Hexaazatriphenylene (HAT) derivatives. From synthesis to molecular design, self-organization and device applications

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Chemical Society Reviews</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>CS-SYN-02-2015-000181.R2</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Review Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>25-Jun-2015</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Segura, Jose; Universidad Complutense, Quimica Organica I
 | Juárez, Rafael; Universidad Rey Juan Carlos, Department of Environmental and Technological Chemistry
 | Ramos, María del Mar; Universidad Rey Juan Carlos, Department of Environmental and Technological Chemistry
 | Seoane, Carlos; Universidad Complutense, Quimica Organica I |
Hexaazatriphenylene (HAT) derivatives. From synthesis to molecular design, self-organization and device applications

Jose Luis Segura, Rafael Juarez, Mar Ramos and Carlos Seoane

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

Dipyrazino[2,3-f:2',3'-h]quinoxaline also known as 1,4,5,8,9,12-hexaazatriphenylene (HAT) is an electron deficient, rigid, planar, aromatic discotic system with an excellent π-π stacking ability. Because it is one of the smallest two-dimensional N-containing polyheterocyclic aromatic systems, it has been used as the basic scaffold for larger 2D N-substituted polyheterocyclic aromatics. Furthermore, it is the building block of choice in a plethora of molecular, macromolecular and supramolecular systems for a variety of applications. This review is aimed to critically review the research performed during the almost three decades of research based on HAT from the synthetic, theoretical and applications point of view. The design principles and synthetic strategies towards HAT derivatives will be established and its use in n-type semiconductors, sensors, nonlinear optical chromophores, liquid crystals, microporous polymers for energy storage and nano and microstructures will reveal the relevance of HAT as a basic scaffold in the areas of organic materials and nanoscience.

1 Introduction

Polycyclic aromatic hydrocarbons (PAHs) have been attracting a great deal of interest in materials science and nanoscience due to their tailorable and the appealing features of their electronic structure. Those composed of laterally fused benzene rings, the so called linear PAHs (Figure 1), have received particular attention because of their highly desirable electronic properties, including remarkable charge-carrier mobilities. It has been found that increased conjugation length enhances electronic coupling and reduces reorganization energies in the solid state thus leading to several linear acenes with high charge-carrier mobilities. Nevertheless, it has been also observed that linear acenes longer than five rings are not stable due to their low ionization potentials (IPs) and narrow band gaps. Among the different approaches used for the stabilization of higher linear PAHs, it has been found that (i) replacing CH atoms by heteroatoms such as nitrogen and (ii) annelating aromatic rings onto two neighboring rings, thus creating two-dimensional (2D) acene analogues (Figure 1), are efficient routes to more stable compounds. Thus, N-substituted polycyclic aromatic analogues of PAHs (Figure 1) are less susceptible to degradation through oxidation or dimerization than their non-N-containing equivalents. In contrast, 2D compounds that represent various fragments of graphene have large, planar π surfaces that can provide increased intermolecular surface overlap and effectively increase electron delocalization. In the frame of this research field, one of the smallest 2D N-containing polyheterocyclic aromatic systems is the dipyrazino[2,3-f:2',3'-h]quinoxaline or 1,4,5,8,9,12-hexaazatriphenylene (HAT, Figure 1). HAT is an electron deficient, rigid, planar, aromatic discotic system with an excellent π-π stacking ability which has been used not only as the basic scaffold for larger 2D N-substituted polycyclic aromatics but also as a building block in a plethora of molecular, macromolecular and supramolecular systems for a variety of applications. This review summarizes the design principles and synthetic strategies for HAT derivatives and its use as a basic scaffold in n-type semiconductors, magnetic materials, sensors, nonlinear optical chromophores, liquid crystal, nano and microstructures and microporous polymers for energy storage. Besides the above important applications of HAT derivatives as organic materials, for many years the main application of HAT was its use as ligand with three chelating sites. In this respect, the extensive literature related with metal complexes of HAT and its derivatives were already reviewed by Kitagawa and Masaoka and therefore, in order to avoid duplication of these aspects, the readers interested in this particular use of HAT derivatives are referred to this comprehensive review.
In the present review (i) we will start with a description of the main characteristics of the hexaaazatriphenylene moiety including its electron deficient character, D$_{3h}$ symmetry, planarity and tendency for π-stacking. (ii) We will continue with a section dedicated to the synthesis of HAT derivatives including those with trigonal D$_{3h}$ symmetry as well as those with non-trigonal symmetry (no D$_{3h}$ symmetry). We will also describe methods for the synthesis of 2D-HAT derivatives with extended π-conjugation and for the post-synthesis functionalization of HAT derivatives. (iii) The next section will cover aspects related with the self-assembly of HAT derivatives. This section starts with the study of the supramolecular aggregation properties of HAT derivatives in solution. It will continue with the self-assembly in the bulk including many examples of their liquid crystal behavior and the relationship with the charge transport properties. We will also review selected examples of self-assembly of HAT derivatives on solid surfaces and finally the building of nano and microstructures by self-assembly. (iv) Different applications found for HAT derivatives will be also reviewed, including their use for the investigation of energy transfer processes, their nonlinear optical properties and their use as multiphoton-absorbing materials, their use for molecular recognition and sensors, their role as photoinitiators for polymerization reactions and their incorporation as scaffolds for microporous frameworks. (v) Hexaaazatriphenylene hexacarbonitile (HAT-CN) will be treated as a special case of study and one section will be dedicated to this particular HAT derivative with a strong electron-deficient discotic character and a deep-lying LUMO level which has proved to be an interesting molecular material. (vi) In the last section, the main conclusions will be discussed, stressing the fact that the HAT moiety is a widely tunable and highly stable platform for developing materials in a broad spectrum of applications. We will critically comment the strengths and weaknesses for the use of HAT derivatives in the different areas outlined in the review, finishing with the current challenges in the field.

