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Abstract 

Natural and man-made materials often rely on functional interfaces between inorganic and 

organic compounds. Examples include skeletal tissues and biominerals, drug delivery systems, 

catalysts, sensors, separation media, energy conversion devices, and polymer nanocomposites. 

Current laboratory techniques are limited to monitor and manipulate assembly on the 1 to 100 

nm scale, time-consuming, and costly. Computational methods have become increasingly reliable 

to understand materials assembly and performance. This review explores the merit of simulations 

in comparison to experiment at the 1 to 100 nm scale, including connections to smaller length 

scales of quantum mechanics and larger length scales of coarse-grain models. First, current 

simulation methods, advances in the understanding of chemical bonding, in the development of 

force fields, and in the development of chemically realistic models are described. Then, the 

recognition mechanisms of biomolecules on nanostructured metals, semimetals, oxides, 

phosphates, carbonates, sulfides, and other inorganic materials are explained, including extensive 

comparisons between modeling and laboratory measurements. Depending on the substrate, the 

role of soft epitaxial binding mechanisms, ion pairing, hydrogen bonds, hydrophobic interactions, 

and conformation effects is described. Applications of the knowledge from simulation to predict 

binding of ligands and drug molecules to the inorganic surfaces, crystal growth and shape 

development, catalyst performance, as well as electrical properties at interfaces are examined. 

The quality of estimates from molecular dynamics and Monte Carlo simulations is validated in 

comparison to measurements and design rules described where available. The review further 

describes applications of simulation methods to polymer composite materials, surface 

modification of nanofillers, and interfacial interactions in building materials. The complexity of 

functional multiphase materials creates opportunities to further develop accurate force fields, 
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including reactive force fields, and chemically realistic surface models, to enable materials 

discovery at a million times lower computational cost compared to quantum mechanical methods. 

The impact of modeling and simulation could further be increased by the advancement of a 

uniform simulation platform for organic and inorganic compounds across the periodic table and 

new simulation methods to evaluate system performance in silico.  

Page 3 of 116 Chemical Society Reviews



4 of 116  

1. Introduction 

Materials containing functional biological, organic, and inorganic compounds are ubiquitous in 

nature and manmade materials. Examples of naturally occurring, hierarchically ordered 

inorganic-organic composite materials are the skeletons of diatoms, seashells, bone, and teeth. 

Opportunities in abiotic-biotic assembly have inspired drug delivery systems, catalysts, devices 

for energy conversion, polymer nanocomposites for automotive and aerospace applications, 

consumer electronics, building materials, and commodities.
1-9

 A common challenge consists in 

controlling the architecture from the nanometer scale to the macroscopic scale, i.e., from 

nanometers to millimeters and beyond. Current computational methods to examine structural, 

chemical, and physical properties typically perform well for subsections of these length scales 

and can be combined or correlated with each other in multi-scale approaches (Figure 1).
10-15

 

Access to a certain length scale in computational methods is accompanied with characteristic 

time scales. Common simulation approaches include quantum mechanical calculations, classical 

molecular dynamics and Monte Carlo methods, field-based and finite element simulations. The 

benefit of modeling and simulations is greatest when applied to interesting problems where 

experiments provide incomplete information, i.e., in case that experiment is blind, costly, 

dangerous, or impossible.
16

 These scenarios apply, for example, for difficulties in imaging at the 

1 to 100 nm scale, in drug development, testing of explosives’ chemistry, or in astrophysics. In 

chemical science of hard and soft matter, therefore, many simulations are concerned with 

properties on very small length scales of nanometers and on very short time scales of 

femtoseconds to microseconds to enable visualizations and estimates of thermodynamic and 

kinetic properties.  

This review covers simulation approaches at the 1 to 100 nm scale, current understanding of 
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selective recognition of biomolecules on metal and oxide nanostructures, as well as applications 

to surface modification, crystal growth, catalysis, polymer composites, and building materials. In 

section 2 it is described how simulation approaches are exploited to understand electronic 

structure and to implement of chemical knowledge into force fields to achieve predictive 

simulations at a scale far beyond molecules. Sections 3, 4, and 5 review fundamental 

understanding of molecular recognition, growth, and performance of inorganic nanostructures 

using classical atomistic simulations, ab-initio simulations, and laboratory measurements. First, 

molecular recognition of biomolecules on metallic and semimetallic substrates is described along 

with applications in catalysts and sensors (section 3). Then, interfaces of biomolecules and 

organic ligands with oxide, phosphate, carbonate, sulfide, and other inorganic substrates are 

discussed, including applications to the formation of biominerals, drug delivery, and 

understanding solar devices (section 4). The critical role of surface chemistry, pH, and ionic 

strength along with realistic implementation in molecular models is emphasized. In section 5, the 

features of inorganic-organic interfaces in polymer composites and building materials will be 

discussed, including the role of surface modification, thermodynamic and kinetic processes. 

Challenges and opportunities are summarized in section 6, and conclusions described at the end 

(section 7). The focus is on computational insights in comparison to experimental measurements 

to illustrate common predictions, feasible accuracy, and applications in materials design. 
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Figure 1. Different time and length scales of common simulation methods. Reproduced with 

permission from ref. 
11

. 

 

2. Simulation Approaches and Performance 

This section provides an overview of simulation methods, force fields, chemical concepts, and 

performance assessments for systems at the 1 to 100 nm scale with a focus on classical 

simulation methods far beyond the reach of quantum mechanical methods. Recent force field 

developments for inorganic compounds and inorganic-organic interfaces enable access to many 

inorganic materials and trillions of potential inorganic-organic interfaces that were previously 

Page 6 of 116Chemical Society Reviews



7 of 116  

difficult to study using molecular simulations.
11, 17-23

 It is discussed how the accuracy of 

computational predictions has improved by orders of magnitude over the last decade.  

2.1. Overview of Simulation Methods. Quantum mechanical calculations enable the analysis 

of the geometry of molecules, conformers, and clusters of molecules with a focus on electron 

density, orbital geometry, chemical reactions, and transition states (Figure 1).
24-26

 Many-electron 

systems require simplifications of the Schrodinger equation to become computationally 

feasible.
27-31

 Common coupled cluster and density functional theory (DFT) methods rely on 

approximate basis functions and basis sets. Density functionals reduce the compute expense from 

O(N
7
) with full configuration interaction (CI) to O(N

3
) to enable the simulation of systems up to 

thousands of atoms (N) for picoseconds. The completion of one picosecond ab-initio molecular 

dynamics of a peptide in 500 molecules of water using the GGA-PBE functional currently requires 

approximately 128 processor cores for one week.
32

 Crystal structures of inorganic solids are 

typically predicted in very good agreement with experiment (<1% deviation) while surface 

energies often deviate ~30% from experimental measurements.
27, 29, 33

 Cohesive energies of small 

organic molecules and electronic excitation energies show similar deviations from experiment.
34, 35

 

The Hamiltonian in DFT performs generally well for isolated single molecules and reproduces 

structures but not energies for non-covalent assemblies of several atoms and molecules. Quantum 

mechanics is a key tool to investigate chemical reactivity and electronic properties at the scale of 

chemical bonds, including electron densities, energy levels, conductive properties, and magnetism.  

Access to larger systems is possible on the basis of a classical Hamiltonian using molecular 

dynamics (MD) and Monte Carlo (MC) simulations (Figure 1). The energy expression of classical 

force fields is computationally less costly and computing time scales as O(NlnN) or O(N
2
) with the 

number of atoms N, depending on the algorithm of the summation of pairwise interactions. 
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Classical atomistic simulations tend to be a million times faster in comparison to DFT calculations 

for the same system size. Folding and self-organization of chain molecules in solution and at 

surfaces in all-atom resolution can be studied at realistic concentrations, pH, and ionic 

strength.
36-41

 Longest recorded simulation times in all-atom resolution are in the range of 

milliseconds.
42

 For example, the completion of 100 nanoseconds classical MD of a protein in 1000 

molecules of water with high accuracy of Coulomb interactions currently requires approximately 

four processor cores for one week. Access to significant time scales and parallel simulations 

enable the exploration of complex configuration spaces at length scales of 1 to 100 nm. Interfacial 

assembly, thermal transitions, diffusion, optical switching, and time-dependent mechanical 

properties can be investigated.
18, 42-49

 A major limitation is the difficulty to simulate the 

dissociation and formation of chemical bonds during chemical reactions unless reactive 

potentials
50-52

 or modifications of chemical bonding are applied.
53

 

Simulations of the structure at length scales of 10 nm to 100 μm and the dynamics at time 

scales of nanoseconds to seconds become accessible using molecular dynamics and Monte Carlo 

simulations with coarse-grain models (Figure 1). Coarse-grain models involve fewer degrees of 

freedom compared to atomistic models as every bead represents multiple, tens, or hundreds of 

atoms according to the desired level of coarse-graining.
54-56

 The energy expression is simplified 

and, for example, may only contain terms for bond stretching and van-der-Waals interactions.
57, 58

 

The similarity of the energy expression to all-atoms models enables simulations in dual 

atomistic/coarse grain resolution.
59

 Access to longer length and times scales allows the study of 

macromolecular assembly, polymer blends and composites, creep behavior, and viscosity of 

polymer solutions.
60-65

 Dissipative Particle Dynamics with soft, interpenetrating particles
66

 as well 

as field-based continuum approaches
67

 similarly reach length scales of micrometers and beyond. 
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2.2. Atomistic Force Fields for the Simulation of Inorganic-Organic Interfaces. All-atom 

simulations at the 1 to 100 nm scale usually rely on an energy expression (classical Hamiltonian) 

that needs to reproduce structures and energetics of the chosen systems in agreement with 

experiment or high-level ab-initio data. Classical energy expressions are available for different 

types of compounds, however, existing mathematical terms that constitute the expressions can be 

quite different and lead to low compatibility (Figure 2). Simulations of interfaces between 

inorganic, organic, and biomolecular compounds had hence been a massive challenge. To enable 

the simulation of such inorganic-organic systems, and eventually of all compounds across the 

periodic table using a single common platform, it is thus beneficial to choose one and the same 

energy expression.
17, 18, 23, 68

 

Polynomial energy expressions have been emerging as a common denominator. Polynomial 

energy expressions use pairwise interactions for all key intermolecular forces (except angle and 

torsion constraints) with a sound quantum-mechanical justification. Reactive, bond order, and 

EAM potentials include many-body terms of a more empirical nature and have no thorough 

quantum-mechanical foundation. The performance of polynomial force fields is good for metals, 

minerals, polymers
18, 68, 69

 and virtual sites for electrons can be added as needed.
70, 71

 Parameters 

for proteins and organic compounds such as in CVFF, CHARMM, OPLS-AA, AMBER, CFF, 

and COMPASS are well established
72-77

 and accurate parameters for inorganic compounds have 

been introduced in the INTERFACE force field.
11, 68, 69, 78-80

 These additions allow to study 

trillions of new bioorganic interfaces with metals and minerals. It was shown that combination 

rules for nonbond parameters between the inorganic and organic compounds perform well so that 

no additional parameters are necessary to simulate interfacial interactions.
43, 68, 78, 80-86

 The use of 

such combination rules is possible when bond polarity and dispersion forces for inorganic 

Page 9 of 116 Chemical Society Reviews



10 of 116  

compounds are treated just the same as for solvents, organic multipolar molecules, and 

biomacromolecules, which may contain similar ionic groups. Examples of such representations 

of inorganic-organic interactions in simulations include the hydration energy of metal and silica 

surfaces,
58, 78, 87

 the binding energies of peptides to Au, Pt, and silica surfaces in water,
37, 43, 82

 the 

assembly of surfactants and cleavage energies of organically modified clay minerals.
84, 88

 The 

agreement of simulations with experiment is better than 5%, given initial reproduction of bond 

polarity (atomic charges) and of the surface or cleavage energy of the inorganic solid in 

comparison to experimental reference data.
11

 Combination rules can also be overwritten if 

necessary, although this is not needed in most cases. 

The approach towards a uniform energy expression for inorganic and organic compounds is 

motivated by a series of computational studies by Sauer, Teppen, Kalinichev, Heinz, Cygan, and 

Parker, among others.
17, 18, 20, 23, 68, 89-91

 Heinz also recognized that not only the validation of 

structures but also of energies of solids was critical,
68

 after Parker and de With tested the surface 

energy of spinel using Buckingham potentials and found significant deviations.
92

 Since then, the 

first contributions to the INTERFACE force field were developed and subsequently expanded for 

further compounds, including clay minerals, silicates, metals, aluminates, phosphates, and 

sulfates (Figure 3). The INTERFACE approach demands that the energy expression, i.e., the 

classical “Hamiltonian”, reproduces the structure of a given compound as well as its energy in 

agreement with experiment. From there, all other properties such as interfacial, thermal, and 

mechanical (i.e. first and second derivatives of energy) follow in best possible agreement. This 

goal is achieved for a given compound by understanding the different atom types, chemical 

bonding and its quantitative representation via atomic charges as defined by Heinz,
19

 validation 

of the structure, as well as of at least one surface property (surface tension, cleavage energy, 
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hydration energy, or contact angle).
11

 It is also helpful to associate all parameters with a chemical 

rationale, allowing comparisons among chemically similar compounds across the periodic table. 

Details of the INTERFACE procedure to parameterize new compounds are described in ref. 
11

. 

 

 

 

Figure 2. Available energy expressions for atomistic simulations and the advantages of 

polynomial potentials. Many energy expressions are mathematically incompatible with each 

other and serve specialized materials classes, for example, many body potentials for metals and 

alloys, Buckingham potentials for minerals, reactive potentials for hydrocarbons and covalent 

solids (Si, C). Polynomial potentials can be used for a general force field since the functional 

form is similar to a quantum mechanical Hamiltonian and can be applied to all types of materials, 
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including metals, minerals, and soft matter. (b) Polynomial energy expressions consist of additive 

terms for bonded, Coulomb, and van-der-Waals interactions. Compatibility barriers among 

different polynomial force fields are comparatively low. 
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Figure 3. Flow chart for the development of chemically and thermodynamically consistent force 

field parameters for new compounds in the INTERFACE force field. The procedure is valid for 

any compounds across the periodic table. Reproduced with permission from ref. 
11

. 
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Alternative methods to parameterize interfacial interactions include the use of ab-initio data 

to parameterize interactions between small molecules and then apply these parameters to 

extended surfaces such as silicates or aluminates.
23, 89

 A large scatter in possible atomic charges 

and a missing rationale for Lennard-Jones parameters, however, made the assignment of 

consistent nonbond parameters very difficult. These difficulties are similar to the challenge in 

parameterization of exchange and correlation terms in density functionals themselves.
27

 As a 

result, typically fixed atoms were required to avoid structural collapse of silicates and aluminates 

during the simulation and errors in computed surface properties relative to experiment reached 

up to 500%.
78, 93, 94

 This approach, without chemical rationale and comparison to experimental 

data as in the INTERFACE force field, does not lead to accurate force fields or quantitative 

insight into inorganic-organic interfaces. Recent approaches towards force fields for inorganic 

compounds along with similar ab-initio concepts rely on DFT calculations for the adsorption of 

small molecules in the gas phase to a given solid surface, comparison with experimental 

adsorption data, and fitting of dedicated parameters for pairwise nonbonded interaction across 

the inorganic-organic interface (Figure 4).
95, 96

 The procedure introduces a significant number of 

adjustable parameters as standard combination rules are not employed. The GolP-CHARMM 

force field for metal-protein interactions, for example, adopts this procedure. The metal-organic 

interaction parameters from the training set of adsorbed molecules in the gas phase are then 

applied to simulate adsorption in the liquid (condensed) state at 100 to 1000 times higher density. 

