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Vibrational Spectroscopy, both infrared absorption and Raman spectroscopy, have attracted increasing attention for 
biomedical applications, from in vivo and ex vivo disease diagnostics and screening, to in vitro screening of therapeutics. 
There remain, however, many challenges related to the accuracy of analysis of physically and chemically inhomogeneous 
samples, across heterogeneous sample sets. Data preprocessing is required to deal with variations in instrumental 
responses and intrinsic spectral backgrounds and distortions in order to extract reliable spectral data. Data postprocessing 
is required to extract the most reliable information from the sample sets, based on often very subtle changes in spectra 
associated with the targeted pathology or biochemical process. This review presents the current understanding of the 
factors influencing the quality of spectra recorded and the pre-processing steps commonly employed to improve on 
spectral quality. It further explores some of the most common techniques which have emerged for classification and 
analysis of the spectral data for biomedical applications. The importance of sample presentation and measurement 
conditions to yield the highest quality spectra in the first place is emphasised, as is the potential of model simulated 
datasets to validate both pre- and post- processing protocols. 

Introduction 

The potential of vibrational spectroscopy, both Infrared (IR) 
absorption and Raman scattering, for biomedical applications has 
been well established through many proof of concept studies over 
the past decades. Due to its unique chemical fingerprinting 
capability at the molecular level, vibrational spectroscopy can play a 
significant role in a new paradigm of histopathology, cytology, 
biopsy targeting, surgical targets, treatment monitoring and drug 
studies. However, translation into the clinical environment has 
been slow, and although the challenges facing the translation to 
realistic clinical applications are manifold, including those 
associated with large scale clinical trials, health economics and 
acceptance by the medical community [1], there remains a 
considerable amount of issues relating to the fundamental process 
of recording reliable spectra from complex, chemically and 
physically inhomogeneous samples and extracting reliable 
information from heterogeneous sample sets which may be 
influenced by a multitude of confounding factors.  
The development of reliable data (pre- and post-) processing and 
data mining techniques has thus been identified as a rate 
determining step in the maturation of vibrational spectroscopic 
techniques towards real applications, in vitro, ex vivo and in vivo. 
Instrumental response functions and sample presentation can 
significantly impact on the quality of the data gathered. Both tissues 
and cells are physically and chemically inhomogeneous and can give 
rise to a number of artifacts which can distort and greatly reduce 

the accuracy of a spectral measurement. IR absorption and Raman 
spectroscopy are very distinct physical processes [2], and therefore 
the spectral distortions can be of very different physical origin. 
Although many biomedical applications of the techniques have 
been targeted towards disease diagnostics, for which high 
specificity and sensitivity classification algorithms are desirable, 
more recent applications have been targeted at, for example, 
disease aetiology [3,4], radiation dosimetry [5], drug screening [6-
10] and nanotoxicology [11-13], for which a range of other data 
mining and analysis protocols have been explored [14]. It is 
important, however, that these protocols are well validated, in 
order to progress the field with confidence. 
This Special Issue Review attempts to summarise the current 
understanding of the underlying physical factors influencing the 
quality of spectra recorded, for both IR absorption and Raman 
spectroscopy, and the pre-processing steps commonly employed to 
improve on spectral quality, while emphasising the importance of 
sample presentation and measurement conditions to yield the 
highest quality spectra in the first instance. The review focusses on 
established Raman and IR techniques, rather than emerging 
techniques based on enhanced or stimulated effects [15]. It 
explores some of the most common techniques which have 
emerged for classification and analysis of the spectral data for 
biomedical applications. The potential of model simulated datasets 
to validate both pre- and post- processing protocols is highlighted. 

 

Spectral Preprocessing: InfraRed absorption 
spectroscopy 

In IR spectroscopy, commonly performed in transmission or 
transmission/reflection (transflection) mode, the absorption 
features are typically found to sit on top of a large, broad and 
undulating background. On the basis that the background is slowly 
varying with respect to the absorption features of interest, first and 
even second order differentiation of the spectra has been 
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employed to remove the background, accentuating the desired 
spectral features. Such an approach assumes that the features 
themselves are not impacted by the underlying physical effects, 
however, an assumption which cannot be assumed to be valid 
based on a better understanding of their origin. 

Mie scattering of the incident radiation, of wavelength ~2-10µm, by 
cellular components of similar length-scale, has been identified as 
the source of the broad undulating background commonly observed 
[16]. The undulating background of FTIR absorption spectra can be 
satisfactorily removed using the so called Extended Multiplicative 
Scatter Correction (EMSC) protocol [17], derived from the 
multiplicative signal correction (MSC), which is an algorithm for 
removal of additive and multiplicative contributions from a given 
interfering signal. Offsets and baseline slopes are removed 
effectively, whilst the multiplicative part of the algorithm 
compensates for differences in optical path length, effectively 
normalising the spectra. This is done by taking a reference 
spectrum, which can be the mean spectrum of the sample data set 
or a spectrum with similar spectral features. The algorithm takes 
the reference spectrum and attempts to recreate the raw spectrum 
to be corrected by adding an offset, a slope and amplifying the 
reference by multiplication. However, it is apparent that the 
absorption features themselves are also distorted, an effect which 
is most obviously manifest by a dip in the absorption profile on the 
high wavenumber side of the amide I feature at ~1675cm

