economizer of the boiler island before
	50 exchanging heat in the air pre-heater. With the temperature of

temperature as low as c.a.150°C. The volatility of Hg increased

Emission type		USA	China	Canada	Europe	Africa	Global
Coal combustion	Power plants	32.6	12.7	3.6	26.1	51.5	-
	Industrial	13.1	19.3	-	-	-	-
	Residential	-	3.7	-	26.1	0.1	-
	Total	45.7	35.7	3.6	52.2	51.6	65.0
Waste incineration ^a		33.8	1.1	9.4	2.8	-	3.0
Base metal smelting ^b		0.1	36.9	66.0	4.5	2	6.8
Gold production ^c		-	13.6	9.4	-	44.6	11.3
Mercury production		0.3	1.6	-	-	-	1.1
Chlor-alkali plants		4.5	0.04	1.4	12.1	0.1	3.0
Cement production		3.1	4.2	3.0	8.4	1.3	6.4
Iron & steel industry		-	-	0.8	3.4	0.1	1.4
Other		12.5	6.9	28.0	16.6	0.4	2.0

a Includes municipal, medical, sewage sludge and hazardous waste incineration.

¹⁰ b Includes copper, lead and zinc smelting.

c Includes artisanal and large-scale gold mining.

After 19th century, a large amount of Hg is emitted into the environment due to anthropogenic activities, leading to considerably increasing Hg level in atmosphere ³⁰. According to ¹⁵ United Nations Environment Programme (UNEP), the global Hg emissions to air from anthropogenic sources were estimated as 1960 tonnes in 2010 ³¹. Coal combustion, waste incineration, base metal smelting, large-scale and artisanal gold production and cement production are the most important anthropogenic sources

- ²⁰ of Hg emissions ^{32, 33}. As listed in Table.1 ³⁴, coal combustion is the biggest contributor to Hg emissions. As a big coal consumer, Hg emissions from coal-fired power plant can't be ignored and has been studied by many researchers. Streets *et al.* ³⁵ estimated that China's emissions in 1999 were 536 (\pm 236) tons, and
- ²⁵ approximately 38% of the Hg comes from coal combustion. At the same time, Wu *et al.* ³⁶ also estimated that total Hg emissions from all anthropogenic sources increased at an average annual rate of 2.9% during the period 1995-2003, reaching 696 (\pm 307) tons in 2003. The USEPA estimated that approximately 75 tons
- ³⁰ of Hg are found during the process of coal transportation in the United States each year and about two thirds of the mercury is emitted to the air ³⁷. Using South Africa specific and toolkit based emission factors, coal-fired power plants were estimated to be the largest contributor of Hg emissions, viz. 27.1 to 38.9 tonnes y⁻¹ in ³⁵ air ³⁸.

2.2 transformation and speciation of mercury in flue gas

In order to understand the transport and fate of Hg in the air pollution control systems, it is necessary to investigate Hg 40 transformations and speciation in coal-fired flue gas. Hg was found to be the most volatile element in coal. It can volatilize at flue gas decreasing, gaseous Hg is predicted to react with the component of flue gas. Eventually, the principal forms of Hg in coal combustion flue gas are assumed to be Hg^{0 41}. Fig. 1 presents the migration mechanism of mercury in coal combustion process and flue gas ⁴¹. At furnace exit temperatures (1700K), all of mercury is expected to remain as the favoured elemental form of thermodynamics in the gas ⁴². However, Hg⁰ vapor undergoes several chemical and physical processes changes in the post combustion section, where the gas temperature decreases. It ⁶⁰ reacts with other flue gas constituents to convert to gaseous Hg²⁺ and Hg^P as the temperature of flue gases falls down below 600°C. Hence, the forms of Hg in coal-fired flue gas are Hg⁰, Hg²⁺, and Hg^{P 43, 44}.

Researchers have proposed different Hg reaction mechanisms to describe Hg transformations in coal-fired flue gas ⁴⁵⁻⁴⁷. To date, it has been widely accepted that both heterogeneous 70 and homogeneous reactions play important roles in mercury-flue gas chemistry. The fate of Hg species in coal flue gas is determined by the results of heterogeneous and homogeneous reactions occurring in utility systems. Meanwhile, the formation of various Hg species is affected by many parameters, including the component of flue gas, combustion environment and plant operating condition. Therefore, some researchers focused on understanding the mechanisms of Hg oxidization by injection of 5 Hg⁰ into gas fuel flame or simulated flue gas. The experimental

- data obtained by Boot *et al.*⁴⁸ indicated that most of mercury vaporized and either left the reactor as a vapor or was captured by residual carbon. The equilibrium predicted HgO might form and condense on the ash. In the presence of NO₂, HCl, and SO₂
- ¹⁰ exhibited promotional effect on Hg^0 oxidation, while NO inhibited Hg^0 oxidation ⁴⁹. Nevertheless, the extent of homogeneous Hg^0 oxidation is highly dependent upon the coal rank, the content of Cl in the coal, and the conditions of the utility boiler (e.g., air-to-fuel ratio and temperature) ⁵⁰. Thermodynamic
- ¹⁵ calculation has predicted that Hg will be in the form of Hg⁰ and HgCl₂ at typical temperatures in flue dusts (80-250°C). HgCl₂ is stable mercury species followed by HgO_(g) in a chlorine-laden flue gas at temperatures lower than 400°C. Meanwhile, a literature survey revealed that Hg⁰ oxidation occurs at
- ²⁰ temperatures below 700°C and that mercury will be completely oxidized at (or below) 450°C ⁴². However, Hg⁰(g) is the only thermodynamically stable species above 750°C ⁵¹. Consequently, Hg is mainly distributed in gaseous (Hg⁰ and Hg²⁺) form ⁵². Generally, more than half of the gas phase Hg exists as Hg²⁺ 25 which is likely to be HgCl₂ (50–80%), and the remaining is Hg⁰

(20-50%) 53-55

3. The catalytic oxidation of Hg⁰ on SCR catalysts

Two types of catalysts have been developed, including noble ⁴⁰ metal-based catalysts and non-noble metal-based catalysts. As summarized in Table. 2, these two types of catalysts have been primarily studied for heterogeneous catalytic oxidation of Hg⁰.

3.1 Noble metal-based catalysts

Noble metals, such as Au, Pd, Pt, and Rh, which are used as ⁴⁵ potential Hg⁰ oxidation catalysts, have been used to test their Hg adsorption abilities because of their regeneration potential and good stability at high temperatures. In order to maximize specific surface areas of the catalysts, the noble metals used for the Hg⁰ oxidation are supported by various porous materials, including ⁵⁰ alumina, silica, zirconia, titania, carbons, and zeolite. For example, a mass loading of 8% Pd supported by alumina can remove over 90% of mercury for operating temperatures up to 270°C ⁵⁷. Au/TiO₂ was also effective, yielding Hg oxidation ranges of 40-60% ⁵⁸.

In particular, Pd has been considered the most attractive option for controlling Hg⁰ emissions ^{59, 60}. In the study of Presto ⁶¹, the Pd catalyst exhibited no apparent catalyst deactivation with HCl concentration changed. When the HCl concentration increases from 50 to 100 ppm, little impact on the Hg⁰ oxidation ⁶⁰ rate was observed. In the absence of HCl, however, it was observed that Hg⁰ oxidation still continues on the catalysts, while with a declining reaction rate. From this observation, it was suggested that the reactions between mercury and HCl are bound to the catalyst surface. This explains why Hg⁰ oxidation continues ⁶⁵ in the absence of HCl, but with a declining reaction rate.

Au has been considered as a very promising candidate

Catalyst type	Potential catalysts	Gas composition							Space	Hg^0		
		O ₂	H ₂ O	HCl	NO	NH ₃	SO_2	Hg^0	Т	velocity	Oxidation	Ref-
		vol. %	vol.%	ppm	ppm	ppm	ppm	µg/Nm ³	°C	h ⁻¹	%	erence
Noble metal-based catalysts	$\begin{array}{c} Pd/Al_2O_3\\ Au/TiO_2\\ Pd/Al_2O_3 \end{array}$	-	-	10	-	-	-	70	200-350		>90	[57]
		4	10	50	100	-	1000	20-30	150	1200	40-60	[58]
		0-5.25	-	0-100	500	-	0- 1000	6-18	138-160	8-10"	1.6×10 ⁻¹⁰ ■	[61]
Non-noble metal-based catalysts	V ₂ O ₅ /TiO ₂	1.6	8	10	160	52.8	160	1.2 *	250-400	170.	>90	[74]
	MnO _x /TiO ₂	2	-	-	400	-	-	1 5-66 [◊]	175-200	5000	>90	[12]
	MnO _x - CeO ₂ /TiO ₂	4	8	10	300	300	400	75	100-400	6×10 ⁵	0-90	[75]
	Mo-Mn/a-Al ₂ O ₃	7.1	6.8	0-20	400	-	500	-	100-250	4.4×10^{4}	70-100	[11]
	CeO ₂ -	8	8	10	-	-	500	80-100	100-500	1.0×10^{5}	>80	[82]
	WO ₃ /TiO ₂											
	CeO ₂ -TiO ₂	4	8	10	300	-	400	50	120-400	6×10^{5}	>90	[84]
	Commercial SCR catalysts	6	-	50	400	400	-	36-39	350	4000	3-91	[64]
		-	15	0.3-3	400	300	70	160	260-320	170	50-90	[91]
		3	-	500	250	275	2000	120	300-350	1800	<80	[94]
Table 2 Elemental mercury oxidation on SCR-DeNO catalysts												