The performance of GolP parameters is similar to INTERFACE parameters in metal-organic 

simulations.
38, 97

 However, the experimentally supported concept of soft epitaxy has not been 

verified (see section 3.1) and the accuracy tends to be lower. The DFT-derived Hamiltonian still 
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cannot reproduce the structure and the energy of the inorganic component, i.e., the metal or 

inorganic structure collapses when atom mobility is allowed and surface energies are not 

reproduced. Also, the assumption is made that, after fitting empirical parameters to reproduce gas 

phase adsorption properties (a two-component system), the same parameters will function in the 

liquid state (a three-component system at much higher density). This assumption is often not true 

as chemisorption is more likely in the gas phase and physisorption is more likely in the 

condensed phase due to higher coordination numbers. Experimental evidence indicates that 

binding sites of molecules often differ between gas phase and liquid phase.
37, 98-100

 Nevertheless, 

DFT-derived force fields for inorganic compounds
97, 101

 have also adopted integration into 

polynomial force fields such as CHARMM similar to the INTERFACE approach. 

Studies of inorganic-organic binding have also been reported using the Rosetta 

program.
102-104

 Rosetta was originally developed for docking studies of drug molecules onto 

proteins and protein-protein interactions.
105, 106

 The Rosetta program also depends on accurate 

force fields and surface models for the inorganic components to be able to function for 

inorganic-organic interfaces in high accuracy. The necessary parameters can be provided by 

external force fields such as CHARMM-INTERFACE
11

 or individual parameterizations.
20, 68, 69, 

78, 101
 

In summary, understanding of the chemistry of the new compounds to be parameterized and a 

fully functional Hamiltonian for both inorganic and biomolecular components are essential to 

carry out reliable simulations of inorganic-bioorganic materials. For best results, force fields 

need to accurately represent chemical bonding via atomic charges (and possibly further details of 

electronic structure) and reproduce the structure as well as the surface energy of a given 

compound in comparison to experiment. The derivation of a classical Hamiltonian is possible 
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following the INTERFACE approach and ab-initio data are helpful in the validation of specific 

inorganic-organic interactions. 

 

Figure 4. Development of parameters for metal-protein interfaces in the GolP force field. (a) 

Steps to parametrize the Au(111) and Au(100) surfaces using DFT in vacuum. (b) Correlation 

between experimental interaction energies for small molecules adsorbed onto the Au(111) 

surface and those calculated with vdW-DF in vacuum. The force field is then typically applied in 

the condensed phase and positions of metal atoms must be fixed to avoid structural collapse. 

Reproduced with permission from ref. 
101

. 

 

2.3. Why is it Important to Validate Surface Energies? Experimental, computational, and 

theoretical evidence shows that nucleation and growth, assembly and disassembly of 

b

a
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inorganic-organic hybrid materials strongly correlates with the nature of the substrates and their 

surface chemistry. Certain metal nanoparticles (Pd, Pt, Rh) form well-defined nanocrystals at 

dimensions below 2 nm,
107-111

 while oxide nanocrystals such as silica and titania grow into tens 

and hundreds of nanometer in size including porosity and other defects.
82, 112-115

 Polymers and 

proteins assemble into nanoparticles with even less structural order due to reversible 

self-assembly or cross-linking, respectively. 

Structural definition and stability of nanostructures notably decreases from metals via 

minerals to soft macromolecules and correlates with the surface energy, or cleavage energy, of 

the material (Table 1).
68, 80, 116-123

 The surface energy of a solid is defined most conveniently as 

the cleavage energy of the lowest energetic (h k l) plane to create two equal surfaces, or as a 

weighted average of the cleavage energy of all bounding (h k l) facets, respectively.
69, 84

 At 298 

K, the surface energy is a suitable measure of the internal energy for most metals and minerals.
69

 

Alternatively, the cohesive energy (vaporization energy) has often been used,
124

 however, 

vaporization may require temperatures of several thousands of Kelvin at which materials 

properties change and also force field parameters require adjustments relative to standard 

conditions. This problem is circumvented using surface energies at 298 K. For liquids, the free 

surface energy equals the surface tension and values are well known.
125

 Distinctions between 

surface energy and surface free energy are not critical here because the quantities are very similar 

for solids (surface free energies are between 0 and 30 mJ/m
2
 lower than surface energies due to 

small entropy gain upon cleavage).
69

 

The surface energy, as a measure of internal cohesion at 298 K, is roughly proportional to the 

cohesive energy, melting point, and boiling point. It represents the cost to create bare surface 

area. Therefore, a higher surface energy corresponds to smaller critical size and better definition 
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of nanoscale crystallites during nucleation and growth. A lower surface energy is equivalent to 

decreased definition and decreased regularity of nanostructures. In principle, it is thus feasible to 

produce a better-defined nanostructure when the corresponding surface energy is higher – within 

the existing range over more than two orders of magnitude (Table 1). These correlations suggest 

that it is critical for models to capture surface energies and associated interfacial properties in 

quantitative agreement with experiment. 

Newer force fields such as the INTERFACE force field achieve such agreement with less 

than 5% error, essentially in the same accuracy as experiment.
11

 Alternative force fields, however, 

deviate up to 500% due to erroneous assignments of atomic charges and missing validation of 

surface properties.
23, 90, 126, 127

 DFT methods also have notable limitations in the reliable 

computation of surface energies, for example, underestimates by 20% to 50% are common using 

GGA density functionals for metals.
33, 128

 This deviation is large enough, for example, to lose the 

distinction between surface properties of Au, Pd, and Al (Table 1).
116

 Force fields with validated 

surface properties therefore offer high accuracy at low computational cost, and satisfy the 

condition that a model Hamiltonian should reproduce both structures and energies in agreement 

with experiment. 

 2.4. Impact of the Surface Energy on Stability, Order, and Growth of Nanostructures. 

The surface energy is thus directly related to the stability, order, and growth of nanostructures. 

The following examples illustrate this relation and aid in understanding the discussion of 

molecular recognition and crystal growth in sections 3 to 5. 

 At the top of the scale, the cleavage energy of 11300 mJ/m
2
 of diamond correlates with the 

dissociation energy of covalent C-C bonds which need to be broken to create surface area.
118

 The 

extraordinary bond strength lets expect the feasibility of very small, stable diamond 
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nanostructures in a size range of 1 to 3 nm.
129, 130

 The practical size limit of nanodiamonds by 

detonation synthesis is currently 4 to 5 nm due to poorly controllable conditions with this method 

and graphitic overlayers.
130

 

 High surface energies over 2000 mJ/m
2
 are also found among transition metals such as W, 

Pt, and Pd,
 88, 99, 71

 which can be synthesized via reduction of soluble precursors in solution. The 

metal nanostructures achieve a high degree of crystallinity related to the high surface energy. 

Platinum, for example, can form small octahedra, cuboctahedra, and tetrahedra of 2 to 5 nm size 

using short peptide ligands to arrest crystal growth.
85, 109, 110, 131

 Gold with a lower surface energy 

of 1540 mJ/m
2
 forms larger nanoparticles of 11 to 14 nm size under comparable conditions and 

peptide ligands of similar size.
132

 

 Minerals show yet lower surface energies in the range of 1300 to 200 mJ/m
2
, for example, 

375 mJ/m
2
 for muscovite mica, owed to a combination of ionic and covalent bonding (Table 1). 

Weaker surface forces, including higher surface reactivity and pH-dependent surface chemistry, 

make it difficult to synthesize specimens with nanometer-scale control.
82, 112-115

 The propensity 

towards irregular surface structures, porosity, and defects is much increased. 

 Polymers, proteins, DNA, and other soft molecules exhibit surface energies on the order of 

20 to 70 mJ/m
2
,
121, 133

 owed to yet weaker self-assembly forces. At a surface energy nearly two 

orders lower than that for metals and oxides, crystallization is typically difficult to achieve. 

Defects, and polymorphism are well known. The range of surface and interfacial interactions is 

widely tunable depending on pH, ionic strength, solvent, temperature, and residue-specific 

recognition. The contribution of entropy to structural assembly often becomes significant due to 

low enthalpic driving forces. Perfect order and nanometer-scale control can be extraordinarily 

difficult to achieve. 
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 Gases reach the limit of zero surface energy and highest disorder at the bottom of the scale 

of surface energies, and are thus often described as ideal gases without intermolecular 

interactions in statistical thermodynamics.
25

 These considerations show that the scale of surface 

energies and associated interfacial energies over more than four orders of magnitude (10
4
 to <10

0
) 

offers a pathway to rationalize material behavior on the nanoscale such as molecular assembly 

and crystal growth for different types of compounds. When such understanding or prediction 

shall be derived from molecular simulations, the necessity for truthful implementation of surface 

energies and surface chemistry in molecular models becomes clear. 

 

Table 1. Surface free energy (cleavage free energy) of various materials classes in decreasing 

order (data from refs. 
68, 80, 116-123, 134, 135

). Higher values correlate with smaller accessible size of 

nanocrystals and better controllable order. 

Compound Cleavage energy of least 

energetic facet (mJ/m
2
) 

Corresponding facet 

Diamond 11300 (111) 

W 2990  (110) 

Pt 2460  (111) 

Pd 1980 (111) 

Au 1540 (111) 

Ag 1320 (111) 

Tricalcium silicate 1300 (001), (040) 
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Muscovite mica 375 (001) 

Sodium chloride 330 (100) 

Graphite 190 (001) 

Hydrated silica 70-250 NA 

Nylon-4  49 NA 

Polypeptides 35-50 NA 

Polyethylene 30-37 NA 

Polydimethylsiloxane 20-23 NA 

Gases (H2, He, O2, N2) <0.1 NA 

 

 

 2.5. Relative Strength of Interatomic Interactions. Observed cohesive and surface 

energies thus correlate with mechanisms of molecular recognition, interfacial assembly, and 

crystallization. Down to the atomic scale, cohesive, surface, and interfacial interactions are 

determined by interatomic interactions. The force field parameters in a given energy expression 

encode these interactions and determine the outcome of simulations. Understanding interatomic 

interactions and translating the knowledge into the Hamiltonian is therefore at the root of 

modeling and simulation. The types of bonding and their connection to surface and interfacial 

properties is briefly described in the following. 

 Common types of bonds include covalent bonds, metallic bonds, ionic bonds, and 

“nonbond” intermolecular interactions (dipolar, hydrogen bond, van-der-Waals interactions). The 
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present types of bonding in a given system determine thermodynamic as well as kinetic 

properties. Covalent bonds such as C-C and H-H bonds are typically associated with bond 

energies on the order of 100 kcal/mol and explain, for example, the high surface energy of 

diamond (Table 1).
125

 Weaker covalent bonds with somewhat longer bond lengths than usual or 

multi-site coordination are also found, such as Au-S bonds in thiol-modified gold 

nanostructures.
136, 137

 The energy of weak covalent bonding is in a similar range as the cohesive 

energy in noble metals, on the order of 30 to 50 kcal/mol.
125

  

 In contrast, however, metal bonding in elemental metals involves high coordination 

numbers (8 to 12) and is delocalized across the atoms in the lattice. The strong cohesion can be 

represented by a combination of intense van-der-Waals and local Coulomb interactions, taking 

into account the density of valence electrons.
69, 71

 The implementation of these interactions in 

force fields reproduces densely packed structures with long range order, high surface energies, 

and high elastic moduli in simulations. Surface reconstruction,
138, 139

 reversible removal of single 

metal atoms in catalytic reactions,
81, 140

 and etching mechanisms are known.
141, 142

 The simulation 

of such processes by computer models on the 1 to 100 nm scale is possible and partly still a 

challenge. 

 The strength of partially ionic and partially covalent bonds found in minerals ranges from 

30 to 150 kcal/mol per pairwise bond. Contrary to earlier beliefs, it has been shown that a 

majority of minerals is predominantly covalent, many are predominantly ionic, and only few are 

more than 95 % ionic.
19

 Aluminates, silicates, and many transition metal oxides are examples of 

primarily covalent compounds while, at the other end of the spectrum, several alkali halides and 

CaF2 are fully ionic.
143-146

 The actual balance between covalent versus ionic contributions 

determines the physical and chemical properties. An accurate representation of chemical bonding 
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by atomic charges, or a more detailed depiction of the electronic structure,
70, 71

 is essential to 

ensure the quality of force fields and molecular models. For example, NaCl is well described 

with a Na charge of +1.0e, but RbI rather features a Rb charge of +0.80.1e, BeF2 a Be charge of 

+1.00.1e, and SiO2 a Si charge of +1.10.1e.
19, 68, 78, 80, 145, 147

 Charges in complex anions are 

much lower than formal charges, too, for example, SO4
2-

 is described by a S charge of +0.40.2e 

and O charges of -0.5 to -0.6, depending on the present cation.
11, 19

 The representation of bond 

polarity along with van-der-Waals interactions is essential to reproduce multipolar interactions 

and surface energies of minerals in molecular simulations. Chemically realistic, convergent 

charges for classical simulations can be derived from experimentally reported electron 

deformation densities, dipole moments, an extended Born model, chemical reactivity in 

heterolytic reactions, trends in melting points and solubility in common solvents, as well as 

ab-initio methods.
19, 125

 Predictive simulations also depend on the consideration of appropriate 

surface chemistry that can be altered by hydration or protonation reactions.
82, 148

 

 Nonbonded-only interactions are significantly weaker than covalent or ionic interactions 

and account for surface energies at the lower end of the spectrum. Examples are the interactions 

between entire organic macromolecules and solvents (assuming unbreakable covalent bonds 

within). Ion-ion and ion-dipole nonbonded interactions still contribute significantly up to tens of 

kcal/mol, similar to weak covalent bonds. Hydrogen bonds have a strength of 1 to 5 kcal/mol.
149

 

Van-der-Waals interactions are the weakest nonbond forces and result from pairwise interactions 

that individually contribute 0.02-0.2 kcal/mol per pair of atoms (HH, CH, OO, etc).
68, 150

 

 The foregoing discussion shows that, ultimately, the different types of interactions 

determine different mechanisms of molecular recognition, assembly, nanostructure growth, and 

material performance in multiphase systems. These processes can be observed in experiment and 
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in simulations, given reliable force field parameters, and will be reviewed in the following 

sections.    

 

 

3. Recognition of Biomolecules on Metal and Semimetal Surfaces and Nanostructures 

Metal nanoparticles of different size and shape find applications in therapeutics,
151-153

 sensors,
154, 

155
 nanoelectronic devices,

141, 156
 and catalysts.

140, 157
 The mechanisms of molecular recognition 

by organic ligands, especially non-thiols, have recently been explained with the help of 

molecular simulations.
32, 37, 38, 43, 58, 81, 83, 85, 87

 Knowledge of driving forces for molecular 

recognition, crystal growth, and shape development can guide in materials design and 

performance predictions.  

