Recent developments and future prospects of all-metal aromatic compounds

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Chemical Society Reviews</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>CS-REV-04-2015-000341.R1</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Review Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>29-May-2015</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Ugalde, Jesus; Euskal Herriko Unibertsitatea, Kimika Fakultatea
Ugalde, Jose; Euskal Herriko Unibertsitatea, Kimika Fakultatea
Boldyrev, Alexander; Utah State University, Department of Chemistry and Biochemistry
Merino, Gabriel; Centro de Investigaciones de Estudios Avanzados, Departemento de Fisica Apliclada |
Recent developments and future prospects of all-metal aromatic compounds

Jose. M. Mercero, Alexander I. Boldyrev, Gabriel Merino and Jesus M. Ugalde

The usefulness of the aromaticity/antiaromaticity concepts to foresee structural stability patterns and salient features of the electronic structure of small inorganic and all-metal rings has been put forward. A critical revision of the advances made in the theoretical methods to assess the aromaticity/antiaromaticity of these compounds has also been made. In particular, the performance of local versus non-local indices has been reviewed. Finally, the passivation of these rings has been put forward as key issue in order to prevent them from collapsing into larger aggregates and to provide them protection against the environment.

1 Introduction

Aromaticity in chemistry was introduced by German chemist Friedrich August Kekulé, who used this term to characterize unexpectedly low reactivity in a set of molecules, derivatives of benzene. In his aromatic set actually had a specific odor. Since that, the aromaticity "tent" has been extended to a large number of organic species starting from C$_2$H$_3$ cyclopropenyl cation to polycyclic hydrocarbons, which are present in oil, coal and even DNA molecules and all building-blocks that support of all known forms of life. Today we think that aromaticity exists because of a specific chemical bonding pattern, which cannot be represented by a single Lewis structure, and consequently, we need to use either a resonance of few Lewis structures or a multicenter bonding type description in order to get a chemical bonding structure consistent with the usually high symmetry geometry of the aromatic molecules.

Aromaticity itself constitutes one of the many useful but loosely defined concepts that conform modern chemistry concepts' toolbar. Some of them, aromaticity included, have no precise meaning and do not denote directly measurable quantities, albeit they are based mostly on experimentally "observable" measurements. Thus, aside for their "aroma", not necessarily always nice, it is firmly established that "aromatic" molecules are often more stable and their geometries more regular than expected a priori. Additionally, they are barely reactive, in spite of having a number of unsaturated bonds. These unsaturated bonds are not localized, but delocalized through the molecule and confined within the molecule.

Hückel in 1931 formulated his $(4n+2)$ rule for the ground singlet states of ring-like molecules having delocalized π-type molecular orbitals, n being the number of delocalized π-type molecular valence electrons. Hückel's formula establishes the link between the molecular electronic structure and aromaticity, which was completed by Baird who found that for spin states of multiplicity higher than singlet the Hückel's electron counting rule should be modified accordingly. Further extensions of the Baird's rule have been revised recently. Thus, in the beginning it was thought, in accordance with Hückel's theory, that aromatic molecules were annular like with $(4n+2)$ atomic π-type electrons arranged in spin-coupled pairs into $(2n+1)$ π-type delocalized molecular orbitals, being n an integer number, i.e., $n \in \mathbb{N}$. However, these constrains were soon lifted and thus, Dewar introduced the concept of σ-aromaticity to account for the anomalous magnetic behavior of cyclopropane by extending Hückel's aromaticity rule to the skeletal σ-type electrons.

a IZK-SGI SGiker, Euskal Herriko Unibertsitatea (UPV/EHU), P.K. 1072, 20080 Donostia, Euskadi (Spain)
b Department of Chemistry and Biochemistry, Utah State University, 0900 Old Main Hill, Logan, UT 84322 (USA)
c Departamento de Física Aplicada, Centro de Investigación de Estudios Avanzados, Unidad México, Km. 6 Antigua Carretera a Progreso, A.P. 73, Cordemex, México 97310
d Kimiko Fukuizumi, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi (Spain)
though explicit evaluation of the σ-aromatic stabilization energy of cyclopropane relative to propane16 amounts only 3.5 kcal/mol and, hence, fails to provide strong evidence for any σ-aromatic effect, the concept has found its way ahead as a key feature for explaining the magnetic and energetic properties of a series of inorganic ring-like clusters.17 These two types of aromaticity (π-type and σ-type) have been found to occur simultaneously in many molecules.18 Sometimes they cooperate to render an enhancement of the aromaticity and sometimes they act antagonistically lowering the aromaticity. Finally, Breslow introduced in chemistry a concept of antiaromaticity19. Unlike aromatic molecules, antiaromatic compounds are highly unstable and highly reactive and they obey Hückel (4n) either σ or π rule.

Nonetheless, Hückel's (4n+2) and (4n) rules for aromaticity and antiaromaticity, respectively, provide simple probes of aromaticity and antiaromaticity from the molecular electronic structure perspective. These probes are only qualitative, "yes or no" like. They tell us whether a molecule is (anti)aromatic or not, but do not tell us how much (anti)aromatic it is. In order to get a quantitative approach to (anti)aromaticity, we need to use other probes,20 such as the energetic criterion, the geometric criterion, the magnetic criteria, and probes for the reactivity of the particular chemical system.21

Aromaticity and antiaromaticity have also been extended to the realm of non-carbon molecules. All-metal aromatic compounds22 have raised increased interest since the earlier prediction of the aromaticity of transition metal metallocyclopendiadienes, made by Thorn and Hoffmann in 1979. Recently, Bleeke24,25, Wright26, Lanford and Haley27, and Fernández et al.28 have reviewed the significant progress made in the chemistry of transition metal metallocycles.

Aside from metallocycles, which contain binary rings made of metals and carbon, organometallic coordination compounds containing all-metal aromatic rings have also been synthesized. The earlier ones belong to a family of group 13 three-membered rings and were investigated by Robinson et al.29-32. The ditopasium tris(2,6-dimesitylphenyl)cyclogallene, $K_2\{Ga(R)_3\}$, with $R=(Mes_2C_6H_4)$ and $(Mes=2,4,6-Me_2C_6H_3)$, was the first one synthesized (see Fig. 1). This molecule possesses a stabilizing doubly occupied π-type valence molecular orbital delocalized over the three gallium atoms,29 which satisfies Hückel aromaticity electron counting rule (4n+2) with $n=0$. Subsequent theoretical analysis of the $M_2\{GaH_3\}$, $M=Li$, Na and K, model compounds33 revealed that the GaH_2^{2-} core is indeed best described as metalloaromatic, which contains a metal ring system exhibiting traditional (organic) aromaticity. This has permitted to take a new look to a number of inorganic salts, already reported in the open inorganic chemistry literature. Thus, compounds such as (2,2,2-crypt-K$^+\cdot$Sb$^{2-}$) salt containing planar square Sb$^{2-}$ 34, [($\eta^5\cdot1,2,3$-tBu$_2C_5H_2$)Mo($\mu\cdot\eta^5\cdotSb_2$)Mo($\eta^5\cdot1,2,3$-tBu$_2$C$_5H_5$)] and [($\eta^5\cdot1,2,4$-tBu$_2C_5H_2$)Mo($\mu\cdot\eta^5\cdotSb_2$)Mo($\eta^5\cdot1,4$-tBu$_2$-2-Me$_3C_5H_3$)] containing slightly distorted antimony pentagon Sb$_5^-$ ring35, and 2,2,2-crypt-potassium tetrabismuthide2-, (C$_{18}$H$_{36}$N$_2$O$_8$K$^+$)$_2$Bi$_4^{2-}$ compound containing a perfectly planar square Bi$_4^{2-}$ dianion,36 can be described with the help of aromaticity.