-1
, the so-

called “Dispersion Artifact” [16] (see for example Figure 1), and can 
cause a shift in the apparent maximum of all spectral features. Until 
recently, the physical origin of this has been unclear [16]. While Mie 
scattering is commonly considered to derive from the imaginary 
component of the refractive index of the scattering material, using 
simulated data and chemically homogeneous model systems, the 
artifact has been recently demonstrated to have origin in 
contributions of the real component of the refractive index in the 
form of resonant reflection (in transflection mode) [18] and 
resonant Mie scattering (in transmission mode), although it should 
be noted that both resonant reflection and scattering artefacts can 
contribute in both measurement geometries [19]. The real and 
imaginary components of the refractive index are related via the 
Kramer-Kronig relationship and thus the absorption and (resonant) 
scattering profiles are intimately related [18]. Understanding the 
physical origin of the effects has led to a refinement of the EMSC 
protocol (RMieS-EMSC), by incorporation of resonant contributions 
to the sample refractive index, to efficiently account for and correct 
spectra for the effects [20, 21] (figure 1). A full description of the 
EMSC and RMieS-EMSC protocols is provided in [21]. An alternative, 
more supervised approach to spectral correction using undistorted 
spectra as standards has been proposed by Bird et al. [22].  
Notably, in the development of the correction algorithm, a better 
fundamental understanding of the physical origin of the effects was 
critical, and the use of model systems and simulated data sets was 
invaluable in validating the protocol. Independent of correction 
algorithm employed, the increased understanding of the physical 
origins of the spectral distortions implies that IR spectra as a 
representation of chemical variations within biological materials 
can now be interpreted with a significantly higher degree of 
confidence. 
Despite the greater understanding of the physical origin of the so-
called dispersion artefacts, there remains much debate on the 
questions of measurement geometry for IR absorption 
spectroscopy, and therefore optimum choice of substrates. In terms 
of cost, low-E, reflective slides appear most attractive, implying the 
use of a transflection measurement configuration. However, 

questions have been raised concerning additional spectral artefacts 
which can result from the so called “Electric Field Standing Wave” 
effect in such measurements [23]. On reflection from any metallic 
surface, the electric field of the radiation is pinned with a node at 
the reflecting surface, and a standing wave above it. For varying 
frequencies, the electric field distribution is different, having nodes 
and anti-nodes at different heights above the surface. A sample of 
defined thickness on such a surface will experience different 
intensity distributions across the spectrum, and therefore the 
absorbance spectrum can be distorted. It has been argued, 
however, that the effects are diminished by thickness 
inhomogeneities, the range of sampling angles, and the source 
incoherence [24]. The alternative, transmission, geometry requires 
(at least partially) transparent substrates. It has been demonstrated 
that even glass substrates may provide transmission in a sufficiently 
broad (high wavenumber) region to provide diagnostic capabilities 
[25]. However, access to the broader spectrum is only provided by 
more costly polycrystalline substrates such as CaF2. In terms of 
translation to a clinical environment, choice of substrate may 
ultimately be dictated by cost, and therefore by sample throughput 
and by the target application. A full cost analysis is required to 
assess the relative demand and costs of applications for (i) near 
patient intra operative diagnostic (ii) postoperative histological and 
(iii) research purposes. Establishing the relative impact of the 
spectral distortions associated with the EFSW effect compared to 
the target intrinsic biochemical variations may be critical in reaching 
a decision over clinical applications of IR absorption for spectral 
histopathology. 

 

 
Figure 1: Correction of FTIR spectra for non and resonant Mie 

scattering (Reproduced from royal Society of Chemistry [20]). 

 

In terms of sample presentation, fresh frozen sections are 
recommended as the tissue architecture and biochemistry is kept 
largely intact and, notably, the lipidic information can be accessed 
[26]. Furthermore, they are more amenable to combining 
immunohistochemistry, proteomics, and biospectroscopy. 
However, clinically, fresh tissue is normally only used for 
intraoperative work and stained, fixed sections are preferred for 
histopathology [27]. Therefore, standardised protocols for 
spectroscopic analysis of Formalin Fixed Paraffin Processed (FFPP) 
tissue samples are of paramount importance. Notably, analyses of 
archived tissue libraries may add much to understanding disease 
progression and patient prognosis.  
It has been demonstrated that it is not necessary to remove the 
paraffin to obtain usable spectral information, particularly in the 
case of FTIR spectroscopy [28]. Standard tissue microarray 
protocols involve paraffin embedded tissue. Leaving the paraffin in 
place reduces scattering artefacts and effects of further variable 
removal of aromatic solvent soluble components [28-31]. The 
spectrally well defined paraffin contribution can be digitally 
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removed in a preprocessing step, involving Independent 
Component Analysis (ICA) and Non-Negatively Constrained Least 
Squares Analysis (NCLS), so called digital dewaxing [28]. However, it 
may be argued that greater consistency of spectral information is 
achieved when sections are deparaffinised. Deparaffinising also 
allows post-staining of the sections, although it has been 
demonstrated that the efficiency of the deparaffinisation process 
can depend on the tissue pathology [32]. Nevertheless, it can also 
be argued that, even for research purposes, protocols for such 
tissue processing should be maintained as close as possible to those 
currently employed in the clinical environment. 
 

Spectral Preprocessing: Raman spectroscopy 

In the case of Raman spectroscopy, as-recorded spectra can suffer 
from similarly additive and multiplicative contaminations as FTIR 
spectra. Background, substrate and instrumental contributions are 
routinely subtracted, whereas dealing with multiplicative 
contributions from resonant or otherwise enhanced scatterers can 
be more complex. 
A similarly broad underlying spectral background is often observed 
in Raman spectra of biological samples. In the case where the 
sample contains fluorophores which are resonant at the source 
wavelength, the background contributions are often eradicated by 
spectral differentiation, as in the case of IR absorption spectra, 
although the relatively higher wealth of spectral information in 
Raman spectra means that the derivative spectra are difficult to 
interpret [33].  
In many cases, however, the background to the Raman spectra can 
not easily be attributed to sample fluorescence, as it is unclear what 
fluorophores in tissue, or even raw proteins, can give rise to a broad 
fluorescence background, especially with near infrared sources [2]. 
More recently, it has been demonstrated that the background in 
pure proteins at 785nm is dependent on sample morphology and 
that measurement of tissue sections in water immersion effectively 
eliminates the background, suggesting that an origin in stray light 
from Mie scattering of the source laser line and even the Raman 
bands themselves [34]. The study demonstrates that an important 
route towards minimizing preprocessing is appropriate sample 
presentation. When measured in immersion, the water acts as an 
index matching fluid, visually reducing the scattering of the laser 
spot by the sample (Figure 2) and significantly enhancing the 
spectra (Figure 3), which can be preprocessed by subtraction of the 
instrument response and the water contribution. Measurement in 
water immersion also significantly reduces any photo damage in 
tissue samples, the water providing a heat sink to protect from 
photothermal effects [35]. 
In addition to background from the sample, in thin samples, the 
substrate itself can contribute significantly, and the contribution 
can be variable from sample to sample and difficult to remove 
routinely. Choice of substrate can minimize this contribution, and 
UV grade CaF2 is widely accepted as an optimal choice [36], 
particularly as it is also compatible with IR transmission 
measurement. In terms of potential clinical applications, however, 
for example routine cytological screening, cost implications may 
dictate that substrate choice is limited to conventional glass 
microscope slides. In the development of Raman protocols for such 
applications, choice of substrate is intimately linked with choice of 
wavelength, and it has been demonstrated that, although 
conventional glass microscope slides have a substantial background 
at 785nm, this is greatly reduced at 532nm [2, 36].  