2 Structural and electronic characteristics of HAT

HAT is a symmetric molecule that belongs to the symmetry point group D$_{3h}$ and is constituted by three fused pyrazine rings. The molecule contains six nitrogen atoms with sp2 hybridization giving to the molecule an electron deficient character in agreement with the computational study performed for several hexaaazatriphenylene derivatives. The structure of naked HAT has been investigated by using a B3LYP functional and a 6-31G** level of theory (Figure 2) showing that the HOMO in HAT is doubly degenerate with E' [E''] symmetry, separated by 0.16 [0.19] eV from the A$_1^+$ [A$_1''$] HOMO-1 orbital. In contrast, the LUMO in HAT is a non-degenerate orbital with A$_2''$ symmetry, very close in energy (0.02 eV) to the E'' degenerate LUMO+1 orbitals. Thus, the HOMO-LUMO gap calculated for HAT is of 4.73 eV.

From the structural point of view, while theoretical calculations predict that HAT is completely flat in the gas phase, the resolved crystal structure of HAT shows that the molecule deviates, if only slightly, from planarity. Thus, a maximum atomic deviation of only 0.07 Å is observed in the needle-like formed light beige crystals prepared from recrystallization of HAT in a mixture of chloroform/acetonitrile (4:1) at 5 °C. HAT crystallizes in the orthorhombic system, space group Pca$_2_1$ with $a = 18.187$ Å, $b = 9.2576$ Å and $c = 6.9672$ Å parameters (figure 3). The HAT molecules pack in columns with an average interplanar distance of 3.29 Å that is shorter than the expected van der Waals distance (3.54 Å) and comparable to the separation quoted for aromatic π-donor/acceptor molecules. This short distance is indicative of an effective π-stacking of the HAT molecules. Additionally, water molecules in the crystal provide links between the columns of stacked molecules through hydrogen bonds.

Comparison between experimental and theoretical data shows a good agreement in bond lengths (figure 4) and bond angles for which discrepancies between predicted and experimental data are less than 2°. These slight differences could be due to the fact that the theoretical calculations performed do not take into account...
intermolecular interactions.

On the other hand, the molecular aggregation of HAT has been also theoretically explored by QM/MM calculations on a dimer model, thus showing that an antiparallel π-stacking interaction is the most stable conformation of HAT. Electrostatic interactions are responsible for the stabilization of the antiparallel cofacial arrangement with respect to the parallel one.15

The electron deficient, rigid, highly symmetric, planar character of HAT together with its excellent π-π stacking ability make it a basic building block for the synthesis of a variety of organic materials. In the next section we will summarize the main synthetic strategies toward different types of HAT derivatives.