 3.1. Molecular Mechanisms. Molecular simulations of different peptides on extended gold, 

palladium, and platinum surfaces in aqueous solution using the CVFF-INTERFACE and 

CHARMM-INTERFACE force field have shown differences in the attraction to (111) and (100) 

facets.
58

 The differences in binding energy are relatively independent of the actual peptide 

sequence, whether chosen as a random control sequence such as Gly10 and Pro10 (Figure 5) or 

identified as a strong binder by phage display (A3, S7-2) (Figure 6). All peptides are strongly 

attracted to (111) surfaces, up to -50 kcal/mol for a 12-mer peptide on Au (111), and much less 

attracted to (100) surfaces, typically with small negative or near-zero adsorption energies of 05 

kcal/mol. While the trend is universal, the precise affinity to each surface and the binding 

differential between (111) and (100) surfaces somewhat varies depending on the peptide. The 

trend of strong attraction to (111) facets versus weak interaction with (100) facets is also 

observed on several different fcc metals such as Ag, Au, Pd, and Pt. The magnitude of attraction 

of the same peptide to (111) facets of different metals is roughly proportional to their surface 
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energy, e.g., the strength of binding decreases in the order Pt > Pd > Au > Ag (Table 1). It has 

also been observed that residues such as F, R, Y, W, H, as well as D spend more time in close 

contact with (111) surfaces than others while generally most residues are in direct contact with 

the (111) surface.
37, 38, 43, 58, 81, 85, 157-160

 In contrast, a water interlayer is maintained between most 

residues and the (100) surface, thus resulting in lower adsorption energy (Figure 5). 
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Figure 5. Snapshots of glycine and proline decapeptides in contact with (100) and (111) surfaces 

of gold and palladium in aqueous solution. Direct contact with the (111) surface is seen, resulting 

in stronger adsorption and adaptation of the proline helix. A water interlayer remains on the (100) 

surface where adsorption is about an order of magnitude weaker. Reproduced with permission 

from ref. 
58

. 
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Figure 6. Representative snapshots of the adsorption of peptides on even metal surfaces in 

aqueous solution show preferential coordination of epitaxial sites, illustrated for (111) surfaces of 

gold-palladium and platinum metal. The peptides A3 and S7-2 were identified by phage display 

and tested in experiment for specific binding. The average number of close contacts of 

polarizable atoms (C, N, O, S) in each peptide with epitaxial sites, top sites, and of surface 

detachments (>4 Å distance from the top layer atoms) is given. (a) A 4:1 preference for epitaxial 

sites over top sites is seen on an Au-Pd surface using the CVFF-INTERFACE force field (from 

ref. 
58

). (b) An approximate 5:1 preference for epitaxial sites versus top sites was found on a Pt 

surface using the CHARMM-INTERFACE force field, related to higher surface energy of Pt and 

stronger adsorption (from ref. 
85

). Metal atoms are shown as large spheres, small spheres, and 

A3 (AYSSGAPPMPPF) S7-2 (Ac-SSFGQGN-Am)

a b

C O N S H

Au Pd Pt

Epitaxial: 52 (60%)

Top:    13 (15%)

Detached (> 4 Å): 21 (25%)

Total C, N, O, S: 86 (100%)

Epitaxial: 39 (75%)

Top:    7 (14%)

Detached (> 4 Å): 6 (11%)

Total C, N, O, S: 52 (100%) 
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crosses to distinguish top layer atoms from atoms in subjacent layers that constitute epitaxial 

sites. Adapted with permission from refs. 
58

,
85

. 

 

 The observations in atomic resolution and the trends in computed binding energies are 

consistent with a number of experimental observations. Peptides were repeatedly reported to 

bind to extended (111) facets in various studies by phage display while no significant binding 

was reported to extended (100) facets. 
11, 37, 38, 58, 83, 85, 87, 140, 157, 161-165

 Apparently stronger binding 

of “gold binding peptides” (i.e. peptides combinatorially selected as binding to gold) to 

palladium and platinum as well as considerable binding of the same peptides to silver were found 

experimentally as well.
85, 108, 132, 162, 166

 The mechanism of adsorption based on these simulation 

results and experimental data was thus concluded to involve soft epitaxial adsorption, which is 

characterized by the coordination of polarizable atoms (C, N, O) in the peptides with epitaxial 

(fcc, hcp) sites on the metal surface (Figures 6 and 7). This concept offers a unique explanation 

as common sp
2
 and sp

3
 hybridized groups in peptides exhibit a very good geometric fit to (111) 

metal surfaces (Figure 7a), independent of the type of metal present (Figure 7b). In particular, the 

phenyl ring of hexagonal symmetry can best coordinate (111) surfaces in contrast to (100) and 

(110) surfaces. On (110) surfaces, linear molecules have better probability to coordinate epitaxial 

sites.
83, 164

 The strength of adsorption is finally a result of competition between the solute 

molecules and water molecules, which tend to be more mobile and adjust to any type of (h k l) 

surface. Therefore, sp
2
 and sp

3 
groups cannot effectively compete with water molecules for 

epitaxial sites on (100) surfaces, leading to a water interlayer and smaller adsorption energies (i.e. 

closer to zero). The phenyl ring, for example, typically assumes tilted conformations relative to 

the (100) surface plane whereas a flat-on parallel conformation is observed on (111) surfaces.
58, 
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85
 Of particular interest is also the characteristic lattice spacing L1, L2, L3 of individual metal 

surfaces, which provides a measure of the “degree-of-fit” to adsorbing molecules and a tool to 

rationally design new molecules for binding to a given metal surface (Figure 7). It is also notable 

that the area density of epitaxial metal interaction centers on the (111) facet is higher than that on 

(100) facets, which contributes to stronger attraction of the adsorbates. 

 

 

Figure 7. Concept of soft molecular epitaxy. (a) The hexagonal symmetry of the (111) surface 

provides epitaxial sites (fcc and hcp) that match the common geometry of sp
2
 and sp

3
 hybridized 

molecules such as benzene and guanidinium groups. (100) surfaces exhibit a square geometry of 

2.88 Å spacing that is incommensurate with typical chain molecules (yet suitable for allenes and 

polyynes). The competition between solvent (water) and solutes is then in favor of water and no 

significant attraction of the organic molecule is achieved. (110) surfaces possess small and wide 

grooves that can be further enlarged by surface reconstruction. Due to the larger L3 spacing, 

b
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adsorption on (110) surfaces is less molecule-specific. (b) The similarity in characteristic spacing 

of epitaxial sites (L1, L2, L3) leads to similar attraction of molecules and polymers to different 

noble metals. Differences in attraction, however, arise from unique surface energies and 

non-identical characteristic spacing. Matching molecules can be designed according to the 

surface pattern of epitaxial sites, aided by simulation to quantify binding strengths. Reproduced 

with permission from ref. 
83

. 

 

 The optimum coordination of epitaxial sites on (111) surfaces can be nicely seen in detail for 

arginine (Figure 8). Polarizable atoms avoid proximity to metal atoms in the top layer, and 

molecular dynamics computations have quantified the affinity of all 20 amino acids as well as 

some surfactants (single molecules) to the Au (111) surface in aqueous solution (Figure 9).
83, 160

 

Using the same thermodynamically consistent Lennard-Jones parameters for the fcc metals,
69

 the 

trend depends somewhat on the force field parameters for the amino acids. Results with 

CHARMM-INTERFACE are somewhat preferred over CVFF-INTERFACE, since CVFF is 

somewhat less validated for biopolymers and overestimates the attraction of aromatic molecules. 

In experiment, the approximate relative strength of adsorption inferred from the abundance of 

amino acids in gold-binding peptides identified by phage display and from other metal-binding 

peptides is:
108, 132, 162, 163, 167, 168

  

 

Arg > Trp > … Tyr … > … Phe … His … Ser … > Ala  (1) 

 

The simulation results show the same order of attraction to gold (111) surfaces as computed with 

the CHARMM-INTERFACE force field (Figure 9). Further supporting evidence includes the 
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attraction of metal binding peptides such as A3 and GBPs in experiment to Ag (111), Au (111), 

and Pd (111) surfaces, which is explicable by the similar L1 spacing (Figure 7b). Studies by 

several research teams have also shown that only peptides containing strongly binding amino 

acids, or such amino acids alone, could stabilize and control the shape of nanoparticles 

synthesized reductively from solutions of metal salts.
169, 170

 An interesting discovery of amino 

acid sub-lattices on copper surfaces was made over 30 years ago by Low Energy Electron 

Diffraction (LEED) measurements (Figure 10).
98

 The likely arrangement of polarizable atoms 

due to the orientation of the sub-lattice indicates a preference for epitaxial contacts and the 

avoidance of top layer atoms. Further adsorption data of alkane monolayers on Pt (111) surfaces 

also strongly support soft epitaxial order.
99

 

 A secondary contribution to peptide binding also arises from attractive polarization of the 

metal surface by induced charges. This contribution gains relevance in the presence of ionic 

groups and can become dominant for the adsorption of ionic liquids.
38, 87, 164, 171

 Induced charges 

typically play a subordinate role in the first molecular layer of contact when epitaxial binding is 

strong, such as for peptides on (111) surfaces.
87

 Induced charges can become primary 

contributions to adsorption of charged molecules and ions on epitaxially less attractive surfaces, 

however, such as highly ionic peptides on (100) surfaces. The overall attraction due to induced 

charges increases with the magnitude of charges and the distance between corresponding positive 

and negative charges in a surface-adsorbed molecule, e.g., between charges on the backbone and 

the position of counter ions in solution. Contributions by induced charges diminish facet 

selectivity. Additional contributions to adsorption of organic molecules to metal surfaces in 

solution may also arise from weak covalent bonding.
21, 101, 172

 

 The understanding of molecular adsorption on various metal surfaces has also been aided by 
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simulations using density functional theory and tight binding methods.
32, 96, 173-176

 However, such 

studies have mostly been carried out in vacuum and cover very short time scales due to 

limitations in system size. Conclusions about the properties of aqueous interfaces therefore 

remain unclear. An added complication with DFT and tight binding methods is also the large 

deviation of computed surface and interfacial energies of metals from experimental 

measurements of up to 50%.
33, 128

 The CHARMM-INTERFACE force field, in comparison, 

reproduces surface energies with less than <5% deviation from experiment. In addition, 

computed cell parameters of the metals, interfacial tensions with water, and binding constants are 

clearly in better agreement with experiment.
11, 43, 69

 Alternative force fields also include the GolP 

and GolP-CHARMM force fields which require fixed metal atoms and incorporate rod-like 

dipoles to account for polarizability.
21, 101

 The models collapse when metal atoms are allowed 

flexibility and are mainly applicable to idealized surfaces. 

 

 

Figure 8. Illustration of soft epitaxial adsorption of arginine in aqueous solution on a gold (111) 

surface according to molecular dynamics simulation. Several epitaxial contacts are highlighted 
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by pink circles. The molecule moves laterally on the surface by a hopping mechanism to other 

surface sites with similarly good epitaxial coordination in intervals on the order of 100 ps at 

room temperature. Reproduced with permission from ref. 
83

. 

 

 

Figure 9. Computed adsorption energies of the natural amino acids and selected surfactants on 

gold (111) surfaces in solution. Results of the CHARMM-INTERFACE and the 

CVFF-INTERFACE force field are shown. The data refer to single molecules in the limit of high 

dilution. Note that binding of cysteine is the strongest of all due to the formation of covalent 

bonds (+50 kcal/mol), which is unique for this amino acid and was excluded in this tabulation. 

Reproduced with permission from ref. 
83

. 
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Figure 10. Packing of amino acid and alkane monolayers on metal surfaces according to data 

from Low Energy Electron Diffraction (LEED). The observations provide evidence for 

preferential binding of polarizable atoms to epitaxial sites rather than top sites in the condensed 

phase, consistent with close packing. Experimental and computational data explain and support 

this view (refs. 
37, 58, 83, 85, 87, 157, 164

 and references cited therein). Adapted with permission from 

ref. 
98

 and ref. 
99

. 

   

 Specific binding of peptides selected by phage display has also been computationally studied 

on semimetals such as silicon
177

 and graphene.
178-181

 On the n
+
 silicon (100) surface, three 

peptides identified by phage display were found to be attracted with binding energies of -12, -15, 

and -7 kcal/mol (Figure 11). Within the sequences, methionine and tryptophane were found to 
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increase attraction, as well as D, T, H, S, and R. The diamond cubic (100) silicon surface exhibits 

long range corrugation without a highly specific epitaxial pattern to match specific amino acid 

residues. The overall attraction of peptides was then found to be dependent on both sequence and 

molecular architecture.
177

 

 In contrast to silicon, graphite and graphene are lower energy surfaces. The cleavage energy 

is only 190 mJ/m
2
 for graphite and lower for graphene, whereby graphite can be considered a 5+ 

layer graphene.
134, 135, 182-184

 Therefore, strong epitaxial interactions are not expected and rather 

the possibility of pi-stacking interactions contributes to moderate adsorption of aromatic 

molecules (Figure 12).
178-181, 185

 Graphite and graphene mainly behave as hydrophobic surfaces 

and binding energies of amino acids, peptides, and surfactants are somewhat negative in aqueous 

solution. Common residues with higher affinity include H, Y, W, and F, as well as amide groups 

in Q and N (Figure 12). Some of the adsorption is related to depletion interactions, i.e., the 

hydrogen bonded network in water is less disrupted by adsorption of the molecules onto the 

graphitic surface, unless many ionic groups are present and favor dissolution in the aqueous 

phase.  
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Figure 11. Molecular dynamics snapshots (side views) of peptides P1, P2, and P3 adsorbed on 

the n+ Si (100) surface in explicit solvent with buffering ions (137 mM PBS, pH 7). 

SVSVGMKPSPRP (P1) was computed to bind with an energy of −11.5 kcal/mol, 

LLADTTHHRPWT (P2) with -14.5 kcal/mol, and SPGLSLVSHMQT (P3) with -7.0 kcal/mol. 

All three peptides were experimentally identified by phage display and binding residues are 

highlighted. Reproduced with permission from ref. 
177

. 
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Figure 12. Adsorption of a graphene-binding peptide EPLQLKM (GBP) and a carbon nanotube 

binding peptide HSSYWYAFNNKT (CBP) to graphene. (a, b) Lowest-energy conformations of 

GBP and CBP obtained from MD simulations started from various positions on the surface and 

on the edge on a 5 nm by 5 nm model surface of graphene. (c) Changes in position of GBP from 

the center of mass of the graphene layer in deprotonated (GBP) and protonated state at pH ~ 3 

(P-GBP). Protonation shifts the position away from the edge toward the center. (d) AFM 

topography for P-GBP assembled on graphene/graphite at pH 3 shows extensive surface 

coverage. Reproduced with permission from ref. 
179

. 
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 3.2. Application of Simulation Tools to Understand Crystal Growth. An interesting 

application of the soft epitaxial concept on metal surfaces is the selective stabilization of crystal 

facets during nanoparticle growth from seed crystals. The stabilizing effect of phenyl rings 

towards (111) facets predicted from simulation could be applied in the laboratory synthesis of 

platinum nanocrystals from seed crystals upon reduction of hexachloroplatinic acid in the 

presence of ascorbic acid as a mild reducing agent (Figure 13).
85

 Different phenylalanine 

containing peptides were employed as shape-directing templates. About twenty neutral, 

end-protected peptide sequences with and without F showed that the presence of the phenyl ring 

anywhere in the peptide sequence is sufficient as a molecular switch to convert cuboctahedral or 

cubic nanocrystals into tetrahedra during growth from seed crystals. Resulting tetrahedra are 

bounded exclusively by (111) facets, stabilized and slowed down from further growth by the 

phenylalanine-containing ligands. This synthesis approach also functions with other ligands such 

as 2-phenyl-3-hydroxybutyric acid, and with other metals of high surface energy such as Rh 

nanocrystals.
85
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Figure 13. Application of epitaxial recognition of the phenyl ring by (111) facets in the 

shape-selective synthesis of Pt tetrahedra. (a-d)  A cuboctahedron forming peptide sequence 

produces Pt tetrahedra upon substitution of one amino acid by phenylalanine. (e-h) A cube 

forming peptide sequence yields tetrahedra upon substitution of L by F. (i-l) A synthetic ligand is 

analogously transformed from cube-directing to tetrahedron-directing. High resolution TEM 

micrographs (c,d,g,h,k,l) indicate shape changes. Adapted and reproduced with permission from 
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ref. 
85

. 