Table.2 Elemental mercury oxidation on SCR-DeNO_x catalysis

• gas space velocity (L/h); •• gas space velocity (L/min);

 $_{\rm 30}$ reaction rate in the presence of HCl and $\rm O_2$ in (mol $\rm Hg^{2+}) \times (g$

$$(atalyst)^{-1} \times s^{-1}; \diamond PPb$$

The SCR technology for control of NO_x emissions from flue gas is the best developed and world-wide used technology since 1980s⁵⁶. The main overall reactions can be expressed as:

$$_{35} 4NO + 4NH_3 + O_2 \rightarrow 4N_2 + 6H_2O \tag{1}$$

$$6NO_2 + 8NH_3 \rightarrow 7N_2 + 12H_2O \tag{2}$$

In addition to NO_x control, SCR catalysts exhibit the cobenefit of promoting Hg oxidation in coal-fired power plants ¹⁹. catalyst for Hg⁰ oxidation because Au can adsorb and react with Hg⁰ to form amalgam ^{61, 62}. Lim *et al.* ⁶² suggested that adsorbed Hg⁰ on the Au catalyst reacts with Cl₂ (or HCl) in accordance 70 with a Langmuir-Hinshelwood mechanism. Activation energies for Hg oxidation were calculated assuming the possible reaction pathways: three-step Hg oxidation (Hg \rightarrow HgCl \rightarrow HgCl₂) with transition states TS₁ and TS₂ (Fig. 2). In this Hg⁰ oxidation, the first Cl attachment step is exothermic, while the second Cl 75 attachment step is endothermic. It is implied that Hg⁰ oxidation prefers a pathway in which HgCl and HgCl₂ are formed, rather than a pathway directly oxidizing Hg to HgCl₂. Another literature mentioned the similar Hg⁰ oxidation trend ⁶³. Atomic Cl is the key species for Hg⁰ oxidation on the surfaces of gold. That is, 80 Hg⁰ first reacts with one atomic Cl to form HgCl, which, in turn,

Fig.2 Reaction pathways of Hg oxidation on perfect Au(111)–p(4×4) surfaces [62]. Reprinted (adapted) with permission from (D.H. Lim and J. Wilcox, Environ Sci Technol, 2013, 47, 8515-8522.). Copyright (2013) American Chemical Society.

3.2 Non-noble metal-based catalysts

Noble metal catalysts used as catalysts for SCR of NO in flue gas is still an area of active study. However, they are too ¹⁰ expensive to apply in industry. Consequently, noble metal catalysts were soon replaced by non-noble metal catalysts for SCR of NO. Non-noble catalysts, especially some transition metal catalysts have been observed to be beneficial to oxidize Hg⁰ to Hg²⁺ when sufficient HCl exists in the flue gas. Therefore, ¹⁵ various metal catalysts materials have been investigated for Hg⁰ oxidation in recent years ^{11, 64-67}.

3.2.1 Transition metal oxide catalysts

To date, lots of researches involving transition metal oxide catalysts, such as V₂O₅, MnO₂, Co₃O₄, CuO and TiO₂ have been ²⁰ extensively conducted to develop effective Hg⁰ oxidation technologies ⁶⁸⁻⁷². Compared with noble metal catalysts, the lower cost transition metal catalysts articluity

- lower-cost transition metal catalysts exhibit high catalytic oxidation activity. Transition metal oxide catalysts for Hg⁰ oxidation are usually supported by various materials, including ²⁵ alumina, silica, titania, carbons and zeolite, etc. Generally, alumina and titania are used as carriers for these transition metal
- oxide catalysts. It is well known that the role of the supporter not only stabilize and ensure a high metal dispersion degree, but also in certain cases to participate in the Hg⁰ oxidation reaction ⁷³. ³⁰ Kamata *et al.* ⁷⁴ investigated Hg⁰ oxidation by HCl over the metal
- oxides (1 w.t.% MO_x where M=V, Cr, Mn, Fe, Ni, Cu, and Mo) supported on anatase type TiO₂. The metal oxides added to the catalyst were observed to be dispersed well on the TiO₂ surface. Meanwhile, the catalyst such as V₂O₅/TiO₂ showed high NO ³⁵ reduction activity and high Hg⁰ oxidation activity.

Among several metal oxide catalysts ^{67, 75}, the manganesebased catalysts were found to be one of the best candidates for Hg⁰ oxidation owing to their excellent catalytic activity, easy manufacturing and low cost. It has been studied extensively as

- ⁴⁰ low-temperature SCR catalysts because they possessed various types of labile oxygen which played an important role in the catalytic reaction ^{76, 77}. Meanwhile, MnO_x based SCR catalysts can also serve as catalysts for Hg⁰ oxidation. Ji *et al.* ¹² reported that MnO_x supported on titania was effective for both elemental ⁴⁵ mercury capture and low temperature SCR. The results indicated
- that MnO_x/TiO_2 catalyst could achieve 97% NO conversion and capture approximately 90% of the incoming Hg. However, for

manganese-based catalysts, the influence of SO₂ poisoning is a major problem. In order to further improve the sulphur tolerance of catalysts at low temperature, several metal elements (CeO₂, W, Mo) were employed as dopant to modify the manganese-based catalysts. The CeO₂ doped catalyst displayed excellent sulfur tolerance performance at low temperature ⁷⁸. In particular, Mn-Ce mixed-oxide exhibited an excellent Hg⁰ removal capacity. Li *et sal.* ⁷⁵ found that the combination of MnO_x and CeO₂ resulted in significant synergy for Hg⁰ oxidation. The Mn-Ce/Ti catalyst was highly active for Hg⁰ oxidation at low temperatures (150-250°C) under both simulated flue gas and SCR flue gas (see Fig 3). The Mo doping also resulted in high Hg⁰ oxidation in gases with

 $_{60}$ 5ppm HCl, even in the presence of SO₂¹¹.

Fig.4 Mechanism of CeO₂ -TiO₂ Catalysts for elemental mercury removal
 [83]. Reprinted (adapted) with permission from (J. Zhou, W. Hou, P. Qi, X. Gao, Z. Luo and K. Cen, Environ Sci Technol, 2013, 47, 10056-10062.).
 Copyright (2013) American Chemical Society.

As is well known, cerium has received considerable attention due to its prominent ability to store/release oxygen as an ⁷⁰ oxygen reservoir via the redox shift between Ce⁴⁺ and Ce³⁺ under oxidizing and reducing conditions, respectively ^{69, 79}. Besides, Cerium oxide-based catalysts were reported to have good resistance to water vapor ⁸⁰. And the doping of CeO₂ greatly enhanced the SO₂ resistance of the catalyst ⁸¹. Therefore, Cerium ⁷⁵ oxide is considered as a very promising candidate for mercury oxidation. Wan *et al.* ⁸² studied the removal of Hg⁰ over a CeO₂-WO₃/TiO₂ nano-composite in simulated coal-fired flue gas. About 95% of the Hg⁰ could be removed by HCl in the presence of O₂. The Hg⁰ removal efficiency was found to be slightly ⁸⁰ affected by H₂O addition, while SO₂ promoted the Hg⁰ oxidation.

Remarkably, the CeO₂-TiO₂ materials exhibited excellent single and simultaneous capture capacities ⁸¹. Most likely cerium can occupy two oxidation states [CeO₂ (Ce⁴⁺) \leftrightarrow Ce₂O₃ (Ce³⁺)], allowing ceria from the CeO₂-TiO₂ support to accommodate more surface lattice aware excesses Consequently Ue⁰ edgethed an

- $_{\rm s}$ surface lattice oxygen species. Consequently, Hg⁰ adsorbed on the ceria surface can react with the lattice oxygen to form HgO. Zhou et al. 83 believed that Hg⁰ oxidation over CeO₂-TiO₂ catalysts could be explained by Mars-Maessen mechanism, in which active surface sulfur reacts with gas-phase Hg⁰. The
- ¹⁰ possible mechanism was proposed in Fig 4. However, the research of Li *et al.* ⁸⁴ showed different results. It proposed that Hg^0 oxidation over CeO₂-TiO₂ catalysts was proposed to follow the Langmuir-Hinshelwood mechanism whereby reactive species from adsorbed flue gas components react with adjacently ¹⁵ adsorbed Hg^0 .