2 Synthesis of HAT derivatives.

2.1 A historical approach

The first synthesis of 1,4,5,8,9,12-hexaazaatriphenylene (HAT) was not reported until 1981 by Nasielski-Hinkens et al. by using a three step reaction sequence (scheme 1) in the search of new metal ligands for low valent transition metals. The synthetic route starts with the amination of nitroderivative 1 to yield intermediate 2, which was subsequently reduced with hydrazine to afford diamine 3. This was finally reacted with glyoxal to afford the target HAT with an overall yield of 34\% based on nitroderivative 1.21

Despite this late synthesis of basic HAT, research on π-deficient polycyclic aromatic compounds containing the HAT moiety started as early as 1888 when Nietzki and Schmidt reported the reaction between the sodium salt of the rhodizonic acid (4) and \(\text{C}_6\text{H}_{4}\text{N}_2\text{H}_6\text{O}_2\) which they isolated what they called benzenetriphenazine.22 In 1962 Eistert et al. reinvestigated this reaction between rhodizonic acid (4) with \(\text{C}_6\text{H}_{4}\text{N}_2\text{H}_6\text{O}_2\) and isolated the same compound to which they assigned the structure of 5, 6, 11, 12, 17, 18-hexaazatriphenylene (HATNA) (Scheme 1).23 The structure of this condensation product was postulated almost entirely on the basis of analytical data. It was not until 1969 that the first spectroscopic and structural evidences for the structure of HATNA were reported.24,25

The first systematic synthesis of functionalized HAT derivatives was reported in 198526 and consisted in the condensation between different \(\alpha\)-diketones (5a-i) and hexaaminobenzene (6) (Scheme 2). This efficient synthesis provided a general protocol for the synthesis of functionalized HAT derivatives. At that time, the synthesis of hexaaminobenzene involved the reduction of explosive aromatic nitrocompounds with different hydrazines which prevented the production of 6 in large scale. This problem was resolved by Rogers who reported the synthesis of hexaaminobenzene (6) in large amounts and high yields using sodium in liquid ammonia to reduce 1,3,5-triamino-2,4,6-trinitrobenzene (TATB, 8, Scheme 2).27
Scheme 1 Top: The first synthesis of HAT; Bottom: The first synthesis of a HAT derivative, HATNA.

Scheme 2 Top: First systematic synthesis of a series of HAT derivatives. Bottom: Rogers’ synthesis of HAT.
Although TATB (8) is used as an explosive, it is perhaps the most thermostable and insensitive explosive known because of its low sensibility to shock that makes it stable enough for laboratory handling and can be produced and stored in multigram scale.28 In order to avoid the use of 8, a multistep synthetic route towards unsubstituted HAT was also developed. This synthetic procedure starts with the reaction of hexaketocyclohexane (9) with 2,3-diaminomaleonitrile (10) to yield 2,3,6,7,10,11-hexacyanoHAT (HAT-CN, 11), which can be subsequently used to obtain hexaazatriphenyleneb2,3,6,7,10,11bhexacarboxylic acid (14). This can be finally decarboxylated to afford pristine HAT (Scheme 3).29, 30 However, in order to obtain this basic HAT, the synthetic route depicted in Scheme 3 requires 15 days of work in contrast with Rogers’ method (Scheme 2)27 with which HAT or other HAT derivatives can be obtained in multigram scale in less than a week.

In 1969 it was already shown that the use of hexaketocyclohexane (9) as starting material for the synthesis of HAT derivatives is effective not only for the condensation with diaminomaleonitrile, as shown in scheme 3, but also with a variety of o-phenylenediamine derivatives.24 Thus, the condensation of hexaketocyclohexane (9) with unsaturated 1,2-diamines has become a good alternative for the general synthesis of differently functionalized HAT derivatives as is depicted in scheme 4 for a family of HATNA derivatives (16a-h) with a variety of substituents.31,32 Introduction of rigid acetylenes with bulky silyl substituents in positions that force the aromatic core to deviate from planarity, leads to twisted-HATNA derivatives 16f-h (Scheme 4).32 Interestingly, it has been observed that modifying the size of twist angles in HATNA derivatives allows tuning their emission characteristics and electrochemical potentials.