 

 The main driving force for shape control according to simulation is the binding differential of 

the peptide to (111) versus (100) surfaces rather than the absolute binding strength to a specific 

facet (Figure 14). The binding energy of all peptides, with or without F, is about equal on (111) 

facets and shows no correlation with tetrahedra yield.
85

 However, the binding energy of the 

peptides to (100) facets correlates with the yield of tetrahedra, whereby F-containing peptides 

show positive adsorption energy (S7 etc) and F-free peptides negative, attractive adsorption 

energy (S7-G, PQPN, S7-Y, SSY). Thus, the F-containing peptides leave the (100) facets more 

accessible to atom deposition and completion of (111) facets. On the contrary, the F-free peptides 

are slightly attracted to (100) surfaces (Figure 14) and then protect these facets leading to growth 

of both (100) and (111) facets. 
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Figure 14. The origin of Pt(111) specificity. (a,b) Correlation of tetrahedra yields with computed 

peptide adsorption energies to Pt(111) and (100) surfaces in solution (Ea(111) and Ea(100)), 

respectively. TH represents tetrahedra and uncertainties are <5% for all data points. (c-e, f-h) 

Binding configurations of S7 on Pt(111) and (100) surfaces (top view and side view). 

Configurations of the phenyl ring are highlighted in dashed yellow circles and also schematically 

illustrated in (e) and (h). (i-k) Binding configurations of S7-Y on Pt(100) surface (top view and 

side view). Configurations of the phenol ring are highlighted in dashed red circles and 
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schematically illustrated in (k). Black circles in (f) and (i) indicate the differences in epitaxial 

contacts between phenyl and phenol rings on Pt(100) surfaces, which account for the difference 

in their binding energy Ea(100). Most water molecules are omitted for visual clarity. Reproduced 

with permission from ref. 
85

. 

 

 The elucidation of mechanisms of shape control is also possible for other nanocrystal shapes 

such as cubes and twins.
43, 110

 Nanoparticle shape has a significant influence on adsorption of 

solvents and solutes (Figure 15).
37

 Overall geometric factors as well as factors related to the 

pattern of epitaxial sites can be distinguished. Extended surfaces provide many metal atoms in 

the vicinity of a molecule or polymer to interact with and support strong epitaxial adsorption. 

Stepped surfaces contain inner edges and outer edges. Inner edges exhibit the highest number of 

metal atoms to interact with and lead to strongest adsorption, which is reflected in a strongly 

negative surface potential. These sites are easily accessible by small solvent molecules, however, 

they may not be sterically accessible by larger molecules. Outer edges are least attractive sites 

for both peptides and solvent molecules. These differences in local dynamics determine the 

outcome of the competition between solvent and solute molecules for adsorption, for example, 

faster solvent motion near the corners of nanocubes can enhance adsorption of less mobile 

peptides (Figure 16). Therefore, adsorption is not only a facet-specific process but also depends 

on the local position of the solute on a finite-size facet. Finally, small nanoparticles with 

near-spherical geometry exhibit diminished adsorption of solvent and peptides, including less 

binding contrast among different peptides, as well as a reduced surface potential (Figure 15). 

Specific data have been reported by simulation
37

 and experiment
161, 165

 in support of these 

observations. 
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Figure 15. Dependence of the adsorption of atoms and molecules on the shape of a metal 

nanostructure. The strength of adsorption of both solvents and solutes depends significantly on 

the local surface topology. (a) An atom (pink sphere) or a molecule as a collection of atoms is 

more attracted to even surfaces and inner edges, and less attracted to small near-spherical 

surfaces. (b) The surface potential (= attraction of a carbon atom at 3 Å distance) quantifies these 

preferences and adds in details according to the pattern of epitaxial sites. Strength of adsorption 

and ligand selectivity are weakest for small nanoparticles. Reproduced with permission from ref. 

37
. 

 

 A well-studied example is the adsorption of peptide T7 (Acyl-TLTTLTN-Amide) on platinum 

nanocubes. This peptide was initially selected as a strong binder to cubic nanocrystals by phage 

display (Figure 16).
109

 Simulations show that peptide T7 significantly adsorbs to the cubic 

nanocrystals near the edges even though it is not attracted to extended (100) surfaces.
43

 The 
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reason for such specific, spatially localized binding preferences is the spatially differential 

attraction of both water molecules and peptide that compete with each other (Figure 16a,b). 

Water molecules are tighter bound at the center of the crystal facets than at the edges, resulting in 

preferential peptide binding near the edges, supported by conformational matching of polarizable 

atoms in the peptide to (100) epitaxial sites (Figure 16e,f). It is not possible, however, for the 

peptide to displace flexible water molecules at the center of the facets or on extended facets 

(Figure 16c, d). 

 

 

Figure 16. Local differences in the adsorption strength and mobility of water molecules on a 

cubic platinum nanocrystal of 2.35 nm side length and implications for the adsorption of peptide 

T7. (a) Chemically distinct surface sites are identified by numerical labels. The average residence 

time describes how strongly a water molecule is adsorbed and how frequently it moves to a 
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neighbor site or away into solution. Average residence times are more than two orders of 

magnitude higher at the center sites than at the corner sites. Adsorption to extended (100) 

surfaces is comparable to center portions of (100) facets. (b) Schematic diagram of the spatially 

resolved binding energy and binding free energy for a fully extended peptide T7 and for 17 water 

molecules that compete for adsorption. The peptide is weaker bound compared to water in the 

center, resulting in desorption, and stronger bound than water near the edges and corners, 

resulting in adsorption at high dilution (energies are approximate). (c-h) Differences in average 

binding conformation of a single peptide T7 on extended Pt (100) surfaces, cubes, and 

cuboctahedra according to molecular dynamics simulation. (c,d) The peptide is not attracted to 

extended surfaces. (e,f) The peptide adsorbs near the edges of a cube where water molecules are 

more mobile and shows an exceptional fit to epitaxial sites. (g,h) Attraction increases on a 

cuboctahedron due to the presence of both (111) and (100) facets. The facet boundary is 

indicated by a dashed black line (Reproduced with permission from ref. 
43

). 

 

 Changes in peptide concentration also have profound impact on attraction versus repulsion 

on the surface. Typically, several peptides cover the metal surfaces in experiment and reported 

adsorption energies are on the order of -5 to -10 kcal/mol near monolayer coverage.
81, 157, 186

 

Computed adsorption energies in simulations are found in the same range at comparable surface 

coverage.
43

 The selective synthesis of Pt cubes in the presence of peptide T7 and analysis by 

high-resolution transmission electron microscopy (HRTEM) further demonstrated that only 

intermediate T7 concentration at about 50% surface coverage lead to a high yield of nanocubes. 

Large-scale MD simulations have monitored associated changes in facet coverage and adsorption 

energies of T7 peptides on cuboctahedral seed crystals, which are consistent with 
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concentration-dependent changes in shape, yield, and size of the nanocrystals (Figure 17). The 

growth mechanism is thus consistent with adatom deposition, whereby preferential coverage of 

(100) facets over (111) facets at intermediate concentration promotes the formation of cubes 

through faster growth and disappearance of (111) facets.  

 

 

Figure 17. Correlation of the yield of cubic nanocrystals as a function of T7 concentration in 

experiment with the binding preference toward (100) facets as a function of surface coverage in 

simulation. (a) The preference in (100) facet coverage correlates with the observed laboratory 

yield of nanocubes. (b, c) Representative snapshots show the binding configuration and relative 

coverage of (100) and (111) facets on cuboctahedral seed crystals for intermediate and high 

concentration of peptide T7. Adapted from ref. 
43

 with permission. 

 

 MD simulations have also provided insight into the growth mechanism of metal nanorods in 

the presence of surfactants such as cetyltrimethylammonium bromide (CTAB) (Figure 18).
86

 

CTAB was found to be attracted to (111), (100), and (110) facets of gold and to form ion 

channels on all surfaces. Thereby, the ion channels on the (111) facets are wider and enable 

transport of more precursor AuCl2
˗
 ions to the gold surface. These differences correlate with the 
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preferred growth of nanorods in the (111) direction by adatom deposition as observed in 

experiment.
187

 

 When the solvent is changed to imidazolium based ionic liquids without any added 

surfactants, the binding strength of the solvent to different facets was found to be nearly the 

same.
164

 Facet preferences of gold precursors during growth are then lost and lead to isotropic 

growth by adatom deposition, supported by experiment.
188

 Facet-specific gradients in adsorption 

can be introduced by the addition of shape directing agents such as Ag
+
 ions during synthesis that 

were shown to deposit as Ag metal preferentially to (110) and (100) facets according to 

simulation and underpotential deposition.
164

 This process explains anisotropic growth in the (111) 

direction by adatom deposition as observed in experiment.
189
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Figure 18. Snapshot from an MD simulation of an Au (111) surface with CTAB in water 

periodic in the horizontal x direction. A water-ion channel between the micelles allows access of 

AuCl2
–
 ions to the surface. The inter-micelle channels are smaller on the (100) and (110) surfaces 

and explain the preferred growth of gold nanorods in the (111) direction. Reproduced with 

permission from ref. 
86

. 

 

 Growth mechanisms can also involve cluster attachment to form twin crystals rather than 

single crystals (Figure 19).
110, 190

 This pathway may be kinetically favored when the supply of 

adatoms is short. The preferred pathway depends on the reaction kinetics that is influenced by 
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the chosen concentration of ligands, precursors, as well as their interactions. Simulation of the 

kinetics in full chemical detail remains a challenge due to the long time scales involved in 

experiments. However, it is feasible to probe precursor-ligand interactions and 

nanocluster-ligand interactions at any stage along the growth process to estimate activation 

energies, facet coverage, growth directions, and approximate yield.
110

 

  

 

Figure 19. Growth pathways for metal nanocrystals mediated by peptides: cluster attachment 

(Path 1) or adatom growth (Path 2). Cluster attachment is more likely when the precursor-ligand 

complex is specifically stabilized, such as by interactions between histidine and Pt
2+

 ions, that lead 

to an increase in activation barrier, smaller clusters, and twin crystal formation (Path 1). Adatom 

deposition is faster in the absence of significant precursor stabilization, which leads to larger 

clusters, and single crystal formation (Path 2). Reproduced with permission from ref. 
110

. 

 

 3.3. Applications to Catalysis and Sensors. Metallic and alloy nanostructures have great 

promise as catalysts in electrode materials, biomass conversion, and other chemical reactions.
157, 

191-195
 Noble metal nanoparticles can thereby take on different sizes and shapes. Simulations have 

shown that near-spherical nanoparticles are characterized by the presence of different facets, 

including (111), (100), and (110) (Figure 20).
81, 111, 140, 157

 Thermodynamically stable 

Reaction coordinate

Twin

Single 

crystal
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nanoparticles in the size range of 1.5 to 4 nm display these facets in a ratio of about 60:20:20 

whereby the amount of (100) versus (110) facets varies somewhat as a function of particle 

size.
140

 

 Obtaining insight into the exact atomic structure of nanoparticles is experimentally 

challenging. Equally sloped electron tomography
71, 196-198

 or high energy x-ray diffraction
81, 199

 

can provide detailed information to build realistic molecular models. Electron tomography 

directly supplies most atomic positions while data from high energy x-ray diffraction and 

corresponding pair distribution functions (PDFs) require further processing. Knowing the PDF 

and total number of atoms in the particle, it is then possible to propose hypothetical nanoparticle 

structures and test the degree of fit of the computed PDF with the PDF from experiment. Reverse 

Monte Carlo simulations can identify atomistic models with the best fit, followed by relaxation 

of the structure by MD simulation.
81

 The atomic configurations can serve as a basis to compute 

reaction rates in comparison to experimental measurements of the turnover frequency (TOF), 

which is briefly illustrated for a series of peptide-covered Pd nanoparticles in Stille 

carbon-carbon coupling reactions (Figure 21).
200-202

 

 In this reaction, experiment and quantum mechanical data uncover that the rate determining 

step is the abstraction of Pd surface atoms by an aryl halide (Ar-X) from the peptide-modified 

surface (Figure 21a,b).
140, 202-204

 Reactive molecular dynamics simulations with 

CHARMM-INTERFACE then allow the quantitative analysis of the activation energies of all 

available surface atoms, which are proportional to the abstraction energy (Figure 21c,d). The 

relative reaction rate of peptide-modified nanoparticles in solution was thus calculated as a 

Boltzmann-weighted average over the computed abstraction energies of all surface atoms for 

each nanoparticle (Figure 21d). The computed reaction rates are in good agreement with TOF 
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measurements for the individual nanoparticles and enable rate predictions for other hypothetical 

particle shapes to guide experiment.
81

 While catalysts for Stille coupling reactions are used in the 

synthesis of conjugated polymers for displays, similar computational-experimental approaches 

can be developed to understand the activity of nanometal and nanoalloy catalysts for other 

reactions. The combination of experiment, ab-initio methods, and reactive MD allows to reach 

the necessary length scale of 1 to 100 nm under realistic solution conditions. 

 

 

Figure 20. Models of stable, near-spherical Pd nanoparticles as a function of particle size. 

Numerical labels and increasingly darker color on the atoms indicate higher atom abstraction 

energies that play a role in surface reconstruction and surface reactivity. Reproduced with 

permission from ref. 
140

. 
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Figure 21. Catalytic performance of peptide-derived Pd nanoparticles in C-C Stille coupling 

reactions in experiment and in reactive MD simulation. (a) Reaction mechanism. (b) For 

nanoparticles derived using the peptides Pd4, A6, A11, etc, the turnover frequency in experiment 

(TOF) correlates with the computed atom abstraction rate. (c) Illustration of the abstraction 

energies of individual atoms of the Pd4 nanoparticle (peptide only shown on the outside for 

clarity). Pd atoms of lowest abstraction energy and high activity are shown in lighter color. (d) 

Calculation of the relative reaction rate from computed atom abstraction energies. Adapted with 

permission from refs. 
202

 and 
81

. 

 

 The possibility to modulate electrical conductivity of metal nanostructures and graphene 

upon specific binding of biological molecules and analytes allows interesting applications in 
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biosensors, which operate in the form of small transistors.
205-207

 A combination of molecular 

dynamics and DFT methods can be employed to estimate analyte-induced changes in band 

structure and electrical conductivity.
207

 The reliability is currently still low, however, the 

prospects of valuable predictions could advance methods development to reach higher accuracy. 