3.2.2 Commercial SCR catalysts

Recent years, SCR system has been extensively used in coalfired plant to remove NO_x because of its higher efficiency, selectivity and economic feasibility. Generally, typical 20 commercial SCR catalysts composed of TiO₂, the catalytically active component V2O5, WO3 and/or MoO3 as promoter. The vanadia phase V_2O_5 not only catalyzes NO_x reduction but also catalyzes Hg⁰ oxidation. Stolle et al. ⁸⁵ observed that Hg⁰ oxidation activity increased with increasing V2O5 concentration $_{25}$ on SCR-DeNO_x-catalyst (Fig. 5). The highest Hg⁰ oxidation activity was measured as 86.6 m/h on the H7 catalyst with 2.6 w.t.% V₂O₅, while the lowest oxidation factor was measured as 8.2 m/h on the almost vanadium-free test catalyst H8. This was consistent well with the previously reported literatures ⁸⁶ where $_{30}$ an increase in Hg⁰ oxidation almost linearly with VO_x loadings up to 10w.t.%. WO₃ inhibits the initial sintering of TiO₂ and improves SO₂ resistance. On the other hand, WO₃ increases the amounts of Lewis acid. For V₂O₅-MoO₃/TiO₂ catalysts, Hg⁰ oxidation was found to follow the Mars-Maessen mechanism. 35 MoO₃ could not directly oxidize Hg⁰, but molybdenum in high

valence could assist to oxidize vanadium in low valence to increase the number of lattice oxygen for mercury oxidation 2 .

SCR system is effective in controlling NO_x emissions as well as oxidizing Hg^0 in coal-fired flue gas. Nevertheless, it has some ⁴⁵ disadvantages, such as narrow active temperature window, toxicity to environment and human health due to the loss of

vanadium during the preparation and operation processes 87. Moreover, the conventional SCR catalysts were not effective enough for Hg⁰ oxidation with low HCl concentrations. In 50 addition, SO₂ and NH₃ have been observed to inhibit the oxidation of Hg⁰ over the conventional SCR catalysts ⁶⁵. Hence, in order to overcome these disadvantages, many efforts have been paid to modify the catalysts. RuO2 have been studied for modifying conventional SCR catalysts ⁸⁸. RuO₂ not only showed ⁵⁵ rather high catalytic activity on Hg⁰ oxidation by itself, but also appeared to be well cooperative with the commercial SCR catalyst for Hg⁰ conversion. Besides, the modified commercial SCR catalyst with RuO₂ displayed an excellent tolerance to SO₂ and NH₃ without any distinct negative effects on NO_x reduction ⁶⁰ and SO₂ conversion. At the same time, the Hg⁰ oxidation activity of commercial SCR catalysts impregnated with different metal oxides (Cr₂O₃, ZnO,CuO, NiO, MnO) were also investigated ⁸⁹. Results showed that the Hg⁰ oxidation efficiency of metal oxideimpregnated commercial SCR catalysts was higher than that of 65 the non-impregnated reference commercial SCR catalyst. In especial, CuO/SCR catalyst exhibited the best Hg⁰ oxidation activity.

4. Proposed mechanism for the catalytic oxidation of elemental mercury

⁷⁰ Hg adsorption and oxidation on catalyst surfaces has been studied in a number of researches ^{64, 90-92}. It is well known that Hg⁰ can undergo either heterogeneous or homogeneous reactions on the SCR systems. SCR catalysts are believed to facilitate heterogeneous oxidation, which have faster reaction rate than ⁷⁵ homogeneous oxidation ⁹³. However, the exact mechanisms for Hg oxidation on SCR catalysts and their dependence on flue gas properties were not yet well understood. In order to obtain an understanding of the mechanisms governing Hg⁰ oxidation, the effect of SCR catalysts for Hg⁰ oxidation has been widely studied ⁸⁰ ^{90, 91, 94}. Several mechanisms, including the Deacon process, the Eley-Rideal mechanism, the Langmuir-Hinshelwood mechanism and the Mars-Maessen mechanism, have been used to explain the heterogeneous Hg⁰ oxidation.

4.1 Deacon reaction

⁸⁵ The Deacon process ⁹⁵ generates Cl₂ by catalytic oxidation of HCl with air or oxygen, which takes place at about 300-400°C (Eqs 3).

$$4HCl_{(g)}+O_{2(g)}\leftrightarrow 2Cl_{2(g)}+H_2O$$
(3)

In the presence of an appropriate catalyst, the Deacon process ⁹⁰ could convert the large concentrations of HCl into Cl₂, and the generated Cl₂ is the key factor of Hg oxidation in the flue gas. Copper, iron, and manganese salts are suitable catalysts for the Deacon process. Hisham and Benson et al. ⁹⁶ studied the basic thermochemistry of the Deacon reaction over a large number of ⁹⁵ groups and transition metal oxides. The process comprises a catalytic cycle which can be examined in terms of two independent steps: (1) HCl absorption by the metal oxide to form the metal chloride (or oxychloride) plus water and (2) oxidation of chloride by O₂ to regenerate the metal oxide and free Cl₂. ¹⁰⁰ However, the Deacon reaction was described by a Mars–van Krevelen type mechanism involving five steps: hydrogen abstraction from HCl, recombination of atomic chlorine, hydroxyl recombination, water desorption and dissociative oxygen adsorption ⁹⁷. By invoking the Deacon mechanism, Du ⁹⁸ suggested that Cu₂Cl(OH)₃ formed on the surface of absorbents s and decomposed to CuCl in the reaction of Hg removal, and then

CuCl react with HCl (or O_2) to form little Cl₂. The mechanism is described as follows:

$$2Cu_2Cl(OH)_3 \leftrightarrow 2CuCl+2CuO+3H_2O+\frac{1}{2}O_2$$
(4)

$$2\operatorname{CuCl} + \frac{1}{2}\operatorname{O}_2 \leftrightarrow \operatorname{Cu}_2\operatorname{OCl}_2 \tag{5}$$

$$10 \operatorname{Cu}_2\operatorname{OCl}_2 + 2\operatorname{HCl} \leftrightarrow 2\operatorname{CuCl}_2 + 2\operatorname{H}_2\operatorname{O}$$
(6)

 $CuO+2HCl \leftrightarrow CuCl_2 + H_2O \tag{7}$

$$\operatorname{CuCl}_{2} + \frac{1}{2} \operatorname{O}_{2} \leftrightarrow \operatorname{CuO+Cl}_{2} \tag{8}$$

$$HCl \leftrightarrow H+Cl \tag{9}$$

$$Cl_2 \leftrightarrow Cl+Cl$$
 (10)

 $_{15} \text{ Hg+Cl} \leftrightarrow \text{HgCl}$ (11)

 $Hg_{(g)} + Cl_2 \leftrightarrow HgCl + Cl$ (12)

 $HgCl_{(g)} \leftrightarrow HgCl_{(ads)}$ (13)

 $HgCl_{2(g)} \leftrightarrow HgCl_{2(ads)}$ (14)

$$HgCl_{(ads)} + Cl \leftrightarrow HgCl_{2(ads)}$$
(15)

20 4.2 Eley-Rideal Mechanism

Senior and Linjewile ⁹⁹ proposed that the mercury oxidation could occur via an Eley-Rideal mechanism. HCl competes with NH_3 for surface active sites, and adsorbed HCl reacts with gaseous (or as a weakly adsorbed) Hg^0 (Eqs 16-17).

$$^{25} \operatorname{HCl}_{(g)} \leftrightarrow \operatorname{HCl}_{(ads)}$$
(16)

$$HCl_{(ads)} + Hg^{0}_{(g)} \rightarrow HgCl_{2(g)}$$
(17)

On the other hand, Senior ¹⁰⁰ suggested that the Eley–Rideal type mechanism in which Hg^0 adsorption was in competition with NH_3 adsorption and adsorbed Hg^0 reacts with gaseous HCl.

 $_{30}$ Recently the V₂O₅-based SCR catalysts was found to oxidize Hg⁰ to Hg²⁺, which might follow the Eley–Rideal mechanism $^{65, 101}$. According to this mechanism, HCl is dissociatively adsorbed on V₂O₅-active sites. Then the chemically adsorbed Cl species reacts with gas-phase Hg⁰ to generate an intermediate HgCl species,

- ³⁵ which further reacts with chlorine species to form $HgCl_2$. Interestingly, the reaction between Hg^0 and H_2S was in a similar manner, whereby active surface sulfur reacts with gas phase Hg^0 to form stable HgS ⁸³. The possible reactions are proposed as follows:
- $_{40} \text{ H}_2\text{S}+\text{O}^* \rightarrow \text{S}_{(ads)} + \text{H}_2\text{O}$ (18)

$$S_{(ads)} + Hg \rightarrow HgS$$
 (19)

Where $S_{(ads)}$ and O^* are active surface sulphur and surface oxygen

of the sorbent, respectively.

4.3 Langmuir-Hinshelwood Mechanism

The bimolecular reaction between two species adsorbed to a 45 surface can be described by a Langmuir-Hinshelwood mechanism ¹⁰². Wang et al. ¹⁰³ suggested that mercury oxidation on MnCe catalyst surface followed the Langmuir-Hinshelwood mechanism, where reactions took place between the adsorbed active species $_{\rm 50}$ and adsorbed ${\rm Hg}^0$ to form ${\rm Hg}^{2+}.$ It has also been reported that ${\rm Hg}^0$ oxidation over V2O5-based catalyst occurred via Langmuir-Hinshelwood mechanism. On the basis of this mechanism, gasphase Hg⁰ and HCl adsorbed onto the vanadia sites to form HgCl₂ and V-OH species. Then, the reoxidation of the V-OH species by s5 oxygen follows to form V=O and H_2O^{-66} . The possible path way responsible for mercury oxidation over V2O5-based catalyst is described in Fig. 6. A similar mercury oxidation mechanism over Ce-Ti catalyst was proposed by other authors ^{84, 104}. Specifically, in Suarez Negreira's works ^{105, 106}, it was showed that Hg⁰ had a 60 negligible interaction with the vanadia oxide dimer, while HgCl had the strongest adsorption, followed by HCl. The proposed Hg⁰ oxidation mechanism may contain the following two steps: first, Langmuir-Hinshelwood step between HCl and HgCl to produce HgCl₂. second, Eley-Rideal step between gas-phase Hg⁰ and 65 adsorbed HCl to produce HgCl. Based on these results, the mechanism of Hg⁰ oxidation through the formation of HgCl₂ was proposed in Figure 7.