Since then, the structure of a number of additional metalloid and metal rings have been revised and their geometrical and electronic structure features rationalized in terms of aromaticity. Thus, the experimental characterization of the planar square rings Se$_4^{2+}$ and Te$_4^{2+}$ dications has been communicated37-39, as well as the Sb$_5^-$ anion.40 In the same vein, the planar pentagonal rings, As$_5^-$, Sn$_5^{2-}$ and Pb$_5^{2-}$ which have been experimentally characterized41-43 and Si$_5^{4-}$ can be best described as all-metal aromatic rings. Also, ring-like compounds of transition metal elements only, have been reported to show signs of δ-aromaticity, as arising from the full occupation of the bonding molecular orbitals made of the linear combinations of their d_{π}-type atomic orbitals.45-47 Since the introduction of aromaticity in metal systems, many new aromatic/antiaromatic chemical species composed out of main group and transition metal atoms were discovered. These new advances have been recently reviewed22,47-57.

Finally, it is worth mentioning that aromaticity has also been extended to three dimensional systems and the term spherical aromaticity coined58,59 for polyhedral hollow molecular structures with $2(n+1)^2$, $n \in \mathbb{N}$, delocalized electrons. However, in
this review we shall be concerned with aromaticity in planar \(n \)-membered all-metal ring-like compounds.

2 The Advantages of Planarity: The Aromaticity of Small Boron Clusters.

Planarity is one of the most salient common features of aromatic organic molecules\(^{60}\), and this imposes stringent constraints to their electronic structure because they must conform to the symmetry and the boundary conditions set up by the confining attractive potential of the actual molecular framework. Thus, the stability of the electronic structure of the delocalized electrons is found to be very sensitive to the number of delocalized electrons within the molecular framework and to the geometrical deformations of that structure relative to its high symmetry one. This well-known feature of carbon aromatic molecules can also be seen in molecules made of elements other than carbon. The \(\text{B}_{13}^+ \) cluster constitutes one such example where planarity provides a means of acquiring additional stabilization through aromaticity.

The \(\text{B}_{13}^+ \) bare cluster first proved to be an intriguing species through the experiments carried out in Anderson’s laboratory\(^{61}\). They noted that the mass distribution of their laser ablated boron rods yield numerous “magic numbers” in the range \(n = 1–20 \). However, when these resulting clusters were proven by collision induced dissociation experiments, only \(\text{B}_{13}^+ \) and \(\text{B}_{13}^- \) appeared. Kawai and Weare, Boustani, Ricca and Bauschlicher and Fowler and Ugalde contributed to this endeavor and, finally, it was established by Ricca and Bauschlicher\(^{62}\) that the ground state structure of \(\text{B}_{13}^+ \) was the planar \(C_3 \) symmetry shown on the left of figure 2. It was, nonetheless, disturbing that the most stable isomer of \(\text{B}_{13}^- \) was not a 3D filled icosahedral structure, for it was thought its high stability could be attributed to the structural compactness provided by such a 3D structure with maximized atomic coordination. In this context, the planarity of \(\text{B}_{13}^+ \) was seen as an impediment towards its lack of reactivity.

However, Fowler and Ugalde\(^{63}\) noticed that \(\text{B}_{13}^+ \) could indeed take advantage of its planarity. They proposed that the unexpected stability of \(\text{B}_{13}^+ \) was ascribable to its aromatic character, an observation based on the calculated doubly occupied \(\pi \)-molecular orbitals of \(\text{B}_{13}^+ \), which were found to be reminiscent of those benzene and consequently of Hückel aromaticity.

Figure 3 compares the Kohn–Sham \(\pi \)-orbitals of benzene (b) and the corresponding molecular orbitals of \(\text{B}_{13}^+ \), Ricca (r) and Boustani’s (B)\(^{64}\) structures. The orbital nodes are marked, and observe that orbitals with 0 and 1 node are binding orbitals while the 2 nodes orbitals are antibonding. On that other hand, the molecular orbitals of the Ricca isomer resemble, basically, \(\pi \)-molecular orbitals of a round system like benzene. Remembering basic Hückel molecular orbital theory of aromaticity, six electrons (that is: \(4n+2 \), with \(n = 1 \)) must fill three \(\pi \)-molecular orbitals, the lowest one in energy being nondegenerate with no nodes and the remaining two \(\pi \)-molecular orbitals being degenerate and having one node each. This is exactly the case of the Ricca isomer as shown in figure 3. The MOs of the Boustani system are split because of its oval shape. Both the Boustani and Ricca cationic clusters have six \(\pi \)-electrons, meaning that the orbitals labeled 0, 1a, and 1b (where the numbers indicate the number of nodes)
are filled with two electrons each. Note that the cationic Boustani structure adopts a C\textsubscript{5} structure so that the central atom does not lie along the central node seen in 1a of figure 3. This reduces the favorable interactions between that atom and the two atoms on the other side of the loop. Considering this geometric feature and the highly favorable \(\pi \)-delocalization of the rounder Ricca structure helps in understanding why this structure is the most stable of the cations.

This simplified molecular orbital diagram accounts also for the stability of the neutral and anionic forms of the B\textsubscript{13} cluster. As we move to the neutral and anionic cases, electrons are placed in the \(\pi \)-molecular orbitals with two nodes. The 2a orbital of the Boustani cluster will, of course, be filled first, but the Ricca cluster has open a pair of quasi-degenerate orbitals, both of which lie higher in energy than that available to the Boustani isomer. Thus, the addition of one electron to the cationic clusters reduces the energetic difference between both of them. This effect is repeated when a second electron is added making the Boustani anion more stable than the Ricca anion. This very basic diagram is in perfect agreement with the prediction of a singlet ground state for the Boustani anion, a triplet ground state for the Ricca anion, and the difference in relative energies among the various charge states. It is also in support of the argument that the B\textsubscript{13} cationic cluster is especially stable because it is aromatic.

In support of this interpretation, Alhara evaluated the topological resonance energy (TRE) for the \(\sigma \)-electrons of B13+ using graph theory65. He found that the TRE of the Ricca’s isomer of B13+ is positive in sign and very large in magnitude: Tre = 2.959 [\(| \beta_{BB} |\)]. This number can be compared to aromatic hydrocarbons with similar size, such as the phenalenium (C\textsubscript{13}H\textsubscript{9}+) TRE = 0.410 [\(| \beta_{BB} |\)], anthracene (C\textsubscript{14}H\textsubscript{10}) TRE = 0.475 [\(| \beta_{BB} |\)], and phenantrhene (C\textsubscript{14}H\textsubscript{10}) TRE = 0.576 [\(| \beta_{BB} |\)]. On the basis of the TRE value, B13+ is much more aromatic than polycyclic aromatic hydrocarbons of similar molecular sizes.

Finally, it is worth mentioning that like in case of other large boron clusters, the \(\sigma \)-bonding was discussed later by Wang and Boldyrev66. According to their \(\sigma \)-bonding analysis, the B13+ cation is also a \(\sigma \)-aromatic system. Indeed, they showed that, out of the 19 MOs, 10 \(\sigma \)-MOs are responsible for 10 2c-2e B–B peripheral bonds, 3 \(\sigma \)-MOs are responsible for 3 2c-2e B–B bonds between central boron atoms, and 3 \(\sigma \)-MOs are responsible for global delocalized bonding between the 3 central boron atoms and the 10 peripheral boron atoms. Consequently, B\textsubscript{13}+ is best described as a doubly (\(\sigma \)- and \(\pi \)-) aromatic system.