Sensors have also been developed on the basis of surface plasmon resonance (SPR) and surface 

enhanced Raman spectroscopy (SERS) of metal nanostructures for high throughput detection of 

a wide range of biological molecules and human performance analytes.
208

 Specifically decorated 

metal nanoparticles have also been developed and tested for cell targeting, imaging, and 

therapeutic purposes.
209-211

 A range of challenges remain to be overcome in the assembly of 

metal and semimetal electronic circuits in nanometer precision.
167, 212

 The examples illustrate a 

range of applications where understanding and prediction of interfacial recognition on metal and 

semimetal nanostructures aided by molecular simulation could improve materials performance. 

 Table 2 summarizes current simulation capabilities to design ligands and nanoparticle shape 

at the 1 to 100 nm scale for various applications. Atomistic molecular simulations can 

accomplish (1) the analysis of ligand selectivity to various (h k l) facets and full-size 

nanoparticles, (2) the analysis of preferences in coverage of facets and of the spatial location of 

ligands, (3) the computation of binding free energies, (4) the analysis of the concentration 

dependence of the above properties, (5) dynamic monitoring of ligand assembly on nanoparticle 

surfaces, (6) predictions of catalytic reactivity with appropriate reactive extensions, and (7) the 

analysis of changes in conductivity using QM/MD approaches. The accuracy is often quantitative 

and comparisons to a range of laboratory observations can be made, including phage display, 

nanocrystal shape and yield in HRTEM, nanocrystal size and ligand binding constants, EXAFS 

data on coordination numbers, monitoring of molecular assembly using quartz crystal 
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microbalances (QCM), in-situ techniques, HE-XRD, measurements of turnover frequencies, and 

electrical conductivity. 

 

Table 2. Emerging capabilities of atomistic simulations to predict ligand binding to metal 

nanocrystals, rationalize growth preferences in aqueous solution, reactivity, and conductivity at 

the 1 nm to 100 nm scale (refs.
11, 37, 58, 69, 81, 83, 87, 111, 140, 157, 164, 207

). Adapted with permission from 

ref. 
43

. 

Calculated property Relation to experiment 

Selectivity of peptides to extended and 

finite-size nanocrystal (h k l) facets  

 

Identification of facet specific peptides 

using phage display  

Facet coverage and preferences in facet 

coverage on nanocrystals 

 

Shape and yield of nanocrystals 

(HRTEM) 

Binding free energies of peptides 

 

Binding constants and size of 

nanocrystals  

  

Spatial location of peptides on (h k l) facets 

and average distance of residues from the 

surface  

 

Atomic-level information, EXAFS, 

IR/Raman spectroscopy 

Above properties as a function of the number 

of peptides on the surface 

Above properties as a function of 

peptide concentration and surface 

coverage 

 

Spatially and temporally resolved trends in 

peptide assembly on nanocrystal surfaces 

Atomic-level information, QCM, 

in-situ measurements 

  

Reaction rate in rate-determining step 

(coverage of active sites, atom abstraction, etc) 

Catalyst turnover frequency 

  

Estimates of band structure and conductivity 

using combined QM/MD approaches 

Conductivity measurements, sensor 

response to analytes 

 

Page 54 of 116Chemical Society Reviews



55 of 116  

 

4. Recognition of Biomolecules and Ligands on Oxide, Phosphate, Carbonate, Sulfide, and 

Other Inorganic Surfaces 

The following section focuses on insight into biological interfaces of silica, phosphates (apatites), 

carbonates, sulfides, and other heteroatomic inorganic nanostructures. Among these materials are 

abundant biominerals such as silica, apatite, and calcite that are produced in marine organisms 

and humans.
10, 112, 213-218

 Silica is one of the most abundant oxides on earth and finds wide 

application as a drug carrier,
7, 219-221

 catalyst support, 
222-226

 filler, and rheology modifier in 

polymer composites and hydrogels. 
227-229

 Apatite-collagen matrices constitute bone and teeth,
215, 

230-235
 and carbonate nanocrystals form the “bricks” in nacre.

236-240
 Many other oxides such as 

ZnO, TiO2, and quantum dots have been employed in functional materials, and organic-inorganic 

recognition is an important factor in the performance.
241-245

 

4.1. Molecular Mechanisms. Adsorption on oxide surfaces such as silica or apatites is 

governed by a different mechanism in comparison to metals.
36

 The surface energy is almost an 

order of magnitude lower (Table 1) and the surface structure, for the example of silica, is 

dominated by a locally uneven pattern of silanol groups (≡Si-OH) and ionized siloxide groups 

(≡Si-O
−
 Na

+
). As a consequence, soft epitaxy is an unlikely recognition mechanism. Silica and 

many other oxide minerals are furthermore insulators rather than conductors and possess no 

polarizable electron gas of valence electrons as found in metals. Therefore, induced charges do 

not occur and make no contribution to adsorption. 

 The reduced surface energy in comparison to metallic substrates leads to much weaker 

adsorption of the first molecular layer. For example, individual 12-mer peptides binding 

specifically to silica surfaces in solution possess binding energies of 0 to -10 kcal/mol while 
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12-mer peptides binding specifically to noble metal surfaces possess binding energies of 0 to 

-100 kcal/mol according to adsorption isotherms and calculations.
36, 37, 58, 217, 246

 Oxide surfaces 

are also more polar, reactive, and pH sensitive. As a result, attraction of peptides and synthetic 

polymers is strongly dependent on conditions such as surface chemistry, pH, ionic strength, and 

particle surface features including porosity. 

Silica surfaces are a representative example for the variety in surface chemistry and the 

broad range of oxide chemistry in general (Figure 22).
247

 Phage display techniques from one 

laboratory to another have shown less than 20% in sequence similarity among peptides identified 

as strong binders under comparable pH conditions, owed to the differences in Q
2
, Q

3
, and Q

4
 

environments as well as in porosity of the silica surfaces as a function of particle size and 

synthesis method.
36, 248

 Thereby, Q
2
 surfaces correspond to surface termination with two silanol 

groups per Si atom [(Si–O–)2Si(–OH)2], Q
3
 surfaces correspond to surface termination with one 

silanol group per Si atom [(Si–O–)3Si(–OH)], and Q
4
 surfaces correspond to surface termination 

with zero silanol groups per Si atom [(Si–O–)4Si] (Figure 23).
120

 The total density of SiO(H,M) 

groups per nm
2
 (M=Na, K, ..) varies between 0 and 9.4 per nm

2
, depending on cleavage plane, 

synthesis method, and thermal treatment.
120, 249-252

 Q
3
 silica surfaces with 4.7 SiO(H,M) groups 

per nm
2
 are most common in glasses and nanoparticles at room temperature. At the same time, 

the amount of ionized sodium siloxide groups at pH 7.5 may still vary between 0.2 and 1.0 per 

nm
2
. The variation of the density of ionic groups across all conditions of surface chemistry and 

pH is as much as between 0.0 and 2.0 per nm
2
 (Figure 22).

78
 The variability by multiples causes 

different types of interactions to govern specific adhesion of surfactants and biomolecules, as can 

be seen also from a top view onto representative silica surfaces (Figure 23). Simulations have 

only recently begun to take surface ionization into account while prior models typically assumed 
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neutral, or even non-stoichiometric silica surfaces covered by SiOH groups.
22, 45, 89, 93, 94, 127, 253-261

 

These models have limited applicability, and the inclusion of realistic surface chemistry opens up 

new opportunities for reliable computational predictions. A substantial amount of experimental 

literature since the 1950s has described the amount of ionized groups as a function of surface 

type, pH, ionic strength, and type of cation (M) using potentiometric titration and zeta potential 

measurements,
120, 249-252, 262-268

 providing valuable resources for quantitative modeling and 

simulation.
36, 78

 

   

 

Figure 22. Schematic of the surface structure of silica nanoparticles that includes silanol groups 

Total SiO(H, Na) density:

0 to 9.4 per nm2

SiO- Na+ density:

0 to 2 per nm2 

Si–O– ∙∙∙ Na+

vs

Si–OH

Si O H

Si O- Na+

Page 57 of 116 Chemical Society Reviews



58 of 116  

(SiOH) and a fraction of ionized groups such as sodium siloxide (SiONa). The presence of 

cations that can partly dissociate from the surface accounts for the observation of zeta potentials 

in the range of 0 to -40 mV. The typical area density of silanol groups and ionized groups per 

unit area is indicated. Adapted and reproduced with permission from ref. 
36

. 

 

 

Figure 23. Silica model surfaces for common surface chemistry as a function of pH and particle 

size in top view. Accordingly, water, organic, and biological molecules encounter different cation 

densities and surface environments leading to highly tunable adsorption. (a-d) Q
3
 silica surfaces 

with 4.7 SiO(H, Na) groups per nm
2
 represent typical silica glasses and particles of 50-100 nm 

size from Stober sythesis. Different amounts of SiO
-
Na

+
 groups represent pH values of 3, 5, 7, 

and 9. (e) A Q
2
/Q

3
 silica surface with 6.5 SiO(H, Na) groups per nm

2
 and 20% ionization 

Figure 2

b

Q3, 0% Na+
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represents larger silica nanoparticles >100 nm size at pH 7. High area density of both SiOH and 

of SiO
-
Na

+
 groups results in stronger adsorption of most peptides by ion pairing and hydrogen 

bonds. (f) Approximate correspondence of the models to pH and particle size near physiological 

ionic strength according to details in ref. 
78

 and in ref. 
82

 Reproduced with permission from ref. 

82
. 

 

The adsorption of peptides is accordingly determined by ion pairing, hydrogen bonds, 

hydrophobic interaction, and changes in conformation (Figures 24 and 25). These contributions 

to binding were identified by molecular simulation and comparisons to zeta potential 

measurements, IR and NMR spectroscopy, as well as adsorption isotherms for a series of 

different peptides.
36, 78, 82, 148

 The strongest adsorbing amino acids on negatively charged silica 

surfaces are protonated N termini, lysine (K), and arginine (R) residues, which neutralize (or 

even reverse) the zeta potential (Figure 24a and 25a). Molecular simulations with the 

PCFF-INTERFACE and CHARMM-INTERFACE force field demonstrated that ammonium 

groups closely approach the silica surface and computed adsorption energies reach maximum 

negative values of -7 kcal/mol for 7-mer peptides and 12-mer peptides containing K and R.
82

 Ion 

pairing is the dominant mechanism when the surface charge of silica is significant, i.e., at pH 

ranges near seven and above. 

 At the same time, interfacial hydrogen bonds are possible. These involve oxygen and 

hydrogen atoms in silanol groups, siloxide ions, and lattice oxygen atoms on the silica surface in 

contact with alcohol groups (T, S), backbone amide groups, and aromatic heterocycles (H, W) in 

peptides (Figure 24b). Hydrogen bonds play a dominant role near the point of zero charge of 

silica (~pH 3) for all peptides. Peptides that contain suitable groups and possess no cationic 
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groups can be primarily attracted to the silica surface though hydrogen bonds at any pH. In 

addition, it has been observed in simulations and in adsorption isotherms that peptides containing 

hydrophobic groups are also attracted to silica. Residues such as F, W, L, I, V can be effectively 

attracted to silica surfaces at lower pH, as well as to silica surfaces of lower area density of 

silanol groups (Q
3
/Q

4
). These hydrophobic interactions are the result of depletion forces, i.e., 

adsorption on the surface prevents the disruption of hydrogen bonds in the aqueous phase that 

would occur when the hydrophobic residues remain immersed.
82, 248

 Thus, there is no intrinsic 

attraction of these groups to silica, and the driving force is rather the exclusion from water on 

less ionized silica surfaces.
82

 On increasingly ionized silica substrates, hydrophobic groups do 

not approach the surface because they would disrupt the hydration shells of siloxide ions and of 

cations close to the surface. 

 Another contribution to adsorption arises from conformation preferences of the peptides 

(Figures 24c and 25a).
36

 Conformation effects are particularly important for longer chain 

molecules and play a role on all surfaces, metals or oxides alike. Yet, conformation effects play a 

proportionally bigger role on oxide surfaces compared to metals as binding energies tend to be of 

smaller negative values (less attractive), giving more importance to entropic contributions. 

Simulation results have indicated the dynamic nature of the interfaces in which the peptides 

move on and off the silica surface, effectively spending a certain fraction of time in close contact 

with the surface (< 3Å). In case of ion pair formation, the time in close contact can be over 90% 

although it may only involve the N terminus or the lysine side chain. Other parts of the peptide 

are often quite detached from the surface for most of the time. A dynamic average that represents 

the superposition of many thousand equilibrium structures is shown in Figure 25b for the peptide 

Pep1, which binds to particles of 82 nm size from Stober synthesis in experiment.
36

 In the 
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absence of ion pairing, the time in close contact with the surface by hydrogen bonds is only in 

the range 30-70% and may often involve hydrophobic interactions as well. Residue-specific 

metrics can be derived from molecular simulation and the difference to isotropic orientation of 

the peptides in solution can be clearly seen (Figure 25b).
36, 82

 

  

 

Figure 24. Main contributions to adsorption of peptides on silica surfaces. (a) Ion pairing and ion 

exchange, (b) hydrogen bonds, (c) conformation effects. Conformation analysis for three mutant 

12-peptides of the native peptide Pep1 on silica surfaces in molecular simulation shows that 

individual residues such as H6 may cause conformation strain that is relieved upon mutation to 

A6 in Pep1_6. Other residues such as H11 can be essential for binding through protonation and 

hydrogen bonds, which is diminished upon mutation to A11 in Pep1_11. Attraction of 
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hydrophobic groups to the surface also contributes to adsorption at low surface ionization by 

fostering a continuous water structure. Adapted and reproduced with permission from ref. 
36

. 

 

 Specific mutations in a peptide can also cause significant changes in conformation and 

binding. Such effects were investigated in detail for the mutation of H to A in the 6 and 11 

positions in Pep1 (KSLSRHDHIHHH).
36

 The native peptide exhibits a bent conformation related 

to a certain stiffness in the middle of the backbone. In the mutation Pep1_6, in which H6 is 

replaced by A6, the stiffness is reduced and the binding strength increases in simulation and in 

adsorption isotherms due to more hydrogen bonds with the surface throughout the backbone 

(Figure 24c). In the mutation Pep1_11, by replacement of H11 by A11, the higher stiffness of 

Pep1 is retained and the possibility of hydrogen bonding of H11 to the silica surface is 

eliminated, as well as the opportunity of H11 to accept protons and to form ion pairs with 

siloxide groups. Binding of Pep1_11 is then weaker according to both measurement and 

molecular dynamics simulation. 
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Figure 25. Representative snapshots and superposition of peptides adsorbed on silica surfaces 

and in solution. (a) Peptides pep1 and pep4 adsorbed on Q
3
 silica surfaces (4.7 SiO,Na groups 

per nm
2
) as well as on a Q

2
 silica surface [9.4 Si(O,Na) groups per nm

2
] with high ionization. 

The position of N and C termini is indicated. (b) Superposition of over 10000 peptide 

conformations during 20 ns simulation time in equilibrium on the Q
3
 silica surface. The color 

code indicates the spatial distribution of amino acid residues, translated laterally to the same 

coordinate of K1. (c) Superposition of peptide structures in solution showing the isotropic 

orientation. Adapted from ref. 
36

. 
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 Using pH resolved surface models for silica on the basis of available experimental data 

(Figure 23),
78

 it has become possible to predict peptide adsorption very specifically as a function 

of surface structure, peptide sequence, and pH value (Figure 26).
82

 Quantitative predictions of 

binding constants for silica-organic interfaces hold tremendous promise for the rational design of 

new catalyst supports, drug delivery vehicles, porous glasses for gas separations, biomarkers, 

mineralization studies, organic coatings, and nanocomposites with tailored properties.
 