Confocal operation, available in some Raman microspectrometers, 
can reduce the spectral contribution of the substrate, as previously 
described by Puppels et al. for single cells [37, 38]. Nevertheless, 
when performing measurements on optically thin single cells grown 
on a substrate, substrate contributions to the Raman spectra can 
still be significant. Furthermore, confocal operation is not available 
on many commercial spectrometers. Recent studies have 
demonstrated the benefits of using 3D collagen gels for Raman 
mapping of single live cells [39]. The substrate (collagen) 
contribution to the spectrum is shown to be negligible, reducing the 
requirement for substrate subtraction. Moreover the protein matrix 
reduces the toxicity of the substrate enabling prolonged studies of 
live cells even in full cell culture medium. Such extended mapping 
periods are ideally required for full cellular and sub cellular analysis 
to evaluate, for example, mechanisms of interaction of 
nanoparticles or chemotherapeutic agents.  
 

 
Figure 2: Laser spots obtained at the focus position on a skin sample 
after chemical dewaxing in the dry state (A) and immersion (B). 
(Reproduced from John Wiley and Sons [34]) 
 

 
Figure 3: Example of mean spectra recorded on two different 
human skin samples from the thigh dry (A and B) and using the 
immersion objective (respectively C and D). The first sample has 
been dewaxed in hexane (A and D), the second using xylene (B and 
C). (Reproduced from John Wiley and Sons [34]) 
 
In cases where the spectral background cannot be completely 
eradicated experimentally, background removal is commonly 
performed, by one of numerous algorithms [40, 41] e.g. one 
automated approach is the implementation of the so-called EMSC 
(extended multiplicative scatter correction) algorithm, originally 
developed for IR spectroscopy [42]. Common semi-automated 
computational methods of background subtraction are the 
subtraction of a polynomial of certain order [43-45]. The so-called 
“rubber band” model is derived from the commercially available 
“Opus” software package commonly used on Bruker IR 
spectrometers [46]. However, it should be noted that such 
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subtraction of arbitrary backgrounds does not guarantee a 
reproduction of the true spectral features, as a spectral minimum 
between many overlapping Gaussian features may not be the true 
minimum of the signal. Prior knowledge of the contributing factors 
should be used, wherever possible. Accordingly, it is common to 
record and subtract “dark” and substrate spectra from the sample 
spectra before removing any arbitrary background. As the substrate 
spectrum is an independent spectral component, it can effectively 
be removed by ICA sand NCLS, in a similar process to the so-called 
“digital dewaxing” of tissue spectra [28]. 
Further artifacts in Raman Spectroscopy include nonlinearity of axes 
and dark noise. In dispersive multichannel Raman spectrometers 
employing a CCD sensor, the data point spacing during acquisition 
can be irregular not only due to the use of different gratings. It may 
change from day to day due to different calibration settings and 
even drift over the course of a day due to variations in temperature 
and/or humidity. This leads to recordings with different abscissa 
and abscissa-linearity which therefore induces variance in the x-
axes. This issue of “transfer calibration” has been recognised in a 
number of fields, notably in near IR spectroscopy in food science 
and a number of protocols have been developed [47-49]. A number 
of commercial instruments now incorporate a post recording 
calibration procedure, although it is not clear as yet whether a 
standard procedure has been adopted by the biospectroscopy 
community. 
As Raman spectroscopy measures scattered intensity, as opposed 
to IR spectroscopy, which measures a transmission ratio, in addition 
to calibration of the spectral axis, intensity calibration is necessary 
in cases that the results from different instruments and laser 
sources are to be compared. To this end, the use of Standard 
Reference Materials (SRM) are desirable, e.g. those from the US 
National Institute of Standards, Boulder, Colorado, USA (NIST SRM 
2243, 2242, 2241). The use of SRM also provides a means to correct 
Raman spectra for relative intensity on a day-to-day basis. The 
application of such standards requires measurements of its 
luminescence spectrum on the Raman instrument employed. 
Subsequent mathematical treatment of both the observed 
luminescence spectrum of the intensity standard and the observed 
Raman spectrum of the measured sample create the intended 
comparability of data between spectrometer and excitation lines. 
The relative intensities of measured Raman spectra are corrected 
for instrument specific response employing computational methods 
using a correction curve. These curves are generated with certified 
polynomials and pre-recorded fluorescence spectra of the SRM 
glass (a manganese doped borate matrix glass). 
Electronic noise, consisting of flicker noise, shot noise and thermal 
noise is an unpredictable and constant occurrence primarily in the 
spectral intensity, and can have a huge impact on the quality of any 
signal [50] and Raman spectra are commonly additionally subjected 
to a noise reduction protocol to “smooth” the spectra, increasing 
the signal to noise and accentuating the true spectral features. A 
common smoothing algorithm incorporated in commercial 
instrument software is the Savitsky-Golay algorithm [51]. However, 
it is important to be aware of the potential influence on spectral 
features of order and window size of Savitzky-Golay filters for noise 
reduction. Recently a systematic study of data preprocessing 
techniques which considerably increase the confidence in the 
reliability of pre-processed Raman spectra has been carried out 
[46].  
In both IR absorption and Raman spectroscopy, the measured 
spectra are also influenced by spot to spot variations of sample 
thickness and density, resulting in a variable overall signal intensity 