This double aromaticity is responsible not only for its rather round shape, extra stability, and low reactivity, but also for a number of dynamical properties which could find applications in molecular devices’ science67,68. Thus, Martinez-Guajardo et al.69 demonstrated computationally that B\textsubscript{13}+ has a fluxional behavior featuring an almost free rotation of the inner B\textsubscript{3} moiety with respect to the outer B\textsubscript{10} ring. The relative rotation of the concentric B\textsubscript{3} equilateral triangle and the B\textsubscript{10} ring of B\textsubscript{13}+ was further examined by Zhang et al.70, who proposed that the relative rotation of the two moieties of B\textsubscript{13}+ could be triggered by applying an external laser field. When a circularly polarized external electric field is applied perpendicular to the molecule plane, the symmetry is broken and the system is expected to preferentially rotate unidirectionally because one of the directions is essentially barrierless while the other is hindered by a heightened energy barrier.

Wang and Boldyrev during their fifteen years joint experimental and theoretical quest for understanding geometric and electronic structure of negative boron clusters established that small and medium size boron clusters are planar or quasi-planar and developed a comprehensive chemical bonding model based on double aromaticity, which is able to rationalize chemical bonding in these clusters66,71. They showed how this multiple aromatic-

![Fig. 4 Adaptive Natural Density Portioning chemical bonding pattern of the benzene molecule and B\textsubscript{9} cluster. ON stands for occupation numbers.](image)
plane. If one accepts \(\pi \)-aromaticity in this cluster, one must accept its \(\sigma \)-aromaticity. This simple bonding picture allows us to understand why we have bond length equalization in this cluster, why it has a ring current similar to benzene, why its first electron detachment energy is high, which are all characteristics of aromaticity. This comprehensive model led design and experimental observation of the remarkable wheel-structure for \(\text{Ta@B}_{10}^{-} \) cluster (Figure 5) with the record coordination number of 10 in a planar environment.\(^{74-76}\) One can see that it is not easy to understand chemical bonding in \(\text{Ta@B}_{10}^{-} \) cluster using canonical MOs (Figure 5 (a)), but can be easily understood using the concept of double aromaticity (Figure 5 (b)). The AdNDP analysis determines 10 localized 2c-2e \(\sigma \)-bonds responsible for the \(\text{B}_{10} \) ring. It also revealed three totally delocalized \(\pi \)-bonds. Interestingly, there are five completely delocalized \(\sigma \)-bonds with 10 electrons, in contrast to the usual three delocalized \(\sigma \)-bonds observed in aromatic molecular-wheel-type planar boron or doped-boron clusters known so far. The 10 delocalized \(\sigma \)-electrons also fulfill the \(4n+2 \) Hückel rule for \(\sigma \)-aromaticity. Thus, \(\text{Ta@B}_{10}^{-} \) is doubly aromatic, but with a total of 16 delocalized electrons.

This suggests that the concept of double aromaticity is especially useful in describing chemical bonding in pure and doped boron clusters. In the following section we will describe it in terms of the valence molecular orbitals.

3 The Molecular Orbitals. Extending Hückel’s rules.

Let us consider an \(n \)-membered ring-like molecule of any particular main group atom and assume that all bond lengths of the ring molecule are equal. Now consider the valence \(s \)-type atomic orbital and the three \(p \)-type molecular orbitals of each of the atoms of our ring-like molecule. The valence molecular orbitals will arise from the linear combination of these atomic orbitals. Imagine, for each of the atoms of the ring, the axes system depicted in figure 6. They will be denoted as \(\pi \), the one perpendicular to the molecular plane, \(r \), the one on the molecular plane and tangential to the ring, and \(t \), the one oriented towards the center of the ring in the radial direction. Now we can build a simplified, but useful, model of the valence molecular orbitals of our \(n \)-membered ring-like molecule by forming four mutually independent linear combinations of the atomic orbitals lying on each of the three axes. Thus we will end up with four mutually uncoupled sets of molecular orbitals, which will be referred respectively, as the \(\sigma \)-type molecular orbitals, the \(\pi \)-type molecular orbitals, the \(\sigma \)-type molecular orbitals, and the \(\pi \)-type molecular orbitals. How the molecular orbitals of each of the four sets will be arranged with respect to their relative energy, is determined by the irreducible representations of the point group of the \(n \)-membered ring-like molecule, namely, \(D_{nh} \) group. The irreducible representations of the \(D_{nh} \), for \(n \geq 3 \) are at most of dimension two.\(^{77}\) Hence, the corresponding molecular orbitals will be at most doubly degenerate. Indeed, the resulting energetic ordering is shown in figure 7. For \(n \)-membered rings with \(n \) even, all the four sets are...
of valence molecular orbitals, i.e.: the σ-set, the π-set, the δ-set and the δ'-set, will be energetically ordered as shown in figure 7A, namely, they will come as one nondegenerate molecular orbital above $(n-2)/2$ degenerate molecular orbital pairs which are caved by one non degenerate molecular orbital at the very top.

Conversely, for n-membered rings with n odd, the σ, π-and σ, π-sets will be ordered as shown in figure 7B, with one nondegenerate molecular orbital below $(n-1)/2$ pairs of degenerate molecular orbitals, but the tangential, σ, set will be ordered as in 7C, namely, there will be $(n-1)/2$ pairs of degenerate molecular orbitals caved by one nondegenerate molecular orbital.

Naturally, the number of nodes of the molecular orbitals increases as one raises in energy. It should not be stated for sure, but as a rule of thumb we can assume that those molecular orbitals having fewer nodes will be occupied preferentially. Consequently, the occupation of the molecular orbitals of each set will depend on their relative energies with respect to those of the other sets. This constitutes the physical basis of the *multiple-fold* aromaticity concept, namely, the simultaneous occurrence of more than one set of valence molecular orbitals each of them conforming to the $(4n+2)$, $n \in \mathbb{N}$, Hückel’s electron counting rule.

This scheme can naturally be extended to d- and f-type atomic orbitals. The resulting combinations of the d-orbitals will be grouped into σ, σ, π, and δ-type molecular orbital sets. Finally, the f-atomic orbitals will form σ, σ, π, π, δ, δ, and ϕ-type molecular orbitals. A detailed description of these molecular orbital sets can be found elsewhere.

With this scheme at hand one has now to count the number of valence electrons of the molecule and place them into the corresponding molecular orbitals, observing both, the Aufbau principle and Hund’s rule. This will yield an approximate, albeit appealing picture of the electronic structure of the n-membered ring molecule of interest.

3.1 σ-π-Aromaticity in the Al$_4^{2−}$ cluster

The tetra-aluminum dianion, Al$_4^{2−}$, was isolated in Wang’s laboratory at PNNL, Richland, WA, as a bimetallic charge-compensated system of composition MAI$_4^−$, with $M = \text{Li, Na, or Cu}$). Wang and co-workers reported photoelectron spectra of bare CuAl$_4^−$, LiAl$_4^−$, and NaAl$_4^−$ clusters claiming that the planar square structure of the Al$_4^{2−}$ cluster, a building block of all these clusters, is aromatic. It was found computationally that CuAl$_4^−$, LiAl$_4^−$, and NaAl$_4^−$ clusters have pyramidal structures (Fig. 8) with the planar square of Al$_4^{2−}$ being a base of these pyramids. Comparison of calculation results and experimental photoelectron spectra confirmed these theoretical findings. Furthermore, the search for the global minimum of the metastable Al$_4^{2−}$ cluster revealed that the planar square structure was actually the lowest in energy. It is not stable with respect to an electron detachment, but when a compact basis set is used the obtained electronic structure is consistent with its electronic structure in the singly charged CuAl$_4^−$, LiAl$_4^−$, and NaAl$_4^−$ clusters (Fig. 8b and 8c). Detailed discussion of this issue can be found in ref. 82. The question is why the Al$_4^{2−}$ cluster adopts this high symmetry structure? The answer is because this dianion is doubly σ– and π–like aromatic. Indeed, four lowest canonical MOs go to form four lone pairs with one located on every aluminum atom and do not participate in chemical bonding.