 

 

 

 

Figure 26. Peptide adsorption on silica nanoparticles of average diameter 82 nm with 4.7 silanol 

groups per nm
2 

as a function of pH by measurement and simulation. (a) Adsorbed amount of 

three peptides of different charge as a function of pH at 1 mM initial concentration (from ref.
 248

). 

(b) Percentage of time the same peptides spend in close contact with Q
3
 silica surfaces of 

different ionization according to simulation (<3 Å). Different pH states of the surface are 
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embodied in the model by differences in silanol ionization. Reproduced with permission from ref. 

82
. 

 

Ab-initio studies have also been employed to study the binding of drug molecules to silica 

surfaces, although yet without solvent (Figure 27).
253, 269

 Density functional theory (DFT) 

methods are often limited to studies in vacuum and mostly suited to explore reactive processes 

on a local scale (see section 2). The inclusion of realistic surface geometries and solution 

conditions for routine computational screening of binding and release of surface bound 

molecules is difficult and computationally very expensive. Problems to reproduce London 

dispersion forces have also been noted.
253

 The INTERFACE force field overcomes such 

limitations through reproduction of surface and interfacial energies in <5% deviation from 

experiment, down from common errors exceeding 50% in DFT methods and in incompletely 

validated force fields.
78

 

 Titania surfaces exhibit ionization of superficial Ti–OH groups similar to silica and have 

shown closely related mechanisms of molecular recognition and binding.
45, 270-273

 Steered MD 

simulations indicated binding free energies of the peptide RKLPDA on a negatively charged 

titania surface (pH ~ 7) to be on the order of -40 kJ/mol (-9.5 kcal/mol) (Figure 28).
45

 The titania 

surface model assumes effectively 0.76 negatively charged TiO
–
 groups per nm

2
 (-0.123 C/m

2
) 

and the dominant binding mechanism is then ion pairing of the TiO
–
 groups with the positively 

charged R and K residues in the peptide (Figure 24a). The importance of the cationic R and K 

residues in the RKLPDA peptide for strong binding was also shown via AFM measurements in 

comparison to weaker binding of RKLPDA peptide mutants where these residues were replaced 

by other amino acids.
274, 275

 The binding free energy of peptide RKLPDA to titania is similar to 
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that of comparable silica-binding cationic peptides at pH ~ 7, for example, a binding free energy 

of -6 kcal/mol was reported for KPLGWSG on silica (Figure 26).
82

 The point of zero charge is 

pH ~ 5.5 for titania compared to pH ~ 3 for silica, rendering the titania surface somewhat less 

acidic than typical Q
3
 silica surfaces. Comprehensive pH resolved surface models for titania 

surfaces have not yet become available.  

 

 

Figure 27. 3D top views of space filling models of the adsorption geometries of aspirin and 

ibuprofen on the 4.5 OH/nm
2
 silica surface (Q

3
 surface without ionization) using DFT 

calculations with PBE and PBE-D functionals in vacuum. Borders of the unit cell are shown in 

light blue. Reproduced with permission from ref. 
253

. 
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Figure 28. Interactions of the peptide RKLPDA with a titania surface terminated by Ti-OH 

groups and Ti-O
–
 groups near pH 7 in molecular dynamics simulations. (a) Free energy profile of 

the RKLPDA peptide on an oxidized titanium surface obtained by metadynamics and replica 

exchange with solution tempering (REST). (b, c) Typical adsorbed peptide structures include flat 

as well as upright conformation with R and K residues bound to the surface. Reproduced with 

permission from ref. 
45

. 

 

 Apatite minerals, common in bone and teeth, have similarly adaptive surface properties.
6, 218, 

276
 The surface is pH sensitive and superficial phosphate ions are protonated between 

monohydrogen phosphate and dihydrogen phosphate under physiological conditions (Figure 

29).
277

 These important aspects have only been recently taken into account in molecular 

simulations so that reliable simulations of specific binding of peptides and polymers are just 
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about to emerge.
11, 148, 277

 Prior simulation studies often assume bare phosphate surfaces 

corresponding to pH values above 14 that lead to immediate cell death.
278-280

 Carefully designed 

surface models and validated force fields allow specific and accurate analyses of the interfacial 

properties of apatites as a function of pH, including the reproduction of hydration energies and 

peptide specificity. The INTERFACE force field includes a surface model database with pH 

resolved surface models that can be used and further customized for predictive simulations.
11

 The 

game-changing impact of solution conditions and their representation in models towards 

computed surface energies, hydration energies, and specific peptide recognition is illustrated in 

Figure 30.
277

 The CHARMM-INTERFACE force field and the PCFF-INTERFACE force field 

reproduce the cleavage energy of neat hydroxyapatite, which is approximately 1100 mJ/m
2
 for 

the common prismatic (010} crystal plane.
122

 Upon protonation, the agglomeration energy 

decreases to 640 and 320 mJ/m
2
 at pH 10 and pH 5, respectively, related to leaching of calcium 

hydroxide and a resulting lower cation density on the hydrogenphosphate and dihydrogen 

phosphate terminated surface.
281-285

 Similarly, the immersion energy in water depends strongly 

on pH. Neat apatite surfaces react immediately with water, and the hydration energies at pH 10 

and pH 5 are about 800 and 620 mJ/m
2
, respectively (Figure 30). The values agree with 

hydration energies measured in experiment in the range of 600 to 700 mJ/m
2
.
286, 287

 First studies 

of the binding of peptides found adsorption responses that are similarly sensitive to the surface 

environment as seen for silica. The peptide SVSVGGK, selected by phage display,
232

 adsorbs 

mainly through ionic groups at higher pH and via different, less ionic groups (S, V) at lower pH 

(Figure 30). The computed binding energy of -5 and -9 kcal/mol, respectively, is in very good 

agreement with the experimental binding free energy of -6 kcal/mol (KD = 5.4 ∙ 10
-5

 M) on a 

polycrystalline HAP substrate.
232

 Simulations using appropriate surface models, which may 
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eventually be integrated into databases, and force fields facilitate quantitative predictions and 

easy access to length scales up to 100 nm at a million times lower cost than ab-initio and DFT 

approaches. Future applications of such techniques include the analysis of bone and dentin 

mineralization in extracellular environments, of the action of drug molecules against 

osteoporosis, and of the formation of atherosclerotic deposits in comparison with laboratory and 

clinical tests. Arterial deposits also include calcium oxalates which can be modeled using similar 

approaches.
103, 237, 288

 

 

 

Figure 29.  Termination of hydroxyapatite surfaces at different pH values (adapted with 

permission from ref. 
277

). 
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Figure 30. Major differences in surface properties of hydroxyapatite as a function of pH 

according to simulation with the CHARMM-INTERFACE force field (numbers in black) and 

experiment (numbers in blue). The cleavage energy is drastically reduced towards lower pH 

values, and also the immersion energy in water decreases. Simulations also show a reversal in 

binding mechanism of peptides to apatite surfaces. At pH 10, adsorption of the peptide 

SVSVGGK on the (010} prismatic plane is mediated by ionic groups and comparatively weak. 

At pH 5, the polar and hydrophobic motif SVSV is more attracted and the peptide binds notably 

stronger. 

 

Several computational and experimental studies have been dedicated to calcium carbonate 

in aqueous solution, 
289, 290

 interactions with organic molecules,
104

 self-assembled monolayers,
238, 

291, 292
 as well as polyelectrolytes.
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10.33
125

 and indicate that, under mineralization conditions of pH 8 to 10, the majority of 

carbonic species in solution are hydrogen carbonate ions (HCO3
-
) and only small amounts of 

carbonate ions (CO3
2-

).
293

 However, similar to simulation studies of apatites, prior computations 

have almost exclusively focused on carbonate terminated surfaces (CO3
2-

)
104, 294, 295

 which are 

only likely to be present at pH values higher than 11. Suitable pH resolved atomistic surface 

models for calcite still need to be developed and validated to achieve mechanistic understanding 

and predictions of biological assembly in consistency with experiment. At typical pH values 

between 8 and 10 near the point of zero charge, the surfaces of the CaCO3 polymorphs calcite, 

aragonite, and vaterite are likely covered with hydrogen carbonate while the interior mineral core 

consists of calcium carbonate. Realistic surface models may involve, for example, 90/10 

termination by HCO3
-
 and CO3

2-
 at pH ~9, 50/50 termination by HCO3

-
 and CO3

2-
 at pH ~10.5, 

and 10/90 termination with HCO3
-
 and CO3

2-
 at pH ~11.5. Mineralization near pH 9 likely 

involves the crystallization of hydrogen carbonate into carbonate under consumption of 

hydroxide ions and formation of water; or disproportionation of HCO3
-
 ions into CO3

2-
 and 

H2CO3. Extensive experimental studies have described calcite nucleation and growth
41, 236, 293, 

296-298
 and provide valuable input for realistic simulations. 

Adsorption of organic molecules has also been studied on several other nanostructures using 

quantum mechanical methods, including energy minimization and ab-initio MD. An example is 

the adsorption of catechol (o-dihydroxybenzene) on SiC, GaN, ZnO, CdS, and CdSe surfaces 

(Figure 31).
242, 299

 Validated force fields are not yet available for many of these compounds so 

that quantum mechanical calculations of adsorption in the gas phase have been reported as a first 

approximation. Further force field developments will eventually allow insight into assembly at 

length scales up to 100 nm under realistic solution conditions. 
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Figure 31. Adsorption configurations of catechol molecules on wurtzite (101̅0) surfaces in 

vacuum by DFT (PBE-GGA): (a) SiC, (b) GaN, (c) ZnO, (d) InN, (e) CdS, and (f) CdSe. Dashed 

lines identify molecule−substrate H bonds. Reproduced with permission from ref. 
299

. 

 

 4.2. Applications to Understand the Formation of Biominerals, Drug Delivery, and 

Processes in Solar Devices. The formation of silica, phosphates, carbonates, and other minerals 

from soluble precursors is a complex process that involves specific chemistry, 

protonation-deprotonation equilibria, and hydration-dehydration equilibria. The examples of 

mineralization in nature such as diatoms, mollusks, nacre, bone, teeth, and marine calcite 

skeletons are fascinating and still incompletely understood today.
112, 114, 217, 236, 300, 301

 Therefore, 

modifications of the mechanisms to customize such materials is also a major challenge. To-date, 

template approaches for mineral synthesis starting with pre-assembled surfactants have been 
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successfully used in laboratory synthesis.
302-305

 A selection of promising experimental findings 

and first computational studies related to mineral formation are presented in the following to 

illustrate opportunities for computational studies to elucidate mechanistic understanding and 

accelerate the development of functional materials. 

 Computational studies of interactions between ionic apatite precursors and bone sialoprotein 

have been reported (Figure 32).
47

 Bone sialoprotein is a highly phosphorylated, acidic, 

noncollagenous protein in the bone matrix and considered to be a nucleator of hydroxyapatite 

(Figures 29 and 30). The interaction of a phosphorylated, acidic, 10 amino-acid model peptide 

sequence with Ca
2+

 ions and hydrogenphosphate ions was investigated by molecular dynamics 

simulation to understand the distribution and development of potential crystal nuclei in solution. 

The results show that the α-helical and random coil conformations of the peptide support the 

formation of a Ca
2+

 equilateral triangle around the surface of the peptide, which resembles the 

distribution of calcium ions on the (001) face of hydroxyapatite crystals. However, the formation 

of a stable nucleating template could not be consistently observed. The bone sialoprotein 

nucleating motif may therefore be more likely to help nucleate an amorphous calcium phosphate 

cluster, which ultimately converts to crystalline hydroxyapatite. Mineralization mechanisms may 

be investigated in more detail using models of nanocrystals and phosphate species at specific pH 

conditions and variable concentration of peptides. 
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Figure 32. A snapshot illustrates the interactions among Ca
2+

 ions, hydrogenphosphate ions, and 

the glumatic-acid rich peptide domains in molecular dynamics simulations (SpSpEEEEEEEE). 

Distances are indicated in Angstroms. Reproduced with permission from ref. 
47

. 

 

 In-situ experimental measurements by liquid phase in-situ transmission electron microscopy 

(TEM) and AFM have recently suggested a mechanism for the nucleation of calcium carbonate 

in a matrix of polystyrene sulfonate (PSS) in solution (Figure 33).
236

 The developing mineral 

interacts with the matrix-immobilized acidic macromolecules, and time-resolved data have been 

able to track the mechanism in a resolution close to one nanometer. The binding of calcium ions 

to form Ca–PSS globules was identified as a key step in the formation of metastable amorphous 

calcium carbonate (ACC) that has been identified as an important precursor phase in many 

biomineralization systems.
234, 238, 240, 292, 296

 The findings demonstrate that ion binding can play a 

significant role in directing nucleation, independently of any control over the free-energy barrier 

to nucleation. The in-situ techniques provide detailed insight that could be further resolved and 
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tested using simulations in atomic resolution. The mechanism is similar to adatom deposition 

(path 2, Figure 19), with ions rather than atoms. 
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Figure 33. Mechanism of CaCO3 mineral formation in a biomimetic polystyrene sulfonate 

matrix (PSS) according to liquid phase in-situ TEM (ref. 
236

). (a) Initially, Ca
2+

 ions (blue dots) 

bind with the SO3
-
 group of the PSS (red), as indicated in molecular detail in the green box, 

leading to a locally high Ca
2+

 concentration in the Ca–PSS globules deposited on the surface of a 

Si3N4 substrate (orange) and to low free Ca
2+

 concentration in the surrounding solution, where it 

binds to dissolved PSS. (b) CO3
2-

 (or HCO3
-
) ions (red and yellow dots) from an ammonium 

carbonate source then diffuse into the globules (black arrows), where they bind with Ca
2+

 ions, 

replacing the weaker SO3
-
/Ca

2+
 interaction and creating a supersaturated state. (c) At a critical 

value of supersaturation (after ~20 min), amorphous calcium carbonate nuclei (light blue sphere) 

appear and grow as a result of the continued generation of CO3
2-

 (or HCO3
-
) ions. However, free 

Ca
2+

 ions do not diffuse into the globules (blue arrows with pink cross) owing to the low Ca
2+

 

concentration in solution compared with that in the globules, which is fixed by the solubility of 

amorphous calcium carbonate (ACC). (d) The growth of ACC stops when the supply of excess 

Ca
2+

 ions in the globules is depleted, but the continuous generation of CO3
2-

 (or HCO3
-
) ions 

eventually raises the supersaturation of the solution to the level required for vaterite nucleation 

on the Si3N4 substrate. (e) Vaterite continues to grow until the remaining free Ca
2+

 ions are 

depleted. (Reproduced with permission from ref. 
236

.) 

 

 In situ experimental observations also provided footage of a cluster attachment process for 

iron oxide hydroxide nanoparticles of the approximate composition 5 Fe2O3 ∙ 9 H2O (Figure 34). 