reflective of the physical inhomogeneity rather than biochemical 
changes related to pathology or biochemical process [521]. For 
multivariate analysis, normalisation of variables into a relative 
variable space is recommended. Ideally, an internal standard or 
other pseudo-constant reference value to correct for the scaling 
effects should be employed [53]. In the absence of an independent 
internal standard, vector normalization is commonly employed. The 
process weights each spectrum according to its integrated intensity 
such that all samples contribute equally to the analysis model [54]. 
It is important that all background and/or baseline contributions are 
removed before normalisation. 
 

Data Analysis 

Analysis of the subtle changes in spectral profiles associated with, 
for example, disease, biological processes or the influence of 
external agents require the use of multivariate analytical 
techniques. Such multivariate methods have become invaluable to 
a wide range of fields, including geology, pharmaceutical science, 
pharmacology, astrophysics, imaging, and chemistry. Importantly, 
these methods allow for complicated and also in some instances 
very large datasets to be analysed and in effect they reduce the 
dimensionality and complexity of the data allowing for meaningful 
information to be extracted.  
Specifically considering vibrational spectroscopic datasets, 
multivariate methods allow analysis of multiple spectra 
simultaneous and interdependently. This then allows for 
comparisons to be made between spectra and groups of spectra 
within a dataset and to identify trends these may contain e.g. 
spectral markers of disease in control and non-control patients, 
identification of nanoparticle containing spectra, response to 
external agents etc.. Although they derive from distinct physical 
processes, the approach to data processing is largely independent 
of the analytical technique (IR absorption or Raman spectroscopy) 
but is more dictated by the application (e.g. diagnostic 
classification, spectral mapping, progression analysis). 
An important consideration in the application of multivariate 
methods to spectral data analysis is the requisite size of dataset. 
Statistical significance is a critical consideration, and when patient 
diagnosis is the outcome, misclassification has serious 
consequences. Beleites et al., have carried out a study examining 
the effects of sample size on multivariate classifier models for 
clinical biospectroscopy [55]. It is demonstrated that, while learning 
curves for dataset sizes common to small scale academic studies (2-
25) can indicate acceptable performance, the model testing is itself 
limited by the dataset size and that datasets of 75-100 samples are 

required to produce “a good but not perfect classifier”.  
In the construction of multivariate classifiers, robustness of the 
model should also be rigorously tested. A commonly used 
performance measure is the Standard Error of Prediction (SEP) [56]. 
If the data are normally distributed, the prediction errors are 
generally within the tolerance interval of ±2 x SEP. However, 
evaluation of the performance of a model on the complete dataset 
acquired during a given experiment does not assess the potential 
performance of the model in a practical situation where it is 
presented with unseen data [56]. When the dataset is sufficiently 
large, individual spectra may be considered normally distributed 
and representative of the multivariate dataset that is likely to be 
encountered in reality [56]. In such situations, the dataset may be 
randomly sorted and split into calibration and test sets [56-59]. The 
calibration set is used to find the optimal model for that dataset, 
and the root-mean-squared error of calibration, (RMSEC), is 
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computed. The generalization performance of the model is 
determined by the root-mean-squared error of prediction (RMSEP) 
for the test dataset. A significant difference between RMSEC and 
RMSEP indicates that the model does not generalize well to unseen 
data. Often the evaluation of the models performance is conducted 
many times on different randomized splits of the calibration and 
test datasets to give a comprehensive assessment of the 
generalizability of the models [56]. Other model validation 
techniques commonly employed include Leave one out cross 
validation or up to 10-fold cross validation [60, 61]. Pérez-Guaita et 
al. [62] more recently evaluated the use of permutation testing, 
commonly used in metabolomics [63] and proteomics [64], which 
employs a random reallocation of class labels in order to establish 

the statistical significance of a cross-validation figure of merit of a 
classifier. Ultimately, however, the validation of the integrated 
techniques of spectroscopy and multivariate classifiers will have to 
comply with the rigours of the clinical environment, including large 
scale blind datasets and randomised trials [1].  
In terms of post processing of multivariate spectral data, for 
diagnostics the primary emphasis to date has been on unsupervised 
classification. In this context, PCA has been used extensively. The 
use of PCA has been extended to include for example analysis of 
antibody activation of T-cells [65] and differentiation of embryonic 
stem cells [66], and also in the differentiation of spectra from 
different spatial locations within cells and tissues in spectral 
imaging [67,68]. It has also been used in conjunction with other 
multivariate methods such as Linear Discriminant Analysis to derive 
clinically relevant estimates of the sensitivities and specificities of 
the diagnostic protocols [69] and in comparative analyses of the 
spectral content in various types of human cancer cell lines [70]. 
Hierarchical cluster analysis is similarly often employed for example 
in the intercomparison of spectral classes in discrimination of 
malignant and non-malignant tissues [71], and for visualising the 
spatial distribution of identified components in spectral maps [72, 
73]. Notably, however, for diagnostic applications, precise 
information on the chemical determinants of the differentiation of 
tissue types or sample regions is not required.  
To extract information regarding the biochemical changes 
underpinning the spectral changes, a more sophisticated data 
processing toolbox is required. Supervised methods such as (Linear 
and Nonlinear) Partial Least Squares Regression (PLSR) can be 
employed to identify spectral variables which are specifically 
correlated with an external agent [5, 6] or indeed an observed 
physiological effect such as viability or proliferative capacity [7]. In 
such studies, correlation with accepted or “gold standard” assays 
can be used to guide and validate the interpretation of the 
vibrational spectroscopic results. As well as standard 
cytotoxicological assays, the spectroscopic results can be correlated 
with more precise biomarkers, such as protein over-expression in 
the case of HPV transfected cells [3, 4]. In advancing the 
applications of biospectroscopy, it is crucial to establish multivariate 
spectral equivalents of biomarkers which identify the action of for 
example chemotherapeutic agents or nanotoxicants. Regression co-
efficients can play a critical role in the validation of the model and 
provide indicators of the key contributions to the systematic 
spectral variations. Feature selection models can often aid in 
reducing the number of variables presented to the model. In PLSR, 
PLS Jack-knifing has been demonstrated to allow the reduction of 
the number of variables [74] avoiding over fitting and improving 
performance. PLS Jack-knifing produces results that are readily 
interpretable in terms of highlighting the systematic variation of 
important spectral features within the regression model, and allows 