Three other MOs are responsible for bonding in this cluster. The HOMO is a completely bonding π-MO. Two electrons on that MO make this cluster π-aromatic. The HOMO-1 is a completely bonding MO formed by radial p_σ-AOs. Two electrons on that MO make this cluster σ-aromatic. The HOMO-2 is a completely bonding MO formed by tangential p_π-AOs. Two electrons on that MO make this cluster σ-aromatic. Thus, this is an example of a system with double (σ– and π–like) and threefold (σ, σ, and π) aromaticity. These three molecular orbitals, that contribute to the chemical bonding in Al$_4^{2−}$, are orthogonal to each other since they are formed from linear combinations of atomic orbitals of different symmetry. Conversely, each of them can be expressed as linear combinations of four localized bonding orbitals, as elegantly put forward by Dixon et al. 82. The implication of this is that each of three delocalized bonding molecular orbitals has four independent resonant structures. Consequently, the valence bond representation of the chemical bonding in Al$_4^{2−}$ involves $4 \times 4 \times 4 = 64$ resonating Kekulé structures. Naturally, not them all will have the same weight. In particular, it was anticipated that a full valence bond calculation with all these 64 resonating structures will show that the resonating structures associated with triple Al–Al bonds will have a very small weight. Kuznetsov et al. 80 eliminated also the resonant structures featuring π Al–Al bonds with no σ-bonds between the same pair of atoms, resulting all together in 12 resonant structures. Finally, Havenith and van Lenthe 83 carried out ab initio valence bond calculations and found that the bonding structure of Al$_4^{2−}$ can be described with 6 main resonant structures, four Kekulé like and two Dewar like (diagonal bonding). Surprisingly, the Dewar ones have the largest weights.

Altogether, it is worth noticing that benzene has (only) two
Fig. 8 The global minimum structures of the MAI$_4$ clusters (M = Cu, Li, Na) and the isolated Al$_4^2^-$ cluster (a); Valence canonical molecular orbitals (CMOs) of the isolated Al$_4^2^-$ cluster (b); Schematic representation of valence CMOs as linear combinations of four 3pz atomic orbitals (AOs) comprising highest occupied molecular orbital (HOMO), four 3p-radial AOs (HOMO-1), four 3p-tangential (HOMO-2), as well as four different linear combinations of 3s AOs (HOMO-3, HOMO-4, HOMO-4’=Z, HOMO-5). Reprinted with permission from Ref. 54. Copyright 2012 Copyright Clearance Center.

Fig. 9 (A) Optimized global minimum structure of Li$_3$Al$_4^-$; bond lengths in angstroms. Molecular orbital pictures: (B) Al$_4^2^-$; (C) capped octahedral structure of Li$_3$Al$_4^-$ Adapted with permission from All-Metal Antiaromatic Molecule: Rectangular Al$_4^-$ in the Li$_3$Al$_4$ Anion, Aleksey E. Kuznetsov, K. Alexander Birch, Alexander I. Boldyrev, Xi Li, Hua-Jin Zhai, Lai-Sheng Wang, Science, 300, 622, 2003. Copyright 2003, American Association for the Advancement of Science.

main resonant Kekulé structures. The large number of resonance structures of Al$_4^2^-$ accounts for its large resonance energy, RE,

$$RE(Al_4^{2^-}) = \Delta E(Al_4^{2^-} \rightarrow 4Al + 2e^-) - 3 \times \Delta E(Al_2(1\Sigma_g^+) \rightarrow 2Al) \hspace{1cm} (1)$$

estimated as the difference of the atomization energy of Al$_4^{2^-}$ and the dissociation energy of three localized Al–Al bonds, because Al$_4^{2^-}$ has three bonding electron-pairs. High level ab initio calculations of Dixon et al. 82, based on extrapolating the computed CCSD(T)/aug-cc-pVxZ (x=D, T, and Q) resonance energies to the complete basis set limit, yielded $RE(Al_4^{2^-})=72.7$ kcal/mol. Notice that in Eq. (1), the lowest lying singlet 1Σ_g^+ of Al$_2$ has been taken as the reference state for the localized Al–Al bonds. However, when the the 3Π_u ground state of Al$_2$ is taken as the reference state, the resonance energy of Al$_4^{2^-}$ turns out to be 52.5 kcal/mol. This latter estimate is closer the average resonance energy of 48 kcal/mol calculated by Boldyrev and Kuznetsov 84 from the atomization energy of the Na$_2$Al$_4$ cluster referred to a system with two Na–Al interactions and three Al–Al bonds. Finally, Havenith and van Lenthe 83 were able to calculate the resonance energies of the σ- and π-systems of Al$_4^{2^-}$ by means of their ab initio valence bond calculations. They found that the σ-system, which is composed by the two independent radial and tangential systems each containing two delocalized electrons, has a resonance energy significantly higher than that of the π-system (123 vs 40 kcal/mol). Noteworthy, the π-resonance energy of Al$_4^{2^-}$ is substantially lower than that of its π-isoelectronic hydrocarbon C$_4$H$_4^{2^-}$ (167 kcal/mol). Follow-up theoretical studies agree with the overall assignment of this cluster as aromatic. Additionally, it has also been shown that it is more σ-, than π-aromatic $^{82,84–92}$

Ariantaromaticity as introduced by Breslow, is due to destabilization of cyclic systems with 4n π-electrons by Jahn-Teller distortion, yielding antiaromatic species that are more reactive than their nonaromatic counterparts. The Cyclobutadiene is a prototypical antiaromatic molecule with the rectangular structure. From the joint photoelectron and theoretical study of the Li$_3$Al$_4^-$ cluster it was shown 93 that it contains the approximately rectangular Al$_4^{2^-}$ kernel and its Vertical Electron Detachment Energy (VEDE) 1.39 eV is appreciably lower than VEDE=2.15 eV of the aromatic Li$_3$Al$_4^-$ cluster. It was said to be an example of the net all-metal antiaromatic species (Fig. 9). MO analysis revealed that
the Li3Al− cluster is σ-areomatic and π-antiaromatic (Fig. 9). The Li3Al− cluster has 8 valence electron pairs. Four of them are responsible for formation of four lone pairs (one pair on every aluminum), two MOs (HOMO-1 and HOMO-2) are responsible for σ− + σ− aromatic similar to Al3−, and two MOs (HOMO and HOMO-4) are responsible for π-bonding, and since there are four π-electrons, the Li3Al− cluster is π-antiaromatic. The assignment of this cluster to net antiaromaticity created a controversy in the literature. Everybody agrees, that the Li3Al− cluster is σ-areomatic and π-antiaromatic, but disagrees on the net antiaromaticity (see discussion about that in ref. 22).

3.2 σ-π-δ Aromaticity in transition metal clusters.

Aromaticity has recently been extended to transition metal, which allow δ-aromaticity/antiaromaticity as it was postulated by Boldyrev and Wang in 2005.22 Wang and co-workers discovered the first d-AO based σ-aromaticity in the suboxide M3O6− and M3O5− (M=Mo and W) clusters. The d-AO σ-aromaticity was recently extended from clusters in a molecular beam to solid state compounds, such as (LAu3)− and [Zn3Cp3]−.

Chi and Liu reported first examples of d-based double (σ- and π-) aromaticity in bare X3− (X=S, Y, La) clusters. According to their calculations 2a1′ and 1a1′−MOs (both formed by d-AOs of transition-metal atoms) are responsible for delocalized bonding in equilateral triangular global minimum structures of X3−.