This process is similar to cluster attachment of metal nuclei (path 1, Figures 19). Twin formation 

occurs once small clusters attach in various orientation to another particle and find a favorable fit 

(Figure 34a-g).
190

 High-resolution transmission electron microscopy using a fluid cell showed 
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that finally a sudden jump over less than 1 nanometer fused the clusters together, followed by 

lateral atom-by-atom addition initiated at the contact point. Interface elimination was observed at 

a rate consistent with the curvature dependence of the Gibbs free energy. The observations are 

also consistent with the typical range of Coulomb and van-der-Waals interaction of overall 

electroneutral mineral surfaces that has been identified by molecular simulations on silicate, 

aluminate, and clay minerals.
79, 80, 84

 Over 95% of surface attraction is typically lost after more 

than 1 nm separation and strong surface interactions require <0.5 nm distance, relatively 

independent of specific surface chemistry.  
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Figure 34. Oriented attachment of iron oxide hydroxide nanoparticles in solution. (a-g) 

Sequence of TEM images showing the typical dynamics of oriented attachment. The surfaces of 

particles I and II made transient contact at many points and orientations (points 1-1, 1-2, 2-3, and 

3-4) before finally attaching and growing together (points 3-5). (h) High-resolution image of 

interface in (g) showing twin structure (an inclined twin plane). The yellow dashed line in (g) 

shows the original boundary of the attached particle. (i, j) High-resolution in situ TEM image (i) 

and fast Fourier transform (FFT) (j) of an interface from another oriented attachment event 

demonstrating formation of a (101) twin interface after attachment. The grain boundary is 
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delineated by a dashed line in (i). Scale bars are 5 nm for (a) to (g). Adapted and reproduced with 

permission from ref. 
190

. 

 

 In section 4.1, we have shown that binding constants of peptides onto silica and apatite 

surfaces can be predicted in quantitative agreement with experiment.
82, 148, 253

 These methods can 

be applied to computational screening of the binding of drug molecules to inorganic surfaces and 

their release from nanostructures under realistic solution conditions. For example, the loading of 

drugs to and release from porous silica nanoparticles may be investigated as a function of 

particle surface chemistry, pH, and temperature to explain experimental data and make 

predictions for specific systems.
7
 Also, the binding of bisphosphonate osteoporosis drugs to 

apatite nanocrystals is not well understood in experiment and would benefit from simulations.
277, 

306-308
 Prior force-field based computational screening studies suffered from unrealistic apatite 

surface models (pH >14)
309, 310

 and the absence of solvents due to limitations of DFT 

computational methods.
279, 280

 The use of chemically realistic force fields and surface models will 

make simulations much more useful (Figures 29 and 30). Drug delivery has also been suggested 

using clay minerals such as montmorillonite as a carrier material.
311

 Adsorption/desorption 

equilibria can then be monitored using the CHARMM-INTERFACE force field
11

 or CLAYFF.
90

 

 Mineral-organic interfaces also play a major role in solar devices.
312-316

 The interface 

between oxides or quantum dots with conductive polymers determines polaron dynamics, charge 

transfer, and ultimately affects the power conversion efficiency.
317

 Molecular dynamics 

simulations can help visualize the morphology development beyond the 10 nm scale. Charge 

separation and exciton dynamics can subsequently be followed locally from first principles 

simulations (Figure 35).
318

 It is believed that the charge transfer excitons (CT1, CT2, CT3) rather 
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than the intramolecular excitons (M1, M2, M3) play crucial roles in the photovoltaic 

performance as both photocurrent and open circuit voltage depend on them. For the 

poly-3-hexylthiophene/zinc oxide junction, the averaged energy of the three possible charge 

transfer excitons after ab-initio molecular dynamics simulation is 1.7, 2.0, and 2.3 eV. These 

values are in good agreement with measurements from photoinduced absorption spectroscopy of 

1.9 to 2.5 eV.
318

 

 Often the band structure is important to decide upon suitability of a quantum dot for a 

photovoltaic device, luminescent device, or electronic sensor. Understanding the interaction of 

nanoparticles with stabilizing surfactants can then be critical. NMR spectroscopy and IR 

spectroscopy are helpful to probe the composition and surface chemistry, as shown for the 

example of an indium phosphide quantum dot (Figure 36).
319

 The combination of techniques 

allowed the identification of binding modes of carboxylate surfactants to an InP surface. 

Molecular simulations, once appropriate force fields are derived, can then determine equilibrium 

conformations, binding energies, and electronic properties in combination with ab-initio methods. 

Oxide and mineral surfaces are often also catalytically active, which provides opportunities for 

multiscale simulations to predict both charge transfer and reactivity under given conditions.
320, 321

 

Thin films of biological or organic molecules on oxide surfaces also find applications in 

bioadhesives.
322
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Figure 35. (a) Top and (b,c) side view of a poly-3-hexylthiophene (P3HT)/ZnO interfacial 

atomic structure. (d) Schematics of excitons studied including intramolecular (M1, M2, M3) and 

charge transfer (CT1, CT2, CT3) excitons. (e,f) The exciton density of states (DOS) of 

P3HT/ZnO with the ground state energy set to 0. The blue, red, gray, yellow, and white spheres 

in panels a−c represent Zn, O, C, S, and H atoms, respectively. Reproduced with permission 

from ref. 
318

. 
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Figure 36. (a) Graphical schematic representation of InP quantum dots isolated using synthesis 

and purification. (b) Basic carboxylate binding modes and (b) additional carboxylate binding 

mode observed in indium carboxylate complexes according to multidimensional NMR and IR 

studies. Reproduced with permission from ref. 
319

. 

 

5. Inorganic-Organic Interfaces in Polymer Composites and Building Materials 

The performance of polymer nanocomposites, hydrogels, and building materials also depends on 

specific inorganic-organic interactions.
228, 242, 323-330

 The presence of clay, silica, cement minerals, 

or graphitic nanostructures within a polymer matrix introduces changes in morphology and 

material properties related to the presence of ionic surfaces, interfacial interactions, and 

interfacial reconstruction.
80, 326, 331, 332

 Polymer-inorganic nanocomposites, for example, find 

applications in structural materials, capacitors, batteries, and sensors.
333

 Property predictions 

a

cb
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have been aided by simulations and this section describes modeling of inorganic-organic 

interfaces in such nanocomposites, organically modified clay minerals, and cement materials in 

comparison to measurements. 

5.1. Polymer Nanocomposites and Modified Clay Minerals. A major challenge for 

performance improvements of composite materials is often the uniform dispersion of filler 

materials such as clay platelets, carbon nanotubes, silica nanoparticles, or metal flakes.
334-336

 

Computer simulations using atomistic and coarse-grained models recently allow following the 

kinetics of exfoliation of clay layers in a polymer matrix (Figure 37). For polymer melts, 

blending, compounding, and extrusion are typically necessary to overcome barriers towards 

polymer intercalation into mineral layers and exfoliation/dispersion of the filler platelets, tubes, 

or particles, which is severely hindered at long chain lengths (>10
3
 monomers) due to folding 

and long relaxation times. Other factors that affect the exfoliation of nanofillers are also the 

interactions between the layers or particles themselves (Figure 38). In order to exfoliate the 

layers of a filler material such as graphene or clay, the interactions between the layers must be 

overcome, void spaces in the polymer matrix for the new positions of the individual layers must 

be created, and then the two materials regain some of the required free energy by forming the 

mineral-polymer interface (MP) (Figure 38a).
88

 The process requires many conformational 

transitions of the polymer. Unless it occurs in solution with easy relaxation in a good solvent, it 

may never complete even during extrusion at high temperatures for extended periods of time.
228

 

However, if the cohesion between the mineral layers is very strong, such as between layers of 

unmodified clay minerals, it may be impossible to ever complete. Organic surface modification 

can reverse the strong surface polarity of clay minerals and lead to a range of tunable cleavage 

energies (Figure 38b).  
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Figure 37. Intercalation of “long” polyvinylacohol (PVA) chains into a selected clay tactoid 

using coarse-grain representations of clay layers and polymer. The side and top views of the 

tactoid are shown for simulation times of 0.8 ns and 4.75 ns. For each timeframe, the side view 
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illustrates the bending that the lowermost clay sheet undergoes to accommodate the intercalating 

PVA polymer molecules. In the top view, the polymers that intercalate into the spacing between 

the lowermost sheets are colored according to their molecule number, such that they can be 

differentiated during visualization. It is observed that the polymer initially intercalates as short 

loops (an example is circled in blue at the 0.8 ns snapshot), and then progresses further into the 

interlayer to form a relatively linear chain on the clay surface. Reproduced with permission from 

ref. 
334

. 
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Figure 38. Thermodynamic model for exfoliation of fillers in polymer matrices and computed 

cleavage energy of organically modified montmorillonite. (a) A thermodynamic model for the 

free energy of exfoliation G  of mineral layers in a polymer matrix. The cleavage energy of 

the filler lamellae is easier to adjust by choice of specific surfactants than changing the host 

polymer and its cleavage energy ( PG ), or the interfacial forces ( MPG ). Dispersion in polymer 

matrices is achieved for lowest G . (b) The cleavage energy of motnmorillonite (CEC = 91 
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meq/100g) modified with alkylammonium surfactants of different chain length and head groups 

exhibits maxima and minima depending on completion of alkyl monolayers and bilayers 

(indicated by numbers). Residual strong Coulomb forces upon cleavage of quaternary 

ammonium surfactants at short chain length are found due to incomplete partition of the charged 

head groups between the two layers until a thickness of a partial bilayer is reached. Reproduced 

with permission from ref. 
88

. 

 

 

Typical clay minerals like montmorillonite, veegum, as well as muscovite mica contain 

variable amounts of dissociable cations on the surfaces of the nanometer-thick layers, for 

example, sodium ions in a typical montmorillonite Na0.33[Si4O8][Al1.67Mg0.33O2(OH)2] with a 

cation exchange capacity of ~90 meq/100g.
68, 331

 The extended basal (001} surfaces are not 

subject to protonation-deprotonation equilibria, pore formation, and dissolution in contrast to 

silica and apatites. Therefore, layered silicates often serve as model substrates to study surface 

forces and self-assembly processes. Systematic experimental and computational studies have 

shown the influence of the area density of cations and of the type of cations on swelling, ion 

exchange, adsorption of organic molecules, and assembly of surface-grafted surfactants.
18, 337-341

 

Ion exchange of surface cations by alkylammonium and alkylphosphonium surfactants reverses 

the polarity from hydrophilic to hydrophobic and enables better miscibility with nonpolar 

solvents and polymer matrices in packaging materials, automotive and aerospace parts, 

commodity plastics, and coatings (Figure 39).
18

 The exchange of surface cations such as sodium 

or lithium for alkylammonium ions may occur spontaneously or require prior exfoliation of the 

nanometer-thick clay mineral layers at high temperature in solution.
342

 The surfactants enter the 
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galleries and arrange as homogeneous molecular layers or as islands, depending on the chain 

length, packing density, and stoichiometric amount (Figure 39).
332

 The intercalated amount can 

be often determined by an increase in the gallery spacing d using X-ray measurements and in 

comparison to results from molecular simulation. 

 

 

Figure 39. Schematic of clay mineral layers (brown) containing mixtures of superficial alkali 

cations (green dots) and alkylammonium surfactants (tilted light brown areas). Partial ion 

exchange may lead to either (a) homogeneous structures containing surfactants and remaining 

alkali cations or (b) phase segregated structures containing islands of surfactants and portions of 

non-exchanged cations. Adapted from refs. 
18, 332

. 

 

At stoichiometric ion exchange, the arrangement of surfactants on the individual even 

surfaces depends on the packing density 0 , which is defined as the ratio of the cross-sectional 

area of a surfactant chain 
0,CA  to the available surface area per cationic site SA :

137
 

S

C

A

A 0,

0  .                (1) 

The packing density also equals the cosine of the segmental tilt angle of the grafted surfactants 

and determines the occurrence of reversible melting transitions of flexible surfactants, e.g. alkyl 

chains, upon heating (Figure 40). The surface-attached alkyl chains undergo order-disorder 

transitions as a function of temperature that have been extensively studied by differential 

a b
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scanning calorimetry, IR spectroscopy, SFG, NMR spectroscopy, sum-frequency generation, and 

computer simulation. Significant thermal transitions occur at intermediate packing density 0  

between 0.20 and 0.75, whereby up to two reversible transitions have been identified (Figure 

41).
18

 These transitions correspond to the partial melting of the alkyl backbones, given a 

sufficient chain length > ~C10, as well as to lateral rearrangements of the head groups on the clay 

mineral surface that are often not immediately reversible upon cooling.
341, 343

 The second type of 

transition is common for quaternary ammonium head groups that have a lower barrier for 

rearrangement on the surface, whereas primary ammonium head groups do not exhibit the 

second type of thermal transition due to additional hydrogen bonds with the surface.
68, 88, 344, 345

  

 

 

Figure 40. Structure of homogeneous alkyl monolayers (chain length ≥ C10) on flat substrates as 

a function of the packing density 0 . Significant reversible thermal transitions are found at 

packing densities between 0.20 and 0.75. Reproduced with permission from ref. 
137

. 
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Figure 41. Reversible thermal transitions according to simulation and differential scanning 

calorimetry (DSC). The packing density 0  is 0.40. (a) A transition of semi-ordered 

octadecyltrimethylammonium chains to random orientation on mica upon heating in molecular 

dynamics simulation. Order-disorder transitions of the backbone as well as lateral 

rearrangements of the quaternary ammonium head groups occur. (b) DSC data indicate two 

corresponding transitions, of which the rearrangement of head groups is not immediately 

reversible. Reproduced with permission from refs. 
18, 341

. 

Reversible

chain melting

Head group 

rearrangement

Si    O    Al   K    N    C
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The alkyl chains confined between such minerals layers are in a quasi-liquid state.
68, 345

 The 

variety of conformations between solid-like with less gauche conformations and liquid-like with 

more gauche conformations could be observed in molecular models as a function of chain length 

and packing in the interlayer space. On substrates with low cation exchange capacity (CEC) and 

single-arm surfactants, the packing density is 0.1 to 0.2 and the backbones are oriented 

near-parallel to the surface (Figures 40 and 42). The degree of conformational disorder is high 

and no reversible melting transitions are observed. On substrates with higher CEC, or in the 

presence of multi-arm surfactants, e.g. trioctadecylmethylammonium ions, the packing density is 

higher (e.g. 0.4) and the alkyl chains assume a regular tilt angle relative to the surface. In these 

systems, reversible melting transitions occur (Figure 41a). For very high packing density >0.75, 

quasi-crystalline order leads to over 90% anti conformations and allows no reversible melting 

transitions (Figure 40). High packing densities over 0.80 are also found for thiol surfactants on 

Ag, Au, and Cu.
137

 The case of low packing density leads to significant variation in interlayer 

packing. As the chain length of the surfactants increases, flat-on monolayers, bilayers, and 

multilayers are formed, as represented by stepwise increases in basal plane spacing as observed 

in X-ray diffraction (Figure 42). 
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Figure 42. Gallery spacing and visualization of alkylammonium montmorillonites as a function 

of chain length. (a) Basal plane spacing of alkyl ammonium chains grafted to montmorillonite of 

low CEC (91 meq/100g) as a function of head group and chain length at stoichiometric ion 

exchange. The successive formation of monolayers and bilayers is shown using atomistic models, 

and the computed basal plane spacing agrees better than 5% with X-Ray data. (b) TEM 

micrograph of an organically modified montmorillonite lamella embedded in an epoxy polymer 

matrix (upright orientation). The visualization of the layered silicate is possible similar to the 

simulation, however, the location of surfactant chains or of polymer cannot be traced. 

Reproduced with permission from refs. 
345, 346

. 