visualization of PLSR coefficients and their uncertainty, and their 
use in analysing spectroscopic responses associated with 
chemotherapeutic agents has been demonstrated [6, 7].  
Whereas PCA and PLSR, for example, may be considered linear 
analytical methods, in that they attempt to describe the variability 
of the dataset according to single parameters, multiparameter or 
nonlinear statistical approaches can prove more powerful in 
applications to biospectroscopical datasets which have a high 
degree of variability. In this context, machine learning algorithms 
such as Artificial Neural Networks have received considerable 
attention [75]. Genetic algorithms (GA) and Support Vector 
Machines are other options which have been successfully utilised in 
multivariate regression problems [76] although direct visualisation 
and therefore interpretation of the identified spectral variables is 
not as simple.  
A brief description of a selection of these multivariate methods 
employed in spectral analysis is given in the following sections. 
 
K-Means Cluster Analysis 

K-means clustering analysis (KMCA) is a statistical method which 
aims to partition data into clusters based on similarity. Firstly the 
method chooses a number of seed locations which serve as initial 
centroid locations in the dataset. Once a data point is assigned to 
one of the seed locations, it changes to a centroid which serves as a 
mean value of that cluster. The assignment of data points to 
clusters is often based on the Euclidean distance between data 
point and centroid, although other methods of calculating the 
distance also exist [77]. After each spectrum has been assigned to a 
centroid, the distance is then recalculated between each point and 
centroid to see if any points are closer to another centroid location, 
whereupon, if the point is closer to another cluster centroid, then it 
is reassigned and both cluster centroids are changed as a result. 
This process is completed for all data points until there is no 
movement between clusters.   
 

 
Figure 4. Schematic outlining the key steps in the K-Means 

Clustering Analysis algorithm. 
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From a spectroscopic imaging perspective, an initial number of seed 
locations is chosen. The spectra are then assigned to one of the 
seed locations. Once all spectra have been assigned, the mean 
spectrum or centroid is calculated and the distance between each 
spectrum and centroid is calculated. The spectra are then 
reassigned if necessary and the process is iterated until no spectra 
change groups. Figure 4 shows a diagram illustrating the main steps 
in the K-means clustering algorithm. 
 

(I) 

 

(II) (III) 

 

Figure 5: I; (A) Microscopic image of an A549 cell, showing the 
reduced area identified for spectral mapping. (B) K-means cluster 
map of the Raman profile of the same reduced area. II; K-means 
spectra of clusters 3 (A – representing nucleoli), 6 (B – representing 
nucleus), 1 and 4 (C and D, both from the cytoplasm). Spectra are 
offset for clarity. III; K-means spectrum of Cluster 5 (A), compared 
to the Raman spectrum polystyrene nanoparticles (B). Spectra are 
offset for clarity. (Reproduced from Royal Society of Chemistry [12]) 

In vibrational spectroscopy, KMCA has seen a number of uses to 
separate spectra into clusters based on spectral similarities. As an 
imaging tool, KMCA aims to separate each spectrum acquired in the 
image and assign it to a cluster. This assignment is termed ‘hard’ in 
that each spectrum is only assigned to one cluster. A good example 
of KMCA in Raman spectroscopy is shown in the study by Dorney et 
al. [12], in which it was used to identify regions in the Raman 
dataset which correspond to polystyrene nanoparticles, and 
differentiate them from neighbouring cytoplasm, as well as the 
nucleus and nucleolus (Figure 5). Many other examples of KMCA as 
a spectroscopic imaging reconstruction technique can be found in 
the investigation of a wide range of samples including tissue 
sections [78], cells [12, 79, 80] and in the analysis of human skin 
[26, 81].   
While this method has been shown to be useful in partitioning 
spectra into clusters, it is important to highlight that the method is 
not without certain pitfalls. Firstly, as the initial choice of centroid 
location can be subjective, the reproducibility of the method can in 
some instances be called into question i.e. if the initial starting 
point of the analysis changes then it is possible to end up with 

different results. It is important to ensure enough iterations (50-
100) such that convergence is reached Secondly, looking at the 
method to assess spectral imaging, each spectrum is assigned to 
only one cluster, and the cluster is represented by the average of all 
constituent spectra. As a spectrum may represent a number of 
different biological entities in differing quantities, KMCA may be 
correct in grouping a spectrum based on, for example, lipidic 
distribution, but it may misclassify a spectrum which also contains a 
small amount of another cluster’s biochemistry. There is no 
weighting element introduced into the analysis so each spectrum 
must belong to only one cluster. 
 

Hierarchal Cluster Analysis  

Hierarchal clustering analysis is a multivariate method which is 
commonly used for clustering spectral data and generating images.  
There are two main forms of HCA, agglomerative and divisive. 
Agglomerative HCA is the more commonly used method. Briefly, 
this method starts out with each data point or spectrum in a 
separate group or cluster. The method then aims to group each 
data point together in an iterative process until there is only one 
cluster which contains all the data points. It is then possible to 
construct an image based on how these clusters are linked 
together. Often, the data can be represented using a two 
dimensional dendrogram which shows the linkage between each 
cluster. Divisive HCA on the other hand starts off with each 
spectrum in one cluster and then aims to separate each data point 
into one cluster.  