Fig. 6. Mechanism of the mercury oxidation on the vanadia-based SCR 70 catalysts [66]. Reprinted (adapted) with permission from (S. He, J. S. Zhou, Y. Q. Zhu, Z. Y. Luo, M. J. Ni and K. F. Cen, Energ Fuel, 2009, 23, 253-259.). Copyright (2009) American Chemical Society.

Fig. 7. Proposed mechanism of mercury oxidation on vanadia-titania SCR catalyst. Blue arrows indicate an adsorption step, green arrows indicate a dissociation step, and red arrows indicate a desorption step [105].
 Reprinted (adapted) with permission from (A. Suarez Negreira and J. Wilcox, J Phy Chem C, 2013, 117, 1761-1772.). Copyright (2013) American Chemical Society.

4.4 Mars-Maessen Mechanism

- Initially, Zhang *et al.*¹⁰⁷ proposed that Hg^0 oxidation on ¹⁰ Co_xMn_yTi catalyst can be interpreted by the Mars-Maessen mechanism, where Hg^0 bonds with lattice oxygen and/or chemisorbed oxygen of the catalyst surface to form weakly bonded speciation Hg–O–M–O_{x-1} (M = Mn or/and Co) and then formed mercuric oxide (HgO). The consumed lattice oxygen ¹⁵ and/or surface oxygen can be replenished by the gas-phase O₂.
- Mars-Maessen mechanism has been widely used for illustrating the Hg^0 oxidation process on metal oxides catalysts ^{68, 108-111}. In this mechanism, adsorbed Hg^0 would react with a lattice oxidant (either O or Cl) that is replenished from the gas phase, forming a
- ²⁰ binary mercury oxide ⁵⁹. Reaction Eqs 20-24 showed the Mars-Maessen mechanism for the reaction of adsorbed Hg⁰ with lattice oxidant.

$$Hg_{(g)} \to Hg_{(ads)}$$
(20)

$$\operatorname{Hg}_{(ads)} + \operatorname{M}_{x} \operatorname{O}_{y} \to \operatorname{HgO}_{(ads)} + \operatorname{M}_{x} \operatorname{O}_{y-1}$$
(21)

$${}_{25} \operatorname{M}_{x}\operatorname{O}_{y-1} + \frac{1}{2}\operatorname{O}_{2} \to \operatorname{M}_{x}\operatorname{O}_{y}$$

$$(22)$$

$$HgO_{(ads)} \to HgO_{(g)}$$
(23)

$$\operatorname{HgO}_{(ads)} + \operatorname{M}_{x}\operatorname{O}_{y} \to \operatorname{HgM}_{x}\operatorname{O}_{y+1}$$

$$\tag{24}$$

5 Kinetics

It is known that Hg conversions in flue gas are kinetically, ³⁰ but not thermodynamically, controlled ¹¹². A kinetics model is a useful tool to simulate the mercury oxidation and evaluate the mercury oxidation efficiency for various operational conditions. It can hopefully facilitate the predictions of the effectiveness of different mercury control measures and strategies. Lots of works

 $_{35}$ had been done for researching the mechanisms and kinetics of Hg^{0} oxidation.

Table.3 Rate Constants in Hg ^o Oxidation Mechanism [113].								
No	Reactions	A cm ³ /mol-sec	β	<i>E</i> _α kcal/mol				
1	Hg+Cl+M=HgCl+M	2.40×10^{8}	1.4	-14.4				
2	Hg+Cl ₂ =HgCl+Cl	1.39×10^{14}	0.0	34.0				
3	HgCl+Cl ₂ =HgCl ₂ +Cl	1.39×10^{14}	0.0	1.0				
4	HgCl+Cl+M=HgCl ₂ +M	2.19×10^{18}	0.0	3.10				
5	Hg+HOCl =HgCl+OH	4.27×10 ¹³	0.0	19.0				
6	Hg+HCl =HgCl+H	4.94×10^{14}	0.0	79.3				
7	HgCl+HCl=HgCl ₂ +H	4.94×10^{14}	0.0	21.5				
8	HgCl+HOCl=HgCl ₂ +OH	4.27×10 ¹³	0.0	1.0				
			-	-				

As tabulated in Table. 3, formulation of a reaction mechanism began with the kinetic framework of Widmer ¹¹³. The ⁴⁰ reaction controlling of the Hg conversion is between Hg⁰ and the chlorine atom ¹¹⁴. Though such mechanisms can give plausible qualitative results, they are generally not suitable for examining the effects of other flue gas constituents on Hg chlorination ⁴⁵. It should be recognized that Hg oxidation would be subject to 45 kinetic control under actual combustion conditions. As a result, it is necessary to develop mercury chemical kinetics for application in real combustion systems ¹¹⁴. Presto et al. ¹¹⁵ researched a kinetic approach to the catalytic oxidation of Hg⁰ in flue gas. They proposed a method for analysing Hg⁰ oxidation catalyst 50 results in a kinetic framework using the bulk reaction rate for oxidized mercury formation normalized by either the catalyst mass or surface area. The bulk Hg^0 oxidation reaction rate (R_{cat}) can be described as an apparent gas-phase reaction as shown in Eqs (25):

⁵⁵
$$R_{cat} = R_{gas} \left(\frac{V_{cat}}{m_{cat}} \right) = k_{cat} \left[Hg^0 \right]^{\alpha} \left[Oxidant \right]^{\beta}$$
 (25)

Where, R_{gas} is the bulk reaction rate for Hg^{2+} formation across the catalyst bed, V_{cat} is the catalyst volume, and m_{cat} is the catalyst mass; k_{cat} is the catalyst-normalized rate constant. Results reported for fractional mercury oxidation are strongly influenced 60 by the specific experimental conditions and therefore difficult to translate from experiment to experiment.

Li *et al.* ¹¹⁶ developed and evaluated a kinetic modelling of Hg⁰ oxidation by chlorine over CeO₂-TiO₂ catalysts. Based on the conditions of experiment and assuming Hg⁰ oxidation over CeTi ⁶⁵ catalysts follows the Langmuir–Hinshelwood mechanism, the bulk Hg⁰ oxidation reaction rate under flue gas containing HCl can be described as:

$$R_{cat} = -k \left[Hg^{0}\right]^{s} \theta_{HCl} = -k \left[Hg^{0}\right]^{s} \frac{k_{HCl} \left[HCl\right]}{1 + k_{HCl} \left[HCl\right]}$$

70 (26)

Where K is the overall reaction rate constant, $[Hg^0]^s$ is the concentration of surface-phase Hg^0 , θ_{HCl} is the fraction of the active sites occupied by HCl, k_{HCl} is the Langmuir adsorption constant of HCl, and [HCl] is the gas-phase HCl concentration, ⁷⁵ respectively. Experimental data were analyzed using a kinetic model incorporating mass transfer, adsorption equilibrium and mass balance with key variables of interest being residence time, catalyst type as well as HCl concentration in simulated coal

4

combustion flue gas. The experimental data verification for the proposed kinetic model was satisfactory, indicating the validity of the model for describing the mechanism of Hg⁰ oxidation by chlorine over CeTi catalysts.

⁵ The reaction mechanisms and catalytic oxidation kinetics in the oxidizing flue gas was also evaluated by Gao *et al.* ¹¹⁷. In their study, the kinetic model following the Eley–Rideal mechanism was implemented. The reaction rate of Hg⁰ oxidation (r) defined in Eqs 27 can be expressed as the change of reactant ¹⁰ concentration:

$$\gamma = k_2 C_{Hg^0}^{x} C_{O_2}^{y} \gamma_1 = k_2 C_{Hg^0}^{x} C_{O_2}^{y} \left(-F_{Hcl}^0 \frac{d\eta_{Hcl}}{d_w} \right) = K_{C}^* C_{Hg^0}^{x} C_{O_2}^{y}$$
(27)

Where k* is the overall rate constant for oxidation, k_2 is the reaction rate constant for Hg⁰, *x* and *y* are the reaction order with respect to Hg⁰ and O₂, respectively. The results showed that the ¹⁵ rate of Hg⁰ oxidation over commercial SCR catalyst was zeroth order with respect to O₂ and nearly first order with respect to Hg⁰. In agreement with the experimental results, the kinetic model well described the rate of Hg⁰ oxidation in the presence of HCl and O₂ at different conditions. According to the kinetic model, the ²⁰ apparent activation energy for Hg⁰ oxidation over the commercial

SCR catalyst was 37.73 kJ/mol.6 Effect of flue gas constituents (HCl, H₂O, SO₂,

O_2 , NO, NH₃) on Hg⁰ oxidation

Hg⁰ oxidation efficiency highly depended on the ²⁵ composition of flue gas. Although SCR catalyst is active for Hg⁰ oxidation, its effectiveness was found to depend on the halide species and their concentration ¹¹⁸. Many studies suggested that HCl plays the most important role in oxidization of Hg^{0 74, 119-121}. It could remarkably increase Hg⁰ oxidation. He *et al.* ⁶⁶ analyzed