By using hexaketocyclohexane (9) as starting material, Hsu and coworkers have synthesized a series of HATNA derivatives 17a-d (Figure 5) as electron deficient liquid crystal materials,33 and Marder and coworkers have synthesized unsubstituted HATNA and HATNA derivatives 18a-c (Figure 5) in which the solid state ionization potentials and electron affinity can be tuned by means of the different substitution pattern.34 Wang and coworkers also started from hexaketocyclohexane to synthesize a series of film-forming low-bandgap chromophores with a HATNA skeleton and multiple electron-donating groups at the appropriate positions of the acceptor core (19a,b, Figure 7).35 Piglosiewicz et al. reported in 2005 a new synthetic procedure for the synthesis of HATNA which consists on the dehydroaromatization reaction of quinoxaline (20) using a Ti complex for the activation of the C-H bonds followed by a reaction with iodine to afford the pristine HATNA (scheme 5).36 Nevertheless, this last approach has not been widely studied or used as a common synthetic way to HATs.
Scheme 4 Synthesis of a family of HATNA derivatives using hexaketocyclohexane (9) as starting material.

Thus, the synthetic strategies for the production of the HAT skeleton used to date are summarized in Scheme 6. The most extensively used strategies involve i) the condensation of hexaketocyclohexane (9) with unsaturated 1,2-diamines and ii) the condensation of hexaaminobenzene (6) with α-diketones. The other, less general, route which has been used for the synthesis of HATNA is based on the cyclodehydrogenation of quinoxaline (20) mediated by titanium complexes.

Scheme 5 Metal mediated synthesis of HATNA.

It is worth mentioning that these approaches lead to the synthesis of trigonal HAT derivatives with D₃h symmetry containing a C₃ symmetry axis perpendicular to the HAT plane (Figure 6).

In the meantime, the need of synthesizing other non-trigonal HAT derivatives for specific applications was brought into play. It has been necessary to develop other synthetic strategies in order to obtain this kind of non-trigonal derivatives. Thus, HAT derivatives that present a C₂ (usually in the same plane of the HAT ring) or lower symmetry axis (Figure 6) have been synthesized and the synthetic procedures used for their synthesis will be summarized in the following section.

Figure 5 Selected examples of HATNA derivatives synthesized using hexaketocyclohexane (9) as starting material.

Scheme 6 Synthetic approaches to trigonal HAT derivatives.
2.2 Synthesis of non-trigonal HATs

Most of the HAT derivatives synthesized so far have a trigonal symmetry, probably because of the lack of selective methods for the synthesis of non-trigonal analogues. Until recently, the only way to obtain non-trigonal derivatives was an aleatory method based on the condensation of hexaaminobenzene (6) with more than one α-diketone at a time thus providing inevitably a complex mixture of products. For example, the reaction of one equivalent of 6 with one or two equivalents of benzil (5e) followed by two or one equivalents respectively of glyoxal (5a) yields a complex mixture of products (HAT, 21-23, scheme 7) that is difficult to purify.

Thus, in recent years the need to develop synthetic strategies that allow the synthesis and investigation of non-trigonal HATs has become clear.

In 1997, Moucheron reported an easy access to pyrazino[2, 3-f]quinoxaline-5,6-diamine (3) in a single step by condensation between hexaaminobenzene (6) and glyoxal (5a) under stoichiometric control in a mixture of ethanol and water (Scheme 8). This easy access to the diaminodervative 3 paved the way for the synthesis of nontrigonal HAT derivatives by reaction with other α-diketones. Thus, condensation between 3 and 1,10-phenanthroline-5,6-dione 24 yields the nontrigonal HAT derivative 25 selectively (Scheme 8). We have employed this synthetic strategy in order to obtain donor-acceptor materials for nonlinear optical (NLO) applications in which the electron deficient HAT core is connected to electron rich groups through double or triple bonds (26-30, Figure 7).

Other synthetic approaches involving the use of oxocarbons (monocyclic polycarbonyl compounds) such as 2,3,5,6-tetrahydroxy-p-benzoquinone (31), hexaketocyclohexane (9) or rhodizonic acid (4) as starting materials (scheme 9) have also been explored. Thus, condensation between 2,3,5,6-tetrahydroxy-p-benzoquinone (31) and o-phenylenediamine 32, followed by oxidation with nitric acid, affords a tetraketo derivative 33 which can be condensed in acidic media with other substituted o-phenylenediamine derivatives (34a,b) to yield the final non-trigonal HAT derivatives 35a,b (Scheme 9).

In the previous section we have shown how hexaketocyclohexane (9) can be condensed with unsaturated 1,2-diamines to reach trigonal HATs easily