 
Figure 6: Showing a HCA dendrogram and both divisive and 

agglomerative clustering.  

Page 6 of 12Chemical Society Reviews



Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 7 

Please do not adjust margins 

Please do not adjust margins 

An example dendrogram is shown in Figure 6. An important point in 
relation to HCA is that, once a group of spectra has been assigned 
to a cluster or in the case of the agglomerative method merged into 
a cluster, the spectrum cannot be reassigned, unlike KMCA where 
the spectra can move clusters if closer to another centroid. This 
means that HCA results in a very definite grouping of spectra into 
clusters. In spectral datasets, it is assumed that all samples in a 
study (with the exception of outliers) belong to the overall source 
cluster, and individual spectra are clustered in an agglomerative 
approach.  Assigning spectra to a cluster is based on the pair-wise 
similarity expressed as a matrix of correlation coefficients. The 
threshold of similarity is somewhat subjective, although algorithms 
are available to optimise performance [82, 83]. 
Although commonly performed in an unsupervised manner (UHCA), 
HCA can also be performed in a supervised or semi-supervised 
manner. UHCA is based on statistical similarity of the data but does 
does not take any of the experimental variables such as treatment, 
phenotype, tissue, etc. into account while clustering. In contrast, 
supervised or semi-supervised clustering utilises such additional 
information to “guide” or “adjust” the clustering process [84].  
HCA is like KMCA in that the method is deemed to be a hard 
clustering method with each spectrum being assigned to a specific 
group. From an image reconstruction perspective, this means that 
each pixel can only be assigned to one specific biochemical 
grouping, which may not be reflective of the actual dataset. HCA 
has been used in a classification method in  number of studies 
which include cellular studies [85] as well as in the investigation of 
vibrational spectroscopy in diagnostics [86].     
 
Vertex Component Analysis  

Vertex component analysis (VCA) is another multivariate statistical 
method which is used in spectral analysis [87]. The algorithm makes 
an assumption that, contained within the dataset, are pure 
endmember spectra which in turn can be used to describe all the 
other spectra in the dataset. From this, abundance plots can be 
generated via a linear combination of endmember spectra and 
constructed into images which are described by the biochemical 
information contained in these endmember spectra.  
Recently, VCA has seen a number of applications in hyperspectral 
imaging using both IR and Raman spectroscopy, with applications 
including Raman histopathological imaging and also cellular studies 
including nano-bio interactions [88] Importantly, while this method 
can be used quite readily to reconstruct biochemical regions in the 
cell, like all methods it may be prone to error. Firstly, as highlighted 
by Chernenko et al. [88], endmember spectra may contain mixtures 
of different biochemical components and while this may be 
reflective of the actual nature of the sample, may lead to 
inaccuracies in interpretation. Additionally, the method makes a 
large assumption that the most extreme spectra in the dataset are 
the most reflective of pure component spectra, which may not be 
the case in complex biological spectra.  
 
Fuzzy C – Means Clustering  

Fuzzy C-means clustering (FCM) is a method which is similar to 
KMCA in that it also assigns spectra to centroids in the datasets. 
However, unlike KMCA, the method is a soft clustering method, 
whereby each point or spectrum in the dataset is assigned a value 
from 0 to 1, the value closest to 1 being representative of the 
cluster centre. Therefore, by analysing the C centroid spectrum it is 
possible to extract chemical information which describes each 
reconstructed image. FCM has seen some usage in Raman 
spectroscopy although primarily as an imaging method [79, 80]. 

Principal Components Analysis  

Principal Components Analysis (PCA) is a method which aims to 
reduce the dimensionality of the data to describe the variation 
present in a dataset, whereby the first principal component is a 
description of the maximum variance present in the dataset, the 
second describes the second most variance, etc. The principal 
component scores can then be described by the loading vector 
which is an explanation of this variance. In a spectroscopic context, 
the scores represent values which correspond to a loading 
spectrum which contains peaks, both positive and negative which 
explains the spectral variation in the dataset.  
This tool can be quite useful for providing a method to separate 
spectra into groups e.g. diseased and non-diseased [69]. It has also 
been used to reconstruct images [79,80] i.e. a variance plot based 
on the loadings plot. However, as these loadings plots may often 
contain a number of spectral features corresponding to different 
cellular biochemistry, interpretation can be difficult and it is quite 
possible to misinterpret.  
Bonnier et al. have shown that pairwise PCA of clusters identified by 
KMCA can provide a clearer picture of the specific biochemical 
differences between regions [89]. In simulated mixtures of multiple 
components, the loadings can be seen to be weighted linear 
combinations of the spectra of the contributing spectra, as shown in 
Figure 7. As an example of the benefits of this approach, the dose 
dependent spectral changes induced by simulated solar radiation in 
the basal layer of a reconstructed skin model could be tracked 
according to the loading of the first principle component of the 
variation of the irradiated skin section compared to control [90].   

 

 
Figure 7: Mean Raman spectra recorded from RNA (A), histone 
(B) and ceramide (C) on CaF2 windows. II: Scores plot of the 2 
first principal components after PCA performed on Raman 
spectra recorded from RNA, histone and ceramide. III: Plot of 
the loadings of PC1 (blue dot line) compared with the 
difference spectrum calculated from the mean spectrum of 
ceramide minus the mean spectrum of RNA (red dash line). 
The loadings are compared with spectra recorded from 
ceramide (A) and RNA (C), both offset for clarity. IIIB: Plot of 
the loadings of PC2 (blue dot line) compared with the 
difference between the mean spectrum of histone minus the 
average mean spectrum of RNA and ceramide (red dash line). 
(Reproduced from Royal Society of Chemistry [89])  