- ³⁰ the effect of HCl on the Hg^0 oxidation across the SCR unit, as shown in Fig. 8. The results indicated that the monomeric vanadyl sites on the catalyst surface were found to be responsible for the adsorption of both Hg^0 and HCl, which meant they were active for mercury oxidation. The detailed Langmuir-
- ³⁵ Hinshelwood mechanism was proposed to explain the Hg oxidation on vanadia-based SCR catalyst, where reactive Cl generated from adsorbed HCl reacts with adjacent Hg⁰. At the same time, it has been recognized that the oxidation of Hg⁰ over catalysts in the presence of HCl might experience a series of
- ⁴⁰ reactions, such as Deacon reaction, Mars-Maessen or Eley-Rideal mechanism ^{11, 65, 122, 123}. Meanwhile, the reaction of HCl and the active component V_2O_5 of the SCR catalysts was also investigated. For example, Liu *et al.* ¹²⁴ studied the HCl adsorption on different sites of V_2O_5 (0 0 1) surface, and the
- $_{45}$ comparison between HCl and Hg adsorptions was made. The results showed that Hg⁰ adsorption on V₂O₅ surface is stronger than that of HCl. The Hg⁰ in the flue gas is adsorbed by the V₂O₅ surface as an intermediate which reacts fairly rapidly with chlorine species to form surface HgCl, and then reacts with
- $_{\rm 50}$ chlorine species to form surface HgCl_2. Finally, HgCl_2 desorbs from the V_2O_5 surface.

Fig. 8. The effect of HCl on the heterogeneous oxidation of Hg across the SCR unit [66]. Reprinted (adapted) with permission from (S. He, J. S. Zhou, 55 Y. Q. Zhu, Z. Y. Luo, M. J. Ni and K. F. Cen, Energ Fuel, 2009, 23, 253-259.). Copyright (2009) American Chemical Society.

It should be note that HBr also show a very strong impact in increasing Hg⁰ oxidation ¹²⁵. Results by Cao et al. ¹²⁶ suggest that the promotional effect of HBr is far more pronounced than that of ⁶⁰ HCl. On cooling of the gases, the diatomic and molecular form of the halogens become stable according to the Deacon type of reactions ^{41, 127}:

$$4HCl+O_2\leftrightarrow 2H_2O+2Cl_2 \tag{28}$$

$$HBr+O_2 \leftrightarrow 2H_2O + 2Br_2 \tag{29}$$

⁵ However, the depletion of Cl_2 would occur by the enriched SO_2 in the coal-derived flue gases ¹²⁷. Br₂ oxidize the typical amounts of mercury in the coal flue gases through direct mercury bromination. This explains why HBr is a more effective mercury oxidizer than HCl.

$$SO_2 + Cl_2 + H_2O \rightarrow SO_3 + 2HCl$$

$$(30)$$

H₂O has been reported to inhibit Hg⁰ oxidation over metal oxide catalysts due to competitive adsorption ^{101, 128}. The competitive adsorption of water vapor on active site may have prohibited the adsorption of reactive species that have ⁷⁵ promotional effect on Hg⁰ oxidation such as O₂, HCl and NO_x ^{129-¹³¹. For instance, the conversion of Hg⁰ to Hg²⁺ may decrease due to competition between the O and OH when both water vapor and oxygen co-exist in the simulated flue gas. Furthermore, a high concentration of water vapor in the flue gas would diminish the ⁸⁰ adsorption of HCl, which is a crucial flue gas component responsible for Hg⁰ oxidation.}

Fig. 9. Effect of SO₂ on Hg⁰ oxidation in the presence of NO [136].

The effect of SO₂ on Hg⁰ oxidation in flue gas were not conclusive, either promotional or inhibitory ^{49, 132}. Wan *et al.* ⁸² s would like to define SO₂ as a promoter because the addition of 800ppm SO₂ slightly enhanced the Hg conversion under dry conditions. It might be supposed that the sulfate species could be more easily formed since SO₂ was introduced into the reaction. The formed sulfate species adsorbed on catalyst surface could ¹⁰ also enhance the catalytic activation because of the newly formed

- sulfate adsorption acid sites ¹³³. On the contrary, the inhibitory effect of SO₂ on Hg⁰ oxidation had been shown in many literatures ^{61, 103, 121, 134, 135}. On one hand, SO₂ had a large inhibitory effect on Hg⁰ oxidation mainly via the elementary ¹⁵ reactions and to eliminate OH radicals ¹³⁵. On the other hand, SO₂
- negatively affect Hg^0 oxidation due to the competitive adsorption between SO_2 and Hg^0 on active sites ^{61, 121}. In particular, Li *et al.* ^{84, 136} showed that SO_2 had different effects on Hg^0 oxidation under different flue gas conditions. SO_2 inhibited Hg^0 oxidation
- ²⁰ without O₂, while SO₂ had a promotional effect on Hg⁰ oxidation in the presence of O₂. As shown in Fig. 9, without O₂, addition of SO₂ into gas flow containing 300 ppm NO decreased Hg⁰ oxidation efficiency from 38.3% to about 6.5%. With the aid of 4% O₂, the addition of 400 ppm SO₂ into gas flow containing 300
- ²⁵ ppm NO increased Hg^0 oxidation efficiency from 45.6% to 64.7%. Conversion of SO_2 to SO_3 not only relieved the prohibitive effect related to the competitive adsorption between SO_2 and Hg^0 but also yielded active SO_3 for Hg^0 oxidation, and hence have an obvious the promotional effect.
- O_2 plays a crucial role in Hg⁰ oxidation ¹³⁷. To obtain higher Hg⁰ oxidation efficiency, the presence of O_2 is normally necessary, especially for metal oxide catalysts ^{68, 69}. Some researchers believed that Hg⁰ oxidation with the presence of O_2 can be explained by the Mars-Maessen mechanism ¹⁰⁷. Hg⁰ reacts
- ³⁵ with the lattice oxygen on the catalyst surface to form weakly bonded species and then formed HgO. The consumed lattice oxygen can be replenished by the gaseous O₂. Yet researchers believed that adsorbed O₂ could oxidize Hg⁰ to HgO directly ¹³⁸. However, Xu *et al.* ⁴⁵ found that O₂ showed little effect on Hg⁰
- $_{40}$ oxidation alone. It should be noted that O_2 has a synergistic effect on mercury oxidation via SO_2, NO or HCl $^{84,\,130,\,139}.$

NO can achieve significant promotional effect on Hg⁰ oxidation. It has been reported that adsorbed NO can be oxidized by the surface oxygen of catalysts to give rise to species like

⁴⁵ NO⁺, NO₂, nitrite, and nitrate, which are likely responsible for Hg⁰ oxidation ^{101, 134}. In contrast, the effect of NO on Hg⁰ oxidation over the Mn-Ce/Ti catalyst was found to be inhibitory ¹⁴⁰. In the absence of O₂, NO is weakly adsorbed on the MnOx-CeO₂ mixed oxides ¹⁴¹, and a fraction of it reacts with the surface ⁵⁰ oxygen to form limited NO₂, nitrite, and nitrate species ⁷⁷. It was hypothesized that NO covered the active sites and consumed surface oxygen. Therefore, NO could cause a significant deteriorate effect on Hg⁰ oxidation without the aid of O₂. Nevertheless, more adsorbed NO can be oxidized on the MnOx-CeO₂ in the deteriorate of the deterior of

 $_{55}$ Ce/Ti catalyst to form abundant active species like NO₂ with the present of O₂, which are more active than NO for Hg⁰ oxidation.

The effect of NH_3 on Hg^0 oxidation has been analyzed several times with different results. A large number of studies suggested that NH_3 could cause a significant deteriorate effect on

⁶⁰ Hg⁰ oxidation by competing for active sites with Hg⁰ ^{142, 143}. However, it was pointed out that the oxidation rate of Hg⁰ at the outlet of the SCR unit is not influenced by the injection of stoichiometric amounts of NO and NH₃¹⁴⁴. Recently some studies have reported Hg²⁺ is reduced by NH₃ ^{79, 145}. Thorwarth *et al.* ⁷⁹
⁶⁵ found that not only does Hg⁰ oxidation not occur when NH₃ is present, but also NH₃ can reduce Hg²⁺ to Hg⁰. At temperatures higher than 325°C, NH₃ may also reduce Hg²⁺ in accordance with the following reaction ¹⁴⁵:

$$3HgCl_2+2NH_3 \rightarrow 3Hg_{(g)}+N_2+6HCl$$
 (31)

In addition to this effect, the DeNO_x reaction may also cause a reduction of Hg^{2+85} . It is assumed that the reduction of the Hg^{2+} is caused by the intermediate reduced vanadium species produced by the DeNO_x reaction in the catalysts. The sum reaction involving DeNO_x and mercury could be formulated as:

 $_{75}$ 6NO+6NH₃+3HgCl \rightarrow 6N₂+3Hg_(g)+6H₂O (32)

7 Effect of space velocity and temperature

Some studies suggest that increasing space velocity reduces Hg^0 oxidation activity across the SCR unit. For instance, Machalek *et al.*¹⁴⁶ observed that the extent of Hg^0 oxidation was ⁸⁰ reduced from 40% to 5% as the gas space velocity increased from 3000 to 7800 h⁻¹ in flue gases derived from subbituminous coal. Another study of Lee *et al.*¹⁴⁷ reported that Hg^0 oxidation decreased from 88 to 53% as space velocity increased from 2000 to 4000 h⁻¹ at 350°C.