Zhai et al. reported the first example of δ-aromaticity in a Ta3O3− cluster. The global minimum Ta3O3− structure has a singlet state with three Ta atoms forming an equilateral triangle geometry and oxygen atoms occupying the bridge positions (Figure 10). If we assume the oxidation state of oxygen is -2, then the formal oxidation state of Ta is +1.66 and that leaves 10 electrons for the direct metal-metal bonding. Among all five upper MOs, delocalized σ-bonding is canceled since the doubly degenerate bonding/antibonding-HOMO (4eδ) and completely bonding HOMO-3 (3a1′) are completely occupied and thus the σ-bonding character of HOMO-3 is canceled by the antibonding nature of HOMO. The HOMO-1 is a completely bonding δ-MO and HOMO-2 is a completely bonding π-MO and thus this cluster is doubly (δ- and π-) aromatic according to the (4n+2) rule for aromaticity in the cyclic systems with π=0 applied separately to δ- and π-electrons.

Averkiev and Boldyrev found that the Hf3 cluster in the lowest 1A′ ground state is the first example of triple (σ-, π- and δ-) aromaticity (Figure 11). Using the AdNDP analysis, they showed that Hf3 in the singlet state has three 2c-2e Hf−Hf σ-bonds formed of hybrid 6s-, 5d-AOs and three completely delocalized bonds formed of pure d-AOs (one completely bonding 3c-2e d-radial based σ-bond, one completely bonding 3c-2e d-radial based π-bond, and one completely bonding 3c-2e d-AO based δ-bond). The 3c-2e d-AO based δ-bond is formed by the overlap of the dπ atomic orbital on each Hf atom. These three delocalized bonds are responsible for the presence of triple aromaticity.

While everyone would expect that δ-aromaticity would be weaker than σ- and π-aromaticity bonding-wise, high symmetry is still expected for δ-aromatic compounds. Probably the most remarkable example of δ-aromaticity responsible for bonding and structure of the transition metal cluster is the compound containing [Pd4(μ4-C6H5)(μ4-C6H5)]3+ triple-decker sandwich complex synthesized and characterized by Murahashi et al. Sergeeva and Boldyrev performed the AdNDP analysis of chemical bonding in the [Pd4(μ4-C6H5)(μ4-C6H5)]3+ triple-decker sandwich complex.
sandwich complex and showed that the Pd₄ core resembles an almost perfect square due to the δ-aromaticity.

3.3 σ-π-δ-φ Aromaticity in lanthanoid clusters.

Tsipis et al.¹⁰⁰ have discussed the φ-aromaticity of a number lanthanoid clusters [c-Ln₃]⁺⁺⁺/−, with Ln=La, Ce, Pr, Nd, Gd, and Lu. They have determined through DFT calculations that all these clusters have a perfect D₃h three-membered ring like ground state, very stable towards full atomization. Analysis of their valence molecular orbitals revealed that largely delocalized orbitals of σ-, π-, δ- and φ-symmetry were involved in the bonding. Although it should be taken with caution (see references 101 and 102), the calculated out-of-plane Nucleus Independent Chemical Shift, NICSzz, (see Section 4) at the center of the three-membered ring, and at 1 Å above it, revealed a magnetic diatropic response associated with aromaticity (see section 4) for [c-Lu₃]⁺⁺⁺, while [c-La₃]⁺⁺⁺/− yields a small paramagnetic local response, and hence, suggests that the La cluster is weakly antiaromatic, irrespective of its charge state. Subsequently, these latter clusters have been used to model the electronic structure of La₃@C₁₁₀ and Lu₃@C₃₀ endohedral metallofullerenes. For instance, Tsipis and Gkekasa¹⁰³ have found that the [C₇P₃Ln₃(μ₂-H)₃]⁺⁺⁺ (Ln = La, Lu; C₇P₃ = C₇H₅PR) clusters are very reactive towards H₂,HX (X = F, Cl, Br, and I), O₂ and N₂. However, both clusters retain their structural integrity upon reaction.

All in all, studies on φ-(anti)aromaticity derived from the delocalization of f-type atomic orbitals are in their infancy. Consequently, both, theoretical and experimental further work is required to make progress in the field. Clearly, understanding the (anti)aromaticity of metal, including lanthanoid and heavier element, compounds constitutes the next frontier in inorganic chemistry. Additional calculations on f-block ring like clusters can be found elsewhere¹⁰⁴,¹⁰⁵.

4 The Magnetic Criteria and Electron Density Analysis of Aromaticity in all-metal Clusters.

In planar aromatic ring-like molecules, an externally applied magnetic field will produce a ring current due to the mobility of the aromatic ring delocalized electrons. This induced ring current will subsequently generate an induced magnetic field, which in accordance with Biot-Savat’s law, will oppose to the externally applied magnetic field. Both, the induced ring current and the induced magnetic field can be estimated theoretically and constitute a probe for the aromaticity/antiaromaticity of the system under study¹⁰⁶,¹⁰⁷.

The magnetic response properties of Al₄⁻ have been extensively studied in the past and a consensus has been reached on the fact the magnetic criteria supports the presence of double, σ- and π-aromaticity in Al₄⁻. Thus, Fowler et al.⁸⁸,⁸⁹ computed the current-density maps via coupled Hartree-Fock perturbation theory in the continuous transformation of the origin current-density diamagnetic zero (CTOCD-DZ) formulation. They found significant differences from conventional carbon-based aromatic systems. The delocalized diamagnetic current induced by a perpendicular magnetic field is carried by the σ- and not by the π-electrons, and this remains so whether the aluminum square is isolated or forming part of a bimetallic cluster. In other words, the π-orbital is magnetically inactive in Al₄⁻. This magnetic behavior is in sharp contrast with the active role of the two π-electrons in C₆H₆⁺. Havenith et al.⁹⁰ also mapped the current density for Li₃Al₄⁻ using the CTOCD-DZ method. The current in this 4π-system is diatropic in the plane but paratropic out of the plane. They suggested that a description of four-electron σ-diatropic/two-electron π-paratropic seems to be more appropriate for the chemical bonding of this cluster.

The aromatic ring current shieldings (ARCS) approach¹⁰⁸ is a method to determine the strength of the induced ring current, which is related to the molecular aromaticity. In the ARCS method, the strength of the induced aromatic ring current and the size of the current ring are obtained from nuclear magnetic shielding constants calculated in a discrete number of points along a line perpendicular to the molecular plane starting at the center of the molecule. The ARCS calculations show that the Al₄⁻ ring sustains in magnetic fields a strong diatropic ring current of about 9–12 nA/T. For comparison, the ring-current susceptibility for benzene⁸⁶ is about 8 nA/T.

Magnetically induced current density in Al₄⁻ and Al₄⁻ species was computed at the CCSD level of theory by applying the gauge-including magnetically induced current (GIMIC) method¹⁰⁹. The strength of the ring-current susceptibilities was obtained by numerical integration of the current densities passing through a cross section perpendicular to the Al₄ ring. The GIMIC computations support that Al₄⁻ sustains a net diatropic ring current. The diatropic contribution to the ring-current susceptibility is carried by the electrons in both the σ (16.7 nA/T) and the π-orbitals (11.3 nA/T). The induced ring current in Al₄⁻ consists of about equally strong σ-diatropic and π-paratropic currents of about 14 and –17 nA/T, respectively. The net current susceptibilities obtained for Li₃Al₄⁻, Li₂Al₄⁻, Li₄Al₄⁻, and Li₄Al₄ are 28.1, 28.1, –5.9, and –3.1 nA/T, respectively.