 
Classic Least Squares Analysis – supervised/Unsupervised  
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Classic Least Squares Analysis (CLSA) can be carried out in two 
different ways, either by generating spectral models using a factor 
analysis algorithm (unsupervised), or by manually inputting the 
component spectra (supervised).  
The analysis method is based on a fit of a linear combination of 
reference component spectra to the spectra contained in the raw 
spectral map. There are two different ways to obtain the reference 
component spectra. The first way is to obtain a pure spectral 
reference from a compound or compounds which can then be 
fitted. The second method uses a factor analysis algorithm to 
generate the component spectra, the weighted sum of which is 
compared to the Raman spectral data set. Using the latter of the 
two methods, Zavaleta et al. demonstrated the power of the 
technique to quantify quantum dot accumulation in an in-vivo 
mouse model and to separate out the different spectral 
contributions from complex SERS signals in the same data set [91]. 
In a similar and different way, both approaches to CLSA were 
explored to extract spectra which contain polystyrene nanoparticles 
from a cellular Raman map and define other biochemical regions 
such as the RNA and lipid rich environments [13]. The example of 
the unsupervised CLSA analysis map is shown in Figure 8.  
Notably, however, the unsupervised approach generates 
factors which are mixtures between different components. In 
the supervised case, the pure spectra are input into the 
analysis and a map of the relative contributions is similarly 
generated. However, for the same case of polystyrene, RNA 
and lipids in a subcellular environment, all individual 
components generated a background over the whole cell area 
and a thresholding of the data was required to produce a 
trustworthy image. Although such a thresholding procedure is 
somewhat arbitrary, the support of simulated datasets can add 
confidence to the procedure [13]. 

 
Figure 8: Clustering of spectra identified by unsupervised CLSA. (A) 
Spectral models generated from the analysis protocol and used to 
generate the clustered map shown in (B). The right panel (C-I) 
shows the distribution of each model created in the map. Of 
particular note, model 1(C), model 6(D) and model 7(H) have strong 
contributions of the spectra of polystyrene, RNA and lipid 
respectively. The spectra in (A) are colour coded and correspond to 

images (B – F), with the exception of Model 6 which corresponds to 
the white image in (D). (Reproduced from Royal Society of 
Chemistry [13]) 
 
Spectral Cross Correlation Analysis  

A novel analytical technique of Spectral Cross Correlation Analysis 
(SCCA) was also applied to the data set analysed in Figure 7 [13]. 
For SCCA, reference spectra from polystyrene, phosphatidyl-
ethanolamine and RNA (Figure 9) were used to screen the Raman 
spectral data set using a cross-correlation algorithm. The cross 
correlation function integrates the product of the two data series 
(spectra) at each point as they are shifted relative to each other 
along the x axis (wave number). The magnitude of the correlation 
quantifies the relative contribution of the component spectrum at 
that point in the cell, and an exact correlation occurs when the 
spectra are exactly matched (auto-correlation). In this way, it is 
possible to screen the map or spectra in the map and, based on the 
cross correlation function, cluster different biochemical regions of 
the cell based on the relative contributions of the reference 
spectrum used.     
The results of such a SCCA of the subcellular localisation of 
polystyrene, RNA and 3-sn-phosphatidyl ethanolamine is shown in 
figure 9. Similar to the case of unsupervised CLSA, a considerable 
background of each component across the cell is observed initially, 
and a thresholding procedure was required to improve the 
precision of the technique. Simulated datasets generated for SCCA 
provided a good estimation of where this thresholding should take 
place and in combination with cellular data containing no 
nanoparticles it was possible to accurately reveal where the 
nanoparticles were located in the cell. 

 

 

Figure 9: SCCA analysis using component spectra of polystyrene (A), 
3-sn-phosphatidyl ethanolamine (B) and RNA (C). The spectrum of 
each pure component is shown on the left of the figure and the 
correlation maps for non-thresholded shown in the middle and 
thresholded on the right. (Reproduced from Royal Society of 
Chemistry [13]) 

 

Partial Least Squares Regression  

Recently, regression modelling has seen a number of biomedical 
applications in both Raman and IR spectroscopies. Partial least 
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squares regression (PLSR) is an analytical technique which aims to 
match a test data set to a series of targets. The core idea of using 
this method is to investigate the spectral variability as a function of 
a systematic conditional change such as radiation dose [5] or viral 
infection [4]. PLSR can be employed to construct predictive models 
for spectral response as a function of the target variable. Therefore, 
an unknown dose or degree of infection can be determined from its 
spectrum, having obvious potential clinical applications. 
Furthermore, feature selection techniques such as PLSR co-
efficients, Jack-Knifing (JK) and genetic algorithms, amongst others 
[92], can be employed to identify the most statistically relevant 
spectral changes, such that the biological mechanisms underlying 
the spectral changes can explored and understood.  
A good practical example of this method in action in Raman spectral 
data is outlined in two studies by Nawaz et al., [6,7] in which, the 
aim was to investigate the capability of Raman as a technique to 
study drug interactions in cells and the physiological response. 
Looking specifically at cisplatin as an example chemotherapeutic 
drug, these studies were able to extract information relating to drug 
action in the cells via regression of the Raman dataset against 
cytotoxicological data and dose, extracting out features from the 
Raman spectra which correspond to changes to protein 
conformation and structural alterations of DNA [6]. A further study 
by Keating et al. demonstrated the validity of the technique, as well 
as potential pitfalls, resulting for example from cross contamination 
of targets for limited data ranges, using simulated datasets in which 
the systematically varied drug dose and cell viability dependent 
spectral variables were known [93]. 
Importantly, while these studies show the potential of Raman 
spectroscopy and PLSR as tools for studying drug interaction, PLSR 
used in this capacity is only relevant if the processes studied are in 
themselves linear. However, most pharmacological actions are non-
linear processes and thus using a linear method to model a non-
linear process may be subject to error. Thus, additional forms of 
validation of these methods in a spectral setting are necessary. 
 