⁸⁵ Reaction temperature has a strong influence on Hg^0 oxidation. The efficiency of Hg^0 oxidation increased with the increasing of temperature in SCR condition ¹⁴⁸. However, some studies suggest that Hg^0 oxidation decreased with the increasing of temperature. Rallo *et al.* ¹⁴² observed a decrease in Hg^0 ⁹⁰ oxidation from 70% at 280°C to 50% at 350°C.

8 Conclusions and outlook

This work focused on catalytic oxidation of elemental mercury by SCR catalysts in coal-fired flue gas. Mercury is a global pollutant which is emitted into the atmosphere from 95 natural and various anthropogenic sources. Coal-fired power plants are considered to be a major source of mercury emission from anthropogenic activities. Mercury transformations and speciation in combustion flue have been studied intensively. Hg in coal was found to be volatile. Most of them entering the furnace were rapidly volatilized and present in the gas phase. In the post combustion section, Hg reacts with flue gas constituents 5 to convert to gaseous oxidized forms and particulate-bound

mercury. Eventually, the principal forms of Hg in coal combustion flue gas are assumed to be Hg^0 , Hg^{2+} , and Hg^p .

In addition to NO_x control, SCR catalysts affect the Hg speciation by altering Hg⁰ to Hg²⁺. Increasing the emission of

- ¹⁰ Hg²⁺ across SCR catalyst allows for high reduction of Hg emission because Hg²⁺ can be removed in downstream equipment such as WFGD systems. A review on the recent advances in catalytic oxidation of Hg⁰ by SCR catalysts in flue gas was provided. SCR catalysts including noble metals and non-noble
- ¹⁵ metals catalysts have been summarized. Among different noble metals, Pd and Au are the most attractive option for controlling Hg⁰ emissions. Several non-noble metals including MnO₂, CeO₂, V₂O₅, etc have also showed impressive Hg⁰ oxidation activity. One unresolved problem is how to improve their SO₂ resistance
- ²⁰ and Hg⁰ oxidation efficiency simultaneously. Meanwhile, the influence of flue gas constituents, space velocity and temperature is very significant.

Different mercury reaction mechanisms including Deacon mechanism, Eley-Rideal mechanism, Langmuir-Hinshelwood ²⁵ mechanism, and Mars-Maessen mechanism were also proposed to describe Hg⁰ oxidation in flue gas. At the same time, various kinetics models have been developed to simulate mercury oxidation. Although the assumptions were very different, the experimental data verification for the proposed kinetic model was ³⁰ satisfactory.

The catalytic mercury oxidation in flue gases is actively researched area. But there are still many challenges, such as the conventional SCR catalysts were not effective enough for Hg^0 oxidation in the absence of HCl. What is more, mercury oxidation

- $_{35}$ under SCR atmosphere was not effective enough because of the inhibitory effect of ammonia. It should be note that the conversion of SO₂ to SO₃ over SCR catalysts should not improve when promoting Hg⁰ oxidation activity. Furthermore, the exact mechanisms for Hg⁰ oxidation by SCR catalysts and their
- ⁴⁰ dependence on flue gas properties were not yet well understood. Therefore, further investigation is necessary for developing new and efficient SCR catalysts with a low SO₂/SO₃ conversion rate. The role of flue gas components and the mechanism of Hg⁰ oxidation need to better understand as well.

45 Acknowledgement

This work is supported by the National Natural Science Foundation of China (No.51278177, 51478173).

Notes

^a College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China

^b Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China Email: ctli@hnu.edu.cn, ctli3@yahoo.com. Fax:+86-731-88649216;Tel:+86-731-88649216

55 References

- M. Wdowin, M. M. Wiatros-Motyka, R. Panek, L. A. Stevens, W. Franus and C. E. Snape, Fuel, 2014, 128, 451-457.
- B. Zhao, X. Liu, Z. Zhou, H. Shao, C. Wang, J. Si and M. Xu, Chem Eng J, 2014, 253, 508-517.
- US EPA, Federal Register, 2013, 78, 24073–24094.
 I. Auzmendi-Murua, Á. Castillo and J. W. Bozzelli, J Phys Chem A, 2014, 118, 2959-2975.
 - 5. Z. Chen, D. P. Mannava and V. K. Mathur, Ind Eng Chem Res, 2006, 45, 6050-6055.
- 65 6. K. B. Ko, Y. Byun, M. Cho, W. Namkung, D. N. Shin, D. J. Koh and K. T. Kim, Chemosphere, 2008, **71**, 1674-1682.
 - M. Wang, T. Zhu, H. Luo, P. Tang and H. Li, J Environ Sci-China, 2009, 21, 1652-1657.
- J. Wang, W. Wang, W. Xu, X. Wang and S. Zhao, J Environ Sci-China, 2011, 23, 1839-1844.
- J. Zheng, J. Ou, Z. Mo and S. Yin, Sci Total Environ, 2011, 412–413, 214-222.
- H. Wang, Z. Ma, P. Lu, Y. Cao and W.P. Pan, in Cleaner Combustion and Sustainable World, eds. H. Qi and B. Zhao, Springer Berlin Heidelberg, Editon edn., 2013, pp. 515-519.
 - J. F. Li, N. Q. Yan, Z. Qu, S. H. Qiao, S. J. Yang, Y. F. Guo, P. Liu and J. P. Jia, Environ Sci Technol, 2010, 44, 426-431.
- L. Ji, P. M. Sreekanth, P. G. Smirniotis, S. W. Thiel and N. G. Pinto, Energ Fuel, 2008, 22, 2299-2306.
- 80 13. H. L. Li, Y. Li, C. Y. Wu and J. Y. Zhang, Chem Eng J, 2011, 169, 186-193.
 - 14. L.P. Zhong, Y. Cao, W.Y. Li, W.P. Pan and K.C. Xie, J Fuel Chem Technol, 2010, **38**, 641-646.
 - F. J. Gutiérrez Ortiz, B. Navarrete, L. Cañadas and L. Salvador, *Chem Eng J*, 2007, 127, 131-142.
- Y. J. Wang, Y. Liu, Z. B. Wu, J. S. Mo and B. Cheng, J Hazard Mater, 2010, 183, 902-907.
- S. Tao, C. Li, X. Fan, G. Zeng, P. Lu, X. Zhang, Q. Wen, W. Zhao, D. Luo and C. Fan, *Chem Eng J*, 2012, 210, 547-556.
- 90 18. C. Sun, C. E. Snape and H. Liu, *Energ Fuel*, 2013, **27**, 3875-3882.
- 19. S. Pritchard, Power Eng, 2009, 113, 42-47.
- 20 M. Zhang, P. Wang, Y. Dong, H. Sui and D. Xiao, *Chem Eng J*, 2014, 253, 243-250.
- 21. J. Yang, Q. Yang, J. Sun, Q. Liu, D. Zhao, W. Gao and L. Liu, *Catal Commun*, 2015, **59**, 78-82.
- 22. D. Pudasainee, S. J. Lee, S.H. Lee, J.H. Kim, H.N. Jang, S.J. Cho and Y.C. Seo, *Fuel*, 2010, **89**, 804-809.
- D. Pudasainee, J.H. Kim, Y.S. Yoon and Y.C. Seo, *Fuel*, 2012, 93, 312-318.
- 100 24. S. Zhao, Y. Ma, Z. Qu, N. Yan, Z. Li, J. Xie and W. Chen, Catal Sci Technol, 2014, 4, 4036-4044.
 - 25. G. M. Blythe, K. Dombrowski, T. Machalek, C. Richardson and M. Richardson, *Pilot testing of mercury oxidation catalysts for upstream of wet FGD systems*, Department of Energy, United States, 2006.
- 105 26. X. Fan, C. Li, G. Zeng, X. Zhang, S. Tao, P. Lu, S. Li and Y. Zhao, *Fuel Process Techno*, 2012, **104**, 325-331.
 - 27. F. Zhan, C. Li, G. Zeng, S. Tao, Y. Xiao, X. Zhang, L. Zhao, J. Zhang and J. Ma, *Chem Eng J*, 2013, 232, 81-88.
- 28. M. Fu, C. Li, P. Lu, L. Qu, M. Zhang, Y. Zhou, M. Yu and Y. Fang, *Catal Sci Technol*, 2014, **4**, 14-25.
 - 29. L. Qu, C. Li, G. Zeng, M. Zhang, M. Fu, J. Ma, F. Zhan and D. Luo, *Chem Eng J*, 2014, **242**, 76-85.
 - L. Zhang, Y. Zhuo, L. Chen, X. Xu and C. Chen, *Fuel Process Technol*, 2008, 89, 1033-1040.
- 115 31. UNEP, Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport, UNEP Chemicals Branch, Geneva, 2013.
 - E. Pacyna, J. Pacyna and N. Pirrone, *Atmos Environ*, 2001, 35, 2987-2996.
- 120 33. E. G. Pacyna, J. M. Pacyna, F. Steenhuisen and S. Wilson, *Atmos Environ*, 2006, **40**, 4048-4063.
 - 34. J. M. Dabrowski, P. J. Ashton, K. Murray, J. J. Leaner and R. P. Mason, *Atmos Environ*, 2008, **42**, 6620-6626.
- D. G. Streets, J. Hao, Y. Wu, J. Jiang, M. Chan, H. Tian and X. Feng, Atmos Environ, 2005, 39, 7789-7806.