In 2003, Chen et al.⁹¹ revisited the antiaromatic character of Li₃Al₄⁻ using the nucleus independent chemical shifts (NICS) analysis¹¹⁰. NICS corresponds to the negative of the magnetic shielding computed at chosen points in the vicinity of molecules. NICS is normally computed at ring centers, at points above, and even at grids of points located in and around the molecule. Significantly negative (or magnetically shielded) NICS values in interior positions of rings or cages indicate the presence of induced dia-
tropic ring currents or "aromaticity", whereas positive values (or deshielded) at each point denote paratropic ring currents and "antiaromaticity". Several modifications of NICS exist, of which one separate the total into contributions from canonical molecular orbitals (CMO-NICS). CMO-NICS analysis of the two-π-electron Al$_4^{2-}$ confirms that not only the diatropic π (−17.8 ppm) but also the σ-MOs (−11.1 ppm) contribute importantly to the aromaticity. In contrast, the four π-electron system of Li$_2$Al$_4^{-}$ is paratropic (14.2 ppm), conforming to the Hückel rule. However, NICS indicates that this π-antiaromaticity is overcome by the diamagnetic contributions of all σ-orbitals put together (−16.8 ppm).

In 2006, Havenith and Fowler92 discussed the apparent contradictions between ipso-centric, NICS, and GIMIC evaluations of ring-current aromaticity in Al$_4^{2-}$. They argued that the out-of-plane component of π-shielding is small, as is consistent with the small π-contribution to ring current. In contrast, the in-plane component of σ-shielding is large, as is consistent with the significant NICS(0) value. In principle, there is no essential disagreement between current density maps and NICS(0). On the contrary, the tensor component that is directly connected to ring current shows that the aromaticity of Al$_4^{2-}$ is σ- and not π-based. In this respect, the authors wrote: "... a measure such NICS$_{2z}(0)$ would presumably be a better reflection of aromaticity on the magnetic criterion".

In 2007, Islas et al.111 showed that Al$_4^{2-}$ and Al$_4^{3-}$ cannot be discussed isolated from the counterions: The cations not only stabilize the aluminum square electrostatically but also have an influence on the chemical structure. Molecular dynamics simulations indicate that the cations are relatively fixed for LiAl$_4^{-}$ and Li$_2$Al$_4$, but become more floppy for Li$_3$Al$_4^{-}$ and Li$_4$Al$_4$. So, for the 4π cases any static structural representation is not realistic at all. Magnetically, the induced magnetic field representation (see Figure 12) agrees with the former investigations on Al$_4^{2-}$ based on NICS and GIMIC concerning the σ- and π-system.112 For the total response, the B$_{2nd}^{\text{ind}}$ computations (B$_{2nd}$ and NICS$_{2z}$ are the same) show that a simple classification of a molecule as "aromatic" or "antiaromatic" is impossible for those systems containing a Al$_4^{2-}$ backbone. For such cases, the complete map of the induced magnetic field shows the "bitropic" character of the cluster, the diatropic contribution raised by the σ-electrons, which dominates in the ring plane, and the paratropic part, induced by the π-system around the z-axis.

Solà and co-workers computed the NICS profiles for a large series of inorganic rings. They show that all NICS minima neither fall near the ring center, not are located at 1.0 Å of it. Therefore, the widespread NICS(0) and NICS(1) values used in organic molecules to diagnose aromaticity are not necessarily the best option for all-metal systems. NICS profiles are highly dependent on the size ring, the kind of aromaticity present, and the nature of the atoms involved. The reliability of negative NICS val-

ues to assess aromaticity, has been further analyzed by Foroutan-Nejad et al.101 for transition metal clusters. They have found that in these clusters negative NICS values originate from localized strong paramagnetic current around the atomic nuclei, but an in-depth analysis of the current density shows that they do not sustain a diamagnetic ring current and consequently cannot be classified as aromatic clusters. The conclusion is that NICS should be carefully scrutinized before classifying transition metal clusters as aromatic.102 Analysis of current densities is recommended over NICS for the determination of aromaticity in transition metal clusters.

Finally, studies of the electron density and associated scalar fields of Al$_4^{2-}$ have also been carried in order to ascertain the nature of its chemical bonding. Thus, Fias et al.113 studied the so-called linear response kernel to gain insight into the aromatic behavior of Al$_4^{2-}$. When at a given point, r, a positive change, δρ(r), in the potential is induced (leading to a more positive potential at that point), electron depletion occurs in the immediate neighborhood around the point r. Depending on how much delocalized the electron density of the molecular system is around r, the response is more or less localized around the point of the perturbation. The unintegrated plots of the linear response function of Al$_4^{2-}$ clearly show the delocalized nature of the response in this cluster. The response is more pronounced in the σ-electron density than in the π-density, pointing out that the system is mainly σ-aromatic.
Santos et al.85 suggested an orbital partition of the electron localization (ELF) function in order to diagnose aromaticity. The ELF, defined originally by Becke and Edgecombe114 as a measure of electron localization, clearly shows the separation between the core and valence electrons, and also between bonding and lone electron pairs115,116. Interestingly, Santos et al. found that Al\textsubscript{4}2− presents a surprisingly high ELF\textsubscript{π} (the ELF built using only the π-orbitals) bifurcation value of 0.99, which is even higher than the value associated to benzene117. This anion also shows a high bifurcation value for the ELF\textsubscript{σ} (0.88), which agrees with the prediction of a strong σ-delocalization. The analysis of this scalar field was also applied to Li\textsubscript{4} and Li\textsubscript{4}Al\textsubscript{4}, indicating an overall antiaromatic character for Al\textsubscript{4}2− based structures, built from σ-aromatic and π-antiaromatic contributions.

5 Functionalization of all-metal aromatic clusters

We finished section 3.2 commenting upon the remarkable structure of [Pd\textsubscript{4}(μ\textsubscript{4}-C\textsubscript{6}H\textsubscript{4})(μ\textsubscript{4}-C\textsubscript{6}H\textsubscript{4})]− triple-decker sandwich complex, and in particular emphasizing that the perfect square geometrical arrangement of the middle Pd\textsubscript{4} deck should be ascribed to its δ-aromaticity. Indeed, the palladium tetramer can be formally best seen as a Pd\textsubscript{4}2+ and the two capping ligands as the 10 π-electron aromatic C\textsubscript{6}H\textsubscript{5} and 8 π-electron antiaromatic C\textsubscript{6}H\textsubscript{5} ligands, respectively. Thus, aromaticity/antiaromaticity appears in all the three decks of the complex.

Consequently, it seems legitimized to hypothesized whether aromatic all-metal clusters could also be used as capping ligands to form sandwich complexes, in such a way that upon complex formation charges are partitioned among the various decks so that all-metal cluster capping ligands result to be aromatic.

This idea was tested by Mercero et al.118 who reported computational evidence of the stability of the [Ti(η4Al\textsubscript{3}R\textsubscript{3})2−] sandwich complex. An in-depth analysis of its molecular orbitals along with their associated NICS values concluded that the three-fold aromatic nature of both Al\textsubscript{4}2− ligands remains intact upon complex formation. Although this complex was found to be unstable towards electron autodetachment, it was demonstrated that alkali counterions could stabilize it. These studies were later extended to all the transition metal elements119, providing a guide for experimental studies of these novel sandwich complexes22,49. All data discussed in this section has been computed at the B3LYP/TZVP+G(2df,2p) level of theory (see Ref. 120 for a full account of the theoretical methods used).