 

The successive filling of organic layers leads to maxima and minima in interlayer density as 

well as in the cohesive energy between the layers (Figure 38). The fluctuations in interlayer 
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density cause changes in the cleavage energy between 45 and 30 mJ/m
2
, in the percentage of 

gauche conformations between 30% and 15%, and in the interlayer density between 800 and 600 

kg/m
3
.
88

 The variation of cleavage energies is particularly interesting as a contribution to barriers 

for exfoliation of layered silicates in polymer and solvent matrices. The organic material acts as a 

separator of interlayer Coulomb attraction that amounts to several hundred mJ/m
2
 if not 

mitigated by organic surfactants. Some Coulomb attraction remains at monolayer thickness 

depending on the choice of the head group (Figure 38b). For monolayer and bilayer coverage, 

the alternation in cleavage energies between high and low values can be seen. Interlayer 

properties such as gallery spacing, interlayer density, the percentage of anti and gauche 

conformations, associated changes in vibration spectra, as well as cleavage energies can be 

computed in near-quantitative agreement with measurements. The current upper size limit to 

monitor the motion of atoms in predictive quality using classical molecular dynamics simulation 

is between 10 and 100 nm. 

  

 5.2. Cement Minerals and Concrete. Cement minerals share some of the properties of clay 

minerals although they are typically exposed to hydration reactions and exhibit many possible 

nano and micromorphologies that contribute to the stability and durability of building 

structures.
327, 347, 348

 Important cement minerals include tricalcium silicate, dicalcium silicate, 

tricalcium aluminate, gypsum, ettringite, double layer hydroxides (LDH) such as monosulfate 

(hydrocalumite), other Afm phases, tobermorites 9, 11, and 14 Å that may represent hydrated 

phases, as well as calcium silicate hydrate (CSH) gel with various calcium-to-silica-to-water 

(C/S/H) ratios.
326, 349

 The quantitative simulation of structural and surface properties of these 

phases is feasible with the PCFF-INTERFACE force field, including quantitative insight into 
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aqueous properties and polymer-stabilized phases.
11

 These recent tools can answer open 

questions in the understanding of the interfaces, reactions, and structure formation on the 

nanometer scale, helping to overcome limitations in experimental techniques.
327, 349-353

 In 

combination with quantum and continuum methods, multi-scale simulations are expected to play 

a significant role in gaining further fundamental understanding of grinding and hydration 

processes in cement due to growing pressure to reduce the global CO2 footprint upon cement 

production, to increase the lifetime of building structures, and rationalize the setting properties of 

alternative cement formulations.
351

 

 An example for a strongly ionic and reactive surface is that of tricalcium silicate, Ca3SiO5, 

the main component of Portland cement (also called C3S). The mineral is composed of individual 

silicate tetrahedra, calcium ions, and oxide ions. The anisotropy of the arrangement of ions is 

comparatively low and cleavage energies of various crystal planes are similar (Figure 43).
80

 

Cohesion is caused to over 95% by internal Coulomb interactions and is very strong; the 

cleavage energy of 1340 mJ/m
2
 is comparable to precious metals (Table 1). Unhydrated portions 

of cement particles consist mainly of C3S and the strength of C3S, including a bulk modulus of 

105 GPa, contributes to the mechanical stability of concrete. It is hereby notable that tricalcium 

silicate is nevertheless only partially ionic and partially a covalent compound, as the atomic 

charges are ca. +1.0e for Si, -1.0e for silicate oxygen, +1.5e for calcium ions and -1.5e for oxide 

ions, respectively (see section 2). The balance between covalent and ionic bonding is also 

innately connected to the reactivity of the surfaces with water. In the first step of the hydration 

reaction, oxide ions are instantly hydrated to hydroxide ions, and silicate tetrahedra experience 

hydration to superficial silanol groups. The process of subsequent deposition of calcium 

hydroxide and dissolution of individual silicate species leads to condensation and formation of 
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oligomeric silicates (C-S-H gels).
327

 Ongoing investigations by spectroscopy, imaging, and 

simulation aim at better understanding of such nanoscale processes to control the complex 

interactions between multiple inorganic and added organic phases, both thermodynamically and 

kinetically. 

  The cation density on the surface and interactions with organic molecules can be 

conveniently analyzed using models and molecular dynamics simulation (Figure 43). Alcohols 

and amines of low molecular weight such as glycerine and triethanolamine are commonly used 

to prevent agglomeration of cement particles upon grinding to achieve energy savings in a ball 

mill (Figure 43d). Computer simulations helped explain the effect of such modifiers in molecular 

detail.
80

 The analysis of adsorption energies on representative low energy (040) surfaces showed 

that adsorption can be rather strong on initially hydrated as well as on non-hydrated surfaces, on 

the order of -20 to -50 kcal/mol. The origin of adhesion are the complexation of superficial Ca 

ions by hydroxyl groups in the alcohols as well as hydrogen bonds between superficial hydroxide 

groups of C3S and amine or hydroxyl groups of the alcohols (Figure 43a). The area density of 

calcium ions on the surface is very high, including 3.2 Ca
2+

 per nm
2
 on the immediate outer 

surface layer and 2.6 Ca
2+

 per nm
2
 in the upper plane of silicon atoms, totaling 5.8 Ca

2+
 ions per 

nm
2
. Due to the high charge of calcium and the high area density on the surface, the cations do 

not easily dissolve or swell. However, they induce very strong adsorption. At the same time, an 

organic layer of more than monolayer thickness reduces the strong Coulomb forces between 

cleaved surfaces very effectively (Figure 43b, c). The adsorbed molecules thus function as a 

spacer, and the agglomeration energy can be computed as the energy difference between the 

separated (Figure 43c) and unified surfaces (Figure 43b) in equilibrium. It was also found that 

the effectiveness as a spacer, which reduces the agglomeration energy between cleaved mineral 
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surfaces, does not correlate with the trend in adsorption strength. Flexible, surface adaptive, and 

strongly adsorbing molecules such as glycerine do not effectively keep the surface apart; rather 

some alkyl groups are required to act as a potent spacer and grinding aid. The reduction in 

agglomeration energy can be quantified in first approximation by assuming idealized even 

surfaces, and the computed trend among a number of candidate molecules agrees with 

observations in energy savings in the ball mill (Figure 44).
80

 Just one monolayer of organic 

molecules of about 0.5 nm thickness reduces the agglomeration energy over 95% compared to 

the original cleavage energy of 1340 mJ/m
2
, and by about 80% compared to the agglomeration 

energy of 250 mJ/m
2
 of initially hydrated tricalcium silicate surfaces. The high efficiency is due 

to the spacer effect and the minimization of local dipole moments by molecule-specific 

complexation of surface ions. 
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Figure 43. The surface of tricalcium silicate, Ca3SiO5, and its interaction with organic alcohols 

used as grinding aids. (a) Adsorption on the representative (040) surface involves complexation 

of Ca
2+

 ions and hydrogen bonds between hydroxyl groups of the alcohols with hydroxide and 

silicate groups on the mineral surface (shown for TEA at 383 K). Some disorder of the 

superficial silicate tetrahedra can be seen. (b, c) Origin of the reduction of agglomeration forces 
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by multiple molecules above monolayer coverage in the agglomerated and separated state 

(shown for glycerine). The agglomeration energy corresponds to the difference in energy 

between state (c) and (b). (d) Common alcohols and amines used as grinding aids in cement 

production. Reproduced with permission from ref. 
80

. 

 

 

Figure 44. Computed agglomeration energy of C3S, initially hydrated C3S, and organically 

modified surfaces slightly below monolayer coverage in the separated state (0.20 mg/m
2
). The 

trend correlates with the observed energy demand in ball mills. Reproduced with permission 

from 
80

. 

 

6. Challenges and Opportunities  

The diverse examples illustrate a range of systems where computational insight into 

inorganic-biological and inorganic-organic interfaces contributes to better understanding of 

binding mechanisms, nanostructure growth, chemical reactions, and other property predictions to 

help improve devices and other products. Major challenges associated with the mentioned 
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simulation methods are (1) the interpretation of computational results in the context of a broad 

spectrum of length and time scales, (2) the need for reliable and perhaps electronic-structure 

enhanced force fields for a broader range of compounds, (3) the question to which extent 

chemical knowledge and automation shall be used to derive new parameters, as well as (4) the 

choice of problems for computer simulations of societal relevance where the broader impacts are 

high. 

 A common challenge is often how to interpret the simulation data, for example at a length 

scale of 10 nm and a time scale of 100 ns, in the context of a device or a product that is 

macroscopic, performs over the duration of seconds, and involves nanoscale nanoscale 

self-assembly as well as electrical conductivity. In a biosensor, as an example, the function of the 

device is inherently multi-scale, and pertinent information can be obtained from a range of 

experimental measurements, DFT calculations, MD calculations, and coarse-grain/continuum 

models. Complex problems such as this are common, and it is then important to break down and 

relate the overall performance to sub-problems that can be answered using individual 

experimental and computational techniques for relevant time and length scales (Figure 1). The 

most effective combination of approaches, such as the translation of atomistic information into 

coarse-grain models and vice versa, to obtain comprehensive predictions, can be a determinant 

for the level of success versus failure. 

  Another challenge is the development of validated force fields for a broader range of 

compounds, especially for inorganic compounds, and eventually the inclusion of electronic 

structure features such as the arrangement of π electrons in graphitic materials, d electrons in 

transition metals, etc.
71

 The procedure for such developments, where the Hamiltonian reproduces 

structures and energies, has been laid out (Figure 3). Some classes of promising compounds that 
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may benefit from further parameter developments include graphitic materials, organic (polymeric) 

semiconductors, quantum dots, layered materials such as (Mo, W)(S, Se)2, metals of different 

crystal structure, alloys, oxides, and mixed oxides. Ultimately, it would be desirable to cover 

most (or all) compounds across the periodic table in high accuracy in a uniform simulation 

platform. A continuing challenge is that breaking or forming covalent bonds in simulations 

require adjustments in bond connectivity, reactive force fields, local QM calculations, or 

QM/MM approaches.
50, 354-358

 

  Such development efforts also raise the question to which extent chemical knowledge and 

understanding of the models should be the basis of force field development, or automated fitting 

approaches should be employed.
73, 76, 77, 359

 Opinions are divided on this point, nevertheless, 

experience shows that force fields and models based on chemical knowledge and careful 

interpretation of all parameters outperform automated assignments by a margin. It is helpful to 

recall that models are always a copy of the real thing, i.e., they will never be as good as real. 

Therefore, a choice needs to be made between the best attempt involving current chemical 

knowledge and interpretation, or to leave the parameter derivation to fitting algorithms which by 

themselves may involve additional assumptions and not match up in validity. The benefit of 

automated parameters derivation is access to a broader range of compounds and the commercial 

potential of broadly usable simulation platforms. In this regard, automation can be very 

beneficial to the scientific community provided procedures are simple and sensibly chosen. On 

the other hand, careful compound-per-compound chemical analysis, including analogy 

considerations to similar compounds and parameter validation against experiments, appear to be 

necessary at least for key compounds to provide supportive benchmarks for automated 

approaches. The INTERFACE force field, or similar approaches that take into account chemical 
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knowledge and understanding, send a clear message that force fields based on this approach can 

outperform DFT methods in (non-electronic) properties. Then, the accuracy of classical force 

fields exceeds that of quantum methods at a million times lower computational cost. 

  A major challenge is also the choice of problems for simulations. While simulations tend to 

be less involved than experiments, a certain entrance barrier is present, especially if model 

development and validation efforts must precede actual mechanistic analyses and property 

predictions in comparison to measurements. It is therefore advisable to choose modeling 

problems carefully with respect to anticipated impacts, specific societal or corporate product 

needs, and feasibility to solve the stated problem. The choice of computational methods can also 

be guided by the type of experimental data that is available or anticipated to become available for 

comparison and verification of predictions. 

 

7. Conclusion 

In conclusion, methods for the simulation of inorganic-organic interfaces and applications to 

materials design have been reviewed. The emphasis was placed on the 1 to 100 nm scale, 

classical atomistic methods, and a feedback loop between refined understanding of chemical 

bonding, translation into accurate force fields, chemically realistic simulations, and interpretation 

of the computational results in the context of experimental characterization and performance 

measurements. Specifically, surface properties of metallic and nonmetallic solids at the 

nanometer scale and governing principles of the selective adsorption of molecules, surfactants, 

and biopolymers were explained and illustrated by examples. Clear distinctions emerge between 

precious metal surfaces, polar pH responsive surfaces such as silica, and densely ionic mineral 

surfaces such as calcium apatites. Whereas precious metal surfaces are rather simple chemically 
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and exhibit strong attraction, many polar surfaces are prone to protonation/deprotonation 

equilibria and surface reactivity. The differences in surface chemistry determine available options 

to control the assembly of surfactants, polymers, and biomacromolecules, and to grow defined 

nanomaterials from available precursors. A wide variety of chemically different surfaces may 

often be encountered that originate from the ‘same’ principal material such as silica, apatite, or 

calcium carbonate. We explained, from the perspective of accurate atomistic models, simulation, 

and from available experimental results, the mechanisms of selective binding of ligands and 

polymers to these different materials classes as they are currently known. Applications to 

estimate binding affinities to nanoparticles, to understand crystal growth, to design catalysts, and 

to predict agglomeration forces have been shown. The examples also demonstrate that the 

accuracy of force fields, supported by the interpretation of the parameters and comparison with 

experiment, can exceed that of density functionals at a fraction of the computational cost. 

 The different types of substrates possess unique surface characteristics. High surface energy 

on metal surfaces leads to soft epitaxial adsorption and associated growth preferences. Cation 

dissociation and hydrogen bonding on silica surfaces depends strongly on pH and leads to 

binding of highly different peptide sequences. A fixed area density of cations on clay minerals, 

which results from defect substitution sites, allows grafting of surfactants layers with 

controllable definition by ion exchange. Strongly ionic surfaces on apatites and tricalcium 

silicate are subject to protonation reactions with water, which regulates ion dissociation and 

binding of organic molecules and polymers. Essentially, the individual surface chemistry 

determines the interactions with solvents, polymers, and biological molecules so that it appears 

difficult to formulate universal rules for the design of binding biopolymers that apply to all 

materials types. 
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 Simulations can provide quantitative trends in interactions and help design binding 

molecules for each class of materials, allowing the formulation of materials-specific concepts 

with predictive character. These concepts are (1) epitaxial matching of molecules to given metal 

surfaces (under consideration of the role of induced charges if applicable), (2) the determination 

of the area density of dissociable ions on silica, apatite, and clay mineral surfaces as a function of 

pH to anticipate the role of ion pairing and cation exchange versus hydrogen bonds and 

hydrophobic effects, (3) consideration of protonation states on pH responsive surfaces such as 

apatite and calcite, e.g., based on pK values, to control specific adsorption of charged molecules, 

(4) elucidation of the packing density and prediction of tilt angles and thermal behavior of 

surfactant chains on substrates where grafting can be controlled, and (5) specific consideration of 

surface reactions on nanocatalysts, especially rate-determining steps, based on chemical 

knowledge/first principles calculation and including the impact of interfacial assembly on 

reaction kinetics. 

Application of such concepts can provide guidance even without numerical simulations, and 

semi-quantitative or quantitative predictions are feasible using the simulation techniques 

described. Laboratory synthesis and characterization is ultimately required to test properties of 

new materials, empirically found or aided by simulation. The feedback loop with computation 

accelerates traditional trial-and error approaches in materials discovery and performance 

enhancement. 
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