- 36. Y. Wu, S. Wang, D. G. Streets, J. Hao, M. Chan and J. Jiang, *Environ Sci Technol*, 2006, **40**, 5312-5318.
- 37. M. L. Johnson, H.-Y. Lai and D. Wortman, *J Clean Prod*, 2008, **16**, 716-721.
- 5 38. K. E. Masekoameng, J. Leaner and J. Dabrowski, *Atmos Environ*, 2010, **44**, 3007-3014.
- R. B. Finkelman, C. A. Palmer, M. R. Krasnow, P. J. Aruscavage, G. A. Sellers and F. T. Dulong, *Energ Fuel*, 1990, 4, 755-766.
- 40. R. G. Rizeq, D. W. Hansell and W. R. Seeker, *Fuel Process Technol*, 1994, **39**, 219-236.
- 41. K. C. Galbreath and C. J. Zygarlicke, *Fuel Process Technol*, 2000, **65–66**, 289-310.
- 42. C. L. Senior, A. F. Sarofim, T. F. Zeng, J. J. Helble and R. Mamani-Paco, *Fuel Process Technol*, 2000, **63**, 197-213.
- 15 43. Y. Zheng, A. D. Jensen, C. Windelin and F. Jensen, Prog Energy Combust, 2012, 38, 599-629.
 - Y. Zhuang, J. S. Thompson, C. J. Zygarlicke and J. H. Pavlish, *Fuel*, 2007, 86, 2351-2359.
- 45. M. Xu, Y. Qiao, C. Zheng, L. Li and J. Liu, *Combust Flame*, 2003, 132, 208-218.
- 46. J. Wilcox, E. Sasmaz, A. Kirchofer and S.-S. Lee, *J Air Waste Manage*, 2011, **61**, 418-426.
- B. Hall, P. Schager and O. Lindqvist, Water Air Soil Poll, 1991, 56, 3-14.
- 25 48. L. E. Bool and J. J. Helble, Energ Fuel, 1995, 9, 880-887.
 - 49. G. A. Norton, H. Yang, R. C. Brown, D. L. Laudal, G. E. Dunham and J. Erjavec, *Fuel*, 2003, **82**.
 - J. Wilcox, E. Rupp, S. C. Ying, D.H. Lim, A. S. Negreira, A. Kirchofer, F. Feng and K. Lee, *Int J Coal Geol*, 2012, **90–91**, 4-20.
- 30 51. J. H. Pavlish, E. A. Sondreal, M. D. Mann, E. S. Olson, K. C. Galbreath, D. L. Laudal and S. A. Benson, *Fuel Processing Technology*, 2003, 82, 89-165.
- Y. Wang, Y. Duan, L. Yang, C. Zhao, X. Shen, M. Zhang, Y. Zhuo and C. Chen, *Fuel Process Technol*, 2009, 90, 643-651.
- 35 53. R. B. Finkelman, Fuel Process Technol, 1994, 39, 21-34.
- 54. A. Carpi, Water Air Soil Pollut, 1997, 98, 241-254.
- 55. R. Meij, Fuel Process Technol, 1994, 39, 199-217.
- 56. P. Forzatti, Appl Catal A- Gen, 2001, 222, 221-236.
- 57. W. H. Hou, J. S. Zhou, C. J. Yu, S. L. You, X. Gao and Z. Y. Luo, Ind Eng Chem Res, 2014, **53**, 9909-9914.
- J. A. Hrdlicka, W. S. Seames, M. D. Mann, D. S. Muggli and C. A. Horabik, *Environ Sci Technol*, 2008, 42, 6677-6682.
- E. J. Granite, H. W. Pennline and R. A. Hargis, *Ind Eng Chem Res*, 2000, **39**, 1020-1029.
- 45 60. E. J. Granite, C. R. Myers, W. P. King, D. C. Stanko and H. W. Pennline, *Ind Eng Chem Res*, 2006, **45**, 4844-4848.
 - 61. A. A. Presto and E. J. Granite, *Platin Met Rev*, 2008, **52**, 144-154.
 - 62. D.-H. Lim and J. Wilcox, Environ Sci Technol, 2013, 47, 8515-8522.
- 63. Y. Zhao, M. D. Mann, J. H. Pavlish, B. A. F. Mibeck, G. E. Dunham
- and E. S. Olson, *Environ Sci Technol*, 2006, **40**, 1603-1608.
- 64. Y. Eom, S. Jeon, T. Ngo, J. Kim and T. Lee, *Catal Lett*, 2008, **121**, 219-225.
- H. Kamata, S. Ueno, T. Naito and A. Yukimura, *Ind Eng Chem Res*, 2008, 47, 8136-8141.
- 55 66. S. He, J. S. Zhou, Y. Q. Zhu, Z. Y. Luo, M. J. Ni and K. F. Cen, *Energ Fuel*, 2009, 23, 253-259.
 - 67. S. Qiao, J. Chen, J. Li, Z. Qu, P. Liu, N. Yan and J. Jia, *Ind Eng Chem Res*, 2009, **48**, 3317-3322.
- 68. L. Ji, P. M. Sreekanth, P. G. Smirniotis, S. W. Thiel and N. G. Pinto, *Energ Fuel*, 2008, **22**, 2299-2306.
- S. Yang, Y. Guo, N. Yan, D. Wu, H. He, J. Xie, Z. Qu and J. Jia, *Appl Catal B- Environ*, 2011, 101, 698-708.
- 70. Y. Liu, Y. Wang, H. Wang and Z. Wu, *Catal Commun*, 2011, **12**, 1291-1294.
- 65 71. J. He, G. K. Reddy, S. W. Thiel, P. G. Smirniotis and N. G. Pinto, J Phys Chem C, 2011, 115, 24300-24309.
 - W. Xu, H. Wang, X. Zhou and T. Zhu, *Chem Eng J*, 2014, 243, 380-385.
- 73. B.-A. Dranga, L. Lazar and H. Koeser, *Catalysts*, 2012, **2**, 139-170.
- 70 74. H. Kamata, S. Ueno, N. Sato and T. Naito, *Fuel Process Technol*, 2009, **90**, 947-951.