However, in spite of the thermodynamical stability of these sandwich complexes, their kinetic stability was found to be very weak. Thus, Sun and co-workers121 established that such complexes, if synthesized, will collapse rapidly into larger clusters with an increased number of Al-Al contacts. Indeed, such an aggregation of aluminum small rings into larger clusters was precluded earlier by Seo and Corbett122, who emphasized that the kinetic stability of compounds containing Al rings will largely be determined by putting them as far apart from each other as possible. The "unprotected" aluminum atoms in [Ti(η4Al\textsubscript{3}R\textsubscript{3})2−] are indeed very prone to aggregation as demonstrated by the quantum molecular dynamics simulation of the Na+ stabilized [Ti(η4Al\textsubscript{3}R\textsubscript{3})2−] complex shown in Figure 13. The complex is seen to have a very short lifetime of less than 2.0 ps at room temperature. Then, it collapses into an aggregated structure which remains stable for the rest of the simulation time.

In this vein, functionalization of the aluminum atoms of the ring by attaching covalent ligands turns out to be desirable for it will serve two purposes, namely, it will separate the aluminum atoms from each other and will protect the aluminum atoms against aggregation. Additionally, attaching (bulky) substituents will also provide anchoring sites to fix the Al rings into large molecular species.

This possibility was made real by Power et al. who synthesized the Na\textsubscript{2}[Al\textsubscript{3}R\textsubscript{3}], R=2,6-dimesitylphenyl complex, (see Figure 14 and Ref. 123). A preliminary inspection of the calculated valence molecular orbitals of this complex by the same authors revealed an occupied π-type orbital, delocalized over the three aluminum atoms, which led them to state that ... "Na\textsubscript{2}[Al\textsubscript{3}R\textsubscript{3}] is aromatic', in accordance with Hückel's (4n+2) rule". The aromaticity of the [Al\textsubscript{3}R\textsubscript{3}]2− cluster was further examined by Mercero et al.124, who established that its fourteen valence electrons are arranged as shown in Figure 15. Consequently, the cluster is σ- and π-aromatic in accordance with Hückel's rule as applied to each of the valence molecular orbitals sets. This agrees with the calculated NICS at the center of the ring, NICS(0)=−13.04 ppm, and at 1 Å above the center of the ring NICS(1)=−11.02 ppm. The former is an indicator of σ-aromaticity and the latter of π-aromaticity. Nonetheless, a deeper analysis of the magnetic responses of the valence molecular orbitals through the inspection of CMO-NICS, revealed that the π\textsubscript{s} system is antiaromatic in [Al\textsubscript{3}H\textsubscript{3}]2−, as shown by their positive CMO-NICS values reported in Figure 15. However, it was also found in the same research that the aromaticity of the [Al\textsubscript{3}H\textsubscript{3}]2− cluster depends markedly on the nature of the R substituent. Thus, it was...
found that both \(\pi \)-acceptors, like \(-\text{C}=\text{N} \), and \(\sigma \)-donors, like \(-\text{CH}_3 \), increase the aromaticity of cyclotrialane ring, relative to that of \([\text{Al}_3\text{H}_3]^2^- \). But the largest enhancement of the aromaticity of the ring occurs for halides. In particular, \([\text{Al}_3\text{F}_3]^2^- \) was predicted to be highly aromatic as suggested by its large negative NICS values, NICS(0) = -45.14 ppm NICS(1) = -27.61 ppm. Observe, see Figure 15, that for \([\text{Al}_3\text{F}_3]^2^- \), even the tangential degenerate molecular orbitals are slightly aromatic, opposite to their noticeable antiaromaticity in \([\text{Al}_3\text{H}_3]^2^- \).

Voluminous substituents, \(R \), at the \(\text{Al}_3\text{R}_3 \) rings, have, indeed, been used to protect aluminium atoms from collapsing and to provide isolation. Thus, Schnöckel et al. have succeeded to crystallize the \([\text{Al}(\eta^3\text{Al}_3\text{R}_3)^\dagger]^+ , R = \text{N(SiMe}_3)_2 \) and \([\text{Al}(\eta^3\text{Al}_3\text{R}_3)^\dagger]^+ , R = \text{N(SiMe}_2\text{Ph}_2 \) sandwich complexes, see Figure 16. However, after a careful study of the electronic structure of the \([\text{Al}(\eta^3\text{Al}_3\text{H}_3)^\dagger]^- \) model compound, they concluded that the \([\text{Al}_3\text{R}_3]^2^- \) ligands should not be described as aromatic systems because of the lack of a ring-current-induced high field shift for the central Al. Namely, the calculated ring-current-induced field shift at the central Al is \(\delta(\text{Al}) = +798 \) ppm in \([\text{Al}(\eta^3\text{Al}_3\text{H}_3)^\dagger]^- , \) which should be compared with the value of \(\delta(\text{Al}) = -114 \) ppm induced by real aromatic rings, like in the aluminocenium \([\text{Al}(\eta^5\text{Cp}^\dagger)_2]^+ \) cation. The calculated NICS’s at the center and at 1 \(\text{Å} \) above the plane of the \([\text{Al}_3\text{R}_3]^2^- \) rings in \([\text{Al}(\eta^3\text{Al}_3\text{H}_3)^\dagger]^- , \) NICS(0/1) = -1.34 ppm / -6.47 ppm, indicate that the aromaticity of the \([\text{Al}_3\text{H}_3]^2^- \) ligands decreases substantially upon complexation, in accordance with the prediction of Schnöckel et al. Although, given the strong dependence of the aromaticity of the \([\text{Al}_3\text{R}_3]^2^- \) ligands with respect to the nature of the substituent \(R \), it should be plausible to find out substituents \(R \) that protect the aluminium atoms from collapsing and

![Fig. 14 Left, thermal ellipsoid plot (30% probability) of Na\(_2\)[Al\(_3\)R\(_3\)]. R=2,6-dimesitylphenyl without H atoms. Selected bond lengths [Å] and angles [deg]: Al(1)-Al(1A) 2.520(2), Al(1)-C(1) 2.021(3), Al(1)-Na(1) 3.285(2), Na(1)-C(7) 3.066(2), Na-C(1) 3.066(2)-3.808(2) [av . 3.459(2)], Na(1)-Al(1A)-Na(1)-Al(1B) 45.12(3), C(1)-Al(1)-Al(1A) 142.8(1), [Al(1)-Al(1A)-Al(1B) 60.0, C(1)-Al(1)-Al(1B) 157.2(1). Dihedral angle between Al(1) plane and Na(1)-Al(1A)(centroid)-Na(1) plane: 90.0. Mes=CsH\(_2\)-2,4,6-Me\(_3\). Right, Kohn-Sham orbital representation for the delocalized HOMO-2 of Na\(_2\)[(Ar=CsH\(_2\)-2,6-Ph\(_3\)] (Ar=C\(_3\)H\(_6\)). Reproduced with permission from Ref. 123. Copyright 2009, American Chemical Society.

![Fig. 15 CMO-NICS, in ppm, analysis at the ring center (top number of each of the pair) and at 1 Å above the ring center (bottom number of each of the pair) of [Al\(_3\)H\(_3\)]\(^2^-\) and of [Al\(_3\)F\(_3\)]\(^2^-\), in parenthesis. Reproduced with permission from Ref. 124. Copyright 2009, American Chemical Society.