Artificial Neural Networks  

Artificial neural networks (ANN’s) are considered ‘nonparametric 
nonlinear regression estimators’ [75, 94] because of their ability to 
determine relationships between one or more input or 
‘independent’ variables and one or more output or ‘dependent’ 
variables, regardless of the form of the function defining the 
relationship between the two sets of variables. Inspired by 
biological neural networks, their popularity stems from their 
general applicability to any problem [95], and they have seen 
applications in radiation science to dose-dependent models for flow 
cytometric analysis [96], for the prediction of depth dose in 
radiotherapy [97], and for neutron dosimetry [98]. Udelhoven et al. 
have demonstrated the use of artificial neural networks in 
conjuction with a hierarchical classification of FT-IR spectra for the 
identification of bacteria [99], while Lasch et al. have demonstrated 
the use of Artificial neural networks as supervised techniques for 
FT-IR microspectroscopic imaging [100]. ANN’s have the potential to 
‘over-fit’ noisy features within the input variables if the model is 
overly complex [75,94], and careful training and rigorous evaluation 
of the network is required to prevent this. 
 
Genetic Algorithm  

Calibration models are known to be greatly improved through the 
application of efficient feature selection methods, increasing the 
predictive ability and reducing model complexity. One such method 
is the adaptive search technique known as the genetic algorithm 

(GA). A GA based variable selection procedure is used to reduce the 
original spectra to a subset of wavenumbers to correlate the 
spectra to response. The first generation for evaluation is a random 
population consisting of a number of individuals or “chromosomes”, 
each containing a subset of the original variables. Each 
chromosome is composed of a vector of 1s and 0s, corresponding 
to the wavenumbers in the X matrix, (1 if selected and 0 if not) 
where each wavenumber is termed a “gene”. The performance of 
models resulting from each chromosome is determined by means 
of a fitness function (e.g. the root mean square error of cross 
validation is used). Once each generation is evaluated, a new set of 
chromosomes is produced by retaining and “crossing” over the 
fittest individuals from the previous generation. “Mutations” are 
also produced which force the evaluation of new combinations 
avoiding saturation with similar sets of events and can further lower 
the number of variables and fitness values. The process continues 
until the difference in mean fitness level between successive 
generations is below a certain threshold, whereupon the GA is 
terminated to avoid over-training and avoid the risk of over fitting 
[101-103]. 
Genetic algorithms have found a number of applications in 
biospectroscopy, including in selection of preprocessing parameters 
for multivariate regression [104], as well as feature selection 
[76,105, 106]. 

Summary and Conclusions 

Much progress has been made in recent years towards 
understanding the confounding factors which influence the 
integrity of vibrational spectra of biological tissues and cells. The 
potential of the techniques for biomedical and biochemical analysis 
applications lies in the ability to fingerprint the biochemical 
content, and changes to it, at a molecular level, in a label free 
manner. Such samples are intrinsically chemically and physically 
inhomogeneous, however, and it is important to differentiate the 
intrinsic biochemical profiles from confounding factors associated 
with sample scattering of instrumental responses. 
In this context, a fundamental starting point is the quality of the 
recorded spectra, which can be influenced by sample presentation 
and measurement protocols. In IR absorption, wax embedded 
samples have been shown to exhibit minimal scattering artefacts, 
and measurement in attenuated total reflectance or using an 
integrated sphere can also reduce the associated spectral 
distortions. In Raman spectroscopy, large stray light backgrounds 
due to scattering of the source as well as the Raman bands 
themselves can be minimised by measurement in immersion, the 
water acting as an index matching fluid. 
In both modalities, background can be minimised by appropriate 
choice of substrate. However, for applications in a clinical 
environment, cost implications may be a determining factor. In the 
case of IR for ex vivo clinical applications, a current imperative is to 
establish whether the spectral distortion associated with the EFSW 
effect are sufficient to dominate over the spectral variations 
associated with the pathological target, a consideration which may 
determine whether low cost, low-E slides can be employed for 
routine screening in the transflection mode, or whether more 
expensive transmissive slides are required.  
The validation of the RMieEMSC correction algorithm using 
simulated datasets, in which known target spectra were distorted 
with various degrees of “dispersion artefacts” as well as other 
instrumental factors, demonstrates the importance of establishing 
confidence in the data processing protocol, based on knowing the 

Page 9 of 12 Chemical Society Reviews



ARTICLE Journal Name 

10 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

“right answer” [20]. A similar approach was taken by Keating et al., 
in exploring the relative merits of supervised and unsupervised CLS 
as well as SCCA in the biochemical profiling of subcellular spectral 
maps [13], as well as the validity of PLSR of spectral data against 
dose and cytotoxicity dependent targets to yield independent 
information regarding the direct chemical interaction of drugs 
within cells, and the subsequent, indirect cytological responses [93].  
To date, a range of multivariate analytical techniques have been 
developed and applied to biospectroscopic datasets, in an academic 
context. Depending on the application, linear or nonlinear, 
supervised or unsupervised, may be most appropriate, although no 
extensive comparison of the range of techniques has been 
undertaken. Given the range of protocols for both pre and post 
processing, it would be of great benefit to the research community, 
and for the standardisation of protocols, towards clinical 
translation, to similarly validate all protocols against an established 
simulated dataset. 
Regardless of the techniques applied or specific target application, 
it remains of critical importance that all details of data pre- and 
post- processing procedures are provided in publications. It remains 
similarly important to cross reference the spectral analysis with 
established biological or so-called “gold standard” clinical assays. 
Although clinical histology and cytology is primarily based on 
morphological changes, it is important to demonstrate that the 
analysis of the underlying biochemical changes can augment 
established practices, and ultimately improve on the understanding 
of disease onset and progression. Critically, while the research 
environment has demands on demonstrating the reproducibility of 
data, the demands of clinical deployment are substantially more 
rigorous. Studies must, therefore, be extended to use of a clinically 
appropriate scale and statistical analysis to be considered 
meaningful.  
In terms of applications such as screening for modes of actions and 
efficacies of, for example, chemotherapeutic agents, correlation 
with established biochemical assays can help to establish spectral 
markers, which could lay the foundation for the development of 
high content, label free analysis based on spectral-omics. 
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