- H. Li, C.Y. Wu, Y. Li and J. Zhang, *Appl Catal B-Environ*, 2012, 111–112, 381-388.
- 76. Z. Wu, B. Jiang, Y. Liu, W. Zhao and B. Guan, *J Hazard Mater*, 2007, **145**, 488-494.
- 77. R. Jin, Y. Liu, Z. Wu, H. Wang and T. Gu, *Chemosphere*, 2010, **78**, 1160.
- G. Qi, R. T. Yang and R. Chang, *Appl Catal B-Environ*, 2004, 51, 93-106.
- R. Q. Y. Long, R. T.; Chang, R., , *Chem Commun*, 2002, 5, 452-453.
 W. Xu, Y. Yu, C. Zhang and H. He, *Catal Commun*, 2008, 9, 1453-1457.
- J. He, G. K. Reddy, S. W. Thiel, P. G. Smirniotis and N. G. Pinto, Energ Fuel, 2013, 27, 4832-4839.
- 85 82. Q. Wan, L. Duan, K. B. He and J. H. Li, *Chem Eng J*, 2011, 170, 512-517.
- J. Zhou, W. Hou, P. Qi, X. Gao, Z. Luo and K. Cen, *Environ Sci Technol*, 2013, 47, 10056-10062.
- 84. H. L. Li, C. Y. Wu, Y. Li and J. Y. Zhang, *Environ Sci Technol*, 2011, **45**, 7394-7400.
- R. Stolle, H. Koeser and H. Gutberlet, *Appl Catal B-Environ*, 2014, 144, 486-497.
- H. Kamata, S.I. Ueno, T. Naito, A. Yamaguchi and S. Ito, *Catal Commun*, 2008, 9, 2441-2444.
- 95 87. X. Gao, X.S Du, L.W. Cui, Y.C. Fu, Z.Y. Luo and K.F. Cen, *Catal Commun*, 2010, **12**, 255-258.
- N. Q. Yan, W. M. Chen, J. Chen, Z. Qu, Y. F. Guo, S. J. Yang and J. P. Jia, *Environ Sci Technol*, 2011, 45, 5725-5730.
- 89. K. Zeng, R. Stolle, H. Köser, Chem-Ing-Tech, 2009, 81, 1046-1046.
- 100 90. Y. Zhuang, J. Laumb, R. Liggett, M. Holmes and J. Pavlish, Fuel Process Technol, 2007, 88, 929-934.
 - 91. S. Straube, T. Hahn and H. Koeser, *Appl Catal B-Environ*, 2008, **79**, 286-295.
- 92. J.R. Li, C. He, X.S. Shang, J.S. Chen, X.W. Yu and Y.J. Yao, *J Fuel Chem Technol*, 2012, **40**, 241-246.
 - R. K. Srivastava, N. Hutson, B. Martin, F. Princiotta and J. Staudt, Environ Sci Technol, 2006, 40, 1385-1393.
 - 94. Y. Cao, B. Chen, J. Wu, H. Cui, J. Smith, C.K. Chen, P. Chu and W.P. Pan, *Energ Fuel*, 2007, **21**, 145-156.
- 110 95. H. Pan, R. Minet, S. Benson and T. Tsotsis, *Ind Eng Chem Res*, 1994, 33, 2996-3003.
 - M. W. M. Hisham and S. W. Benson, J Phy Chem, 1995, 99, 6194-6198.
- 97. N. López, J. Gómez-Segura, R. P. Marín and J. Pérez-Ramírez, *J* 115 *Catal*, 2008, **255**, 29-39.
 - 98. W. Du, L. Yin, Y. Zhuo, Q. Xu, L. Zhang and C. Chen, *Ind Eng Chem Res*, 2013, **53**, 582-591.
- 99. C. Senior and T. Linjewile, Oxidation of mercury across SCR catalysts in coal-fired power plants burning low rank fuels, National
 Energy Technology Laboratory (US), 2003.
 - 100.C. L. Senior, J Air Waste Manage, 2006, 56, 23-31.
 - 101.Y. Li, P. D. Murphy, C.Y. Wu, K. W. Powers and J.C. J. Bonzongo, *Environ Sci Technol*, 2008, **42**, 5304-5309.
- 102.M. J. Pilling and P. W. Seakins, *Reaction kinetics*, Oxford University Press, 1996.
 - 103.P. Wang, S. Su, J. Xiang, H. You, F. Cao, L. Sun, S. Hu and Y. Zhang, *Chemosphere*, 2014, **101**, 49-54.
 - 104.W. Hou, J. Zhou, P. Qi, X. Gao and Z. Luo, *Chem Eng J*, 2014, **241**, 131-137.
- ¹³⁰ 105.A. Suarez Negreira and J. Wilcox, J Phy Chem C, 2013, **117**, 1761-1772.
 - 106.A. Suarez Negreira and J. Wilcox, *J Phy Chem C*, 2013, **117**, 24397-24406.
- 107.A. Zhang, W. Zheng, J. Song, S. Hu, Z. Liu and J. Xiang, *Chem Eng* 135 *J*, 2014, **236**, 29-38.
 - 108.C. He, B. Shen, J. Chen and J. Cai, *Environ Sci Technol*, 2014, **48**, 7891-7898.
 - 109.M. H. Kim, S. W. Ham and J. B. Lee, *Appl Catal B-Environ*, 2010, 99, 272-278.
- 140 110.F. Kong, J. Qiu, H. Liu, R. Zhao and Z. Ai, J Environ Sci-China, 2011, 23, 699-704.

- 111.S. J. Yang, Y. F. Guo, N. Q. Yan, D. Q. Wu, H. P. He, Z. Qu and J. P. Jia, *Ind Eng Chem Res*, 2011, **50**, 9650-9656.
- 112.B. Heidel, M. Hilber and G. Scheffknecht, Appl Energ, 2014, 114, 485-491.
- 5 113.N.C. Widmer, J. West. Thermochemical Study of Mercury Oxidation in Utility Boiler Fuel Gases, 93rd Annual Meeting, Air & Waste Management Association, Salt Lake City, Utah, 2000.
- 114.Y. Qiao and M. H. Xu, Dev. Chem. Eng. Mineral Process, 2005, 13, 483-494.
- 10 115.A. A. Presto, E. J. Granite, A. Karash, R. A. Hargis, W. J. O'Dowd and H. W. Pennline, *Energ Fuel*, 2006, **20**, 1941-1945.
 - 116.H. Li, C.-Y. Wu, L. Li, Y. Li, Y. Zhao and J. Zhang, *Fuel*, 2013, **113**, 726-732.
- 117.W. Gao, Q. Liu, C.Y. Wu, H. Li, Y. Li, J. Yang and G. Wu, *Chem Eng J*, 2013, **220**, 53-60.
- 118.J.B. Lee, S.M. Lee and I. Y. Lee, *Proceedings of World Academy of Science, Engineering and Technology* 2008, **34**, 256-257.
- 119.H.-J. Hong, S.-W. Ham, M. Kim, S.-M. Lee and J.-B. Lee, Korean J Chem Eng, 2010, 27, 1117-1122.
- 20 120.S. Niksa and N. Fujiwara, J Air Waste Manage, 2005, 55, 1866-1875.
 - 121.Y. Cao, Z. Gao, J. Zhu, Q. Wang, Y. Huang, C. Chiu, B. Parker, P. Chu and W.-p. Pan, *Environ Sci Technol*, 2007, **42**, 256-261.
 - 122.A. A. Presto and E. J. Granite, *Environ Sci Technol*, 2006, **40**, 5601-5609.
- 25 123.P. Wang, S. Su, J. Xiang, F. Cao, L. Sun, S. Hu and S. Lei, *Chem Eng J*, 2013, 225, 68-75.
 - 124.J. Liu, M. He, C. Zheng and M. Chang, *P Combust Inst*, 2011, **33**, 2771-2777.
 - 125.S. Eswaran and H. G. Stenger, Fuel Processing Technology, 2008, **89**, 1153-1159.
- 126.Y. Cao, Z. Gao, J. Zhu, Q. Wang, Y. Huang, C. Chiu, B. Parker, P. Chu and W. P. Pan, Environ Sci Technol, 2008, **42**, 256-261.
- 127.B. W. Vosteen, R. Kanefke and h. H. Köser, VGB Power Tech, 2006, 86, 70-75.
- 35 128.A. Yamaguchi, H. Akiho and S. Ito, Powder Technol, 2008, 180, 222-226.
 - 129.Y. Li and C.Y. Wu, Environ Sci Technol, 2006, 40, 6444-6448.
 - 130.J. Rodríguez-Pérez, M. A. López-Antón, M. Díaz-Somoano, R. García and M. R. Martínez-Tarazona, *J Hazards Mater*, 2013, 260, 869-877.
- 131.Y. Li, P. Murphy and C. Y. Wua, *Fuel Process Technol*, 2008, **89**, 567-573.
- 132.D. L. Laudal, T. D. Brown and B. R. Nott, *Fuel Process Technol*, 2000, **65–66**, 157-165.
- 45 133.O. Krocher and M. Elsener, *Appl Catal B-Environ*, 2008, 77, 215-227.
 - 134.H. Wu, H. Liu, Q. Wang, G. Luo, H. Yao and J. Qiu, P Combust Inst, 2013, 34, 2847-2854.
- 135.R. Sterling, J. Qiu and J. J. Helble, *Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem*, 2004, **49**, 277.
- 136.H. Li, C.Y. Wu, Y. Li, L. Li, Y. Zhao and J. Zhang, *Chem Eng J*, 2013, **219**, 319-326.
- 137.Y. Guo, N. Yan, S. Yang, Z. Qu, Z. Wu, Y. Liu, P. Liu and J. Jia, *Environ Sci Technol*, 2010, 45, 706-711.
- 55 138.W. Xu, H. Wang, T. Zhu, J. Kuang and P. Jing, *J Environ Sci-China*, 2013, **25**, 393-398.
 - 139.P. Abad-Valle, M. Lopez-Anton, M. Diaz-Somoano and M. Martinez-Tarazona, *Chem Eng J*, 2011, **174**, 86-92.
 - 140.H. Li, C.-Y. Wu, Y. Li, L. Li, Y. Zhao and J. Zhang, *J Hazard Mater*, 2012, **243**, 117-123.
 - 141.G. Qi and R. T. Yang, J Phy Chem B, 2004, 108, 15738-15747.
 - 142.M. Rallo, B. Heidel, K. Brechtel and M. M. Maroto-Valer, *Chem Eng J*, 2012, **198–199**, 87-94.
 - 143.H.-m. YANG and W.-P. PAN, *J Environ Sci-China*, 2007, **19**, 181-184.
- 144.M. Hocquel, S. Unterberger and K. Hein, Conference on Selective Catalytic Reduction (SCR) and Selective Non-Catalytic Reduction (SNCR) for NOx Control, Pittsburgh, 2002.
- 145.H. Liu, B. Yuan, B. Zhang, H. Hu, A. Li, G. Luo and H. Yao, J
- Mater Cycles Waste Manag, 2014, 16, 101-107.

- 146.T. Machalek, M. Ramavajjala, M. Richardson, C. Richardson, C. Dene, B. Goeckner, H. Anderson and E. Morris, Department of Energy-Electric Power Plant Research Institutes U. S. Environmental Protection Agencys Air and Waste Management Association
 ⁷⁵ Combined Power Plant Air Pollution Control Symposium, 2003.
 - 147.C. W. Lee, S. D. Serre, Y. Zhao, S. J. Lee and T. W. Hastings, *J Air Waste Manage*, 2008, **58**, 484-493.
 - 148.H. Li, Y. Li, C.Y. Wu and J. Zhang, Chem Eng J, 2011, 169, 186-193.

Transformation and speciation of Hg in coal-fired flue gas, mechanism and kinetics for oxidizing Hg⁰ with SCR catalysts were discussed.