![Fig. 16 Left, the molecular X-ray crystal structure of [Al\(_3\)N(SiMe\(_2\)Ph\(_3\)]\(_\alpha\). The Al1–Al2 bond length (the distance between the central and each of the six symmetry-equivalent Al atoms) is 2.73 Å. The Al–Al bond lengths in the Al\(_3\) rings (Al2–Al2*) is 2.61 Å. All Al–N bond lengths are 1.81 Å. The environment of each N atom is planar (sum of angles=360 deg.). The N–Si bond lengths are 1.75 Å. Right, a) the Kohn-Sham spin-density and b), the Kohn-Sham SOMO (\(\alpha_0 \)) of the [Al\(_3\)NH\(_2\)\(_3\)] model compound. Reproduced with permission from Ref. 126. Copyright 2007, Wiley-VCH.]
at the same time retain the aromaticity of the ligands upon complexation. It is anticipated that finding such ligands will be a challenging task.\footnote{128}

Similarly one could also functionalized \(\text{Al}_4^{2-} \) to yield stable aromatic \(\text{Al}_4\text{R}_2^{2-} \) species. Indeed, the recent discovery and subsequent structural characterization\footnote{129,130} of the \(\text{Al}_4\text{H}_{4n+2} \), \(4 < n < 8 \) closo-alanes, have certainly opened a new chapter on aluminum hydride chemistry. Assisted by the extension of the Wade-Mingos rules and its underlying Polyhedral Skeletal Electron Pair (PSEP) theory\footnote{131,132}, Schnöckel et al.\footnote{130} have nicely accounted for the closo-polyhedra structures of their recently synthesized closo-alanes, in consonance with their borane analogs. The analogy between the alanes and the boranes is such that even the well-known tetrahedral exception to the Wade-Mingos rules for closo-boranes does also apply to the closo-alanes, and rationalizes the experimentally found structure of \(\text{Al}_4\text{H}_6 \), whose \(\text{Al}_4\text{H}_7^{2-} \) core distorts from its Wade-Mingos \(T_d \) structure to a \(D_{2d} \) one, aided by the stabilizing field exerted by the remaining two protons.

However, when the two additional protons are replaced by alkali cations like \(\text{Li}^+ \) or \(\text{Na}^+ \), the distortion of the Wade-Mingos tetrahedra process further till the planar \(D_{4h} \) symmetry structure, yielding an inverted sandwich coordination complex \(\text{E}^+\cdot[\text{Al}_4\text{H}_4]^{2-}\cdot\text{E}^+ \), with \(\text{E}=\text{Li}, \text{Na} \), shown in Figure 17, which is stable towards both geometrical distortions and electron autodetachment.

![Fig. 17 The structure of \(\text{E}^+\cdot[\text{Al}_4\text{H}_4]^{2-}\cdot\text{E}^+ \), left, and of \(\text{E}^+\cdot[\text{Al}_4\text{H}_4]^{2-} \), right. \(\text{E}=\text{Li}, \text{Na} \). Cyan: Al, Grey: H, Magenta: E](image)

The integrity of the \(\text{Al}_4\text{H}_7^{2-} \) species has been investigated further and found that it is a structurally stable chemical species with no negative force constants. This dianionic molecule, however, is prone to electron detachment, but it can be stabilized with either two, as mentioned above, and even only one alkali cation. Thus, we show below in Table 1, the characterized \(^1\text{A}_1 \) ground state of the \(\text{C}_{6v}, \text{Na}^+\cdot[\text{Al}_4\text{H}_4]^{2-} \) complex (depicted in Figure 17), which has no negative force constants, and all positive electron detachment energies. Indeed, this provides an opportunity for the experimental study of these novel aromatic rings.

Even more, the valence molecular orbitals of \([\text{Al}_4\text{H}_4]^{2-} \), shown in Figure 18, correspond to a two-fold aromatic species with two electrons in the \(\pi \)-system and in the tangential system. These two sets of valence molecular orbitals are delocalized on the four

<table>
<thead>
<tr>
<th>MO</th>
<th>Symmetry</th>
<th>EDE</th>
<th>Pole strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOMO</td>
<td>(a_1)</td>
<td>2.541</td>
<td>0.884</td>
</tr>
<tr>
<td>HOMO-1</td>
<td>(b_1)</td>
<td>2.008</td>
<td>0.853</td>
</tr>
<tr>
<td>HOMO-2&-3</td>
<td>(e)</td>
<td>3.657</td>
<td>0.814</td>
</tr>
</tbody>
</table>

Table 1 Electron detachment energies, EDE, in eV for \(\text{Na}^+\cdot[\text{Al}_4\text{H}_4]^{2-} \)

aluminums and each of them satisfies the Hückel (4\(n \)+2) rule. CMO-NICS values concur with this picture. Nonetheless it is worth mentioning that the overall aromaticity (both NICS(0)=−2.24 ppm and NICS(1)=−6.22 ppm are negative) stems from the occupied \(\pi \)-valence molecular orbitals and that both the tangential and radial valence molecular are antiaromatic, a behavior that parallels\footnote{91} that of the aromatic \(\text{Al}_4^{2-} \) ring.\footnote{79}

D\(_{4h}\) \([\text{Al}_4\text{R}_4]^{2-} \) ligands can also be used as aromatic templates for \([\text{M}(\text{X}^4\text{Al}_4\text{H}_4)]^{2-} \) sandwich like complexes. Figure 19 depicts the stable optimized structures of three representative model compounds of such complexes, namely, \(\text{ansa-SiH}_2[\text{Ti}(\text{X}^4\text{Al}_4\text{H}_4)]^{2-} \), \([\text{Mn}(\text{X}^4\text{Al}_4\text{H}_4)]^{2-} \) and \([\text{Mg}_2(\text{X}^4\text{Al}_4\text{H}_4)]^{2-} \). The former has a \(^3\text{A}_1 \) ground state with both unpaired electrons localized on Ti’s \(d \)-orbitals. The middle structure has a \(^6\text{A}_1 \) ground state with all five unpaired electrons localized on the \(d^5 \) orbitals of Mn. Notice that the atomic magnetism is not quenched upon complexation. The latter complex has a \(^1\text{A}_1 \) ground state and suggests that the \([\text{Al}_4\text{H}_4]^{2-} \) ligand can accommodate a central \(\text{Mg}_2^{2+} \) unit with a single metal-metal bond, which represents an example of a remarkable new class of compounds where reduced \(s \)-block elements containing a metal-metal single bond, unsupported by bridging ligands, are sandwiched between two aromatic rings.\footnote{133–135} It is worth emphasizing that the bulkiness of the substituents at the aluminium atoms will be a key structural feature for these complexes to have enough stability for its experimental detection.\footnote{128}
6 Conclusions

The concepts of aromaticity and antiaromaticity have become very useful to deciphering the electronic structure and assessing the stability of metal clusters. In particular, in this review it has been emphasized their great potential to foresee structural patterns of small rings of metal atoms, both, in isolation and incorporated into larger structural units. Advances in a number of key theoretical methods carried out over the last two decades allow to reasonably rationalize the (anti)aromatic nature of the valence electronic structure, as it has been extensively illustrated here for the aromatic Al$_4^2-$ cluster. However, more work needs to be done in order to substantiate current discussion on the advantages and reliability of local versus non-local indices for (anti)aromatic studies in metal clusters.

The passivation of metal (anti)aromatic clusters needs to be considered as a means to prevent them from collapsing towards larger entities, and also to provide protection against environment. This naturally leads to consider the functionalization of the (anti)aromatic rings and raises new issues related with the interactions of the ligands with the metal ring and the consideration of the effects that those ligands might have on the (anti)aromatic character of the ring. Nonetheless, it opens a vast new playground for cooperation between experiment and theory that will produce exciting new chemistry in the years ahead.

7 Acknowledgments

Financial support comes from Eusko Jaurlaritza (Basque Government) and the Spanish Office for Scientific Research. JMM and JMU thank for technical and human support provided by IZO-SGI (SGIker) of UPV/EHU. The work in México was supported by the Moshinsky foundation. This work was supported by the National Science Foundation (CHE-1361413 to A.I.B.).
References

5. E. Hückel. Z. Phys., 1931, 70, 204.
53. C. A. Tsipis. In G. Parkin, editor, Metal-Metal Bonding, volume 136 of Structure and Bonding, pages 217–274. Springer-
Verlag, Berlin, Germany, 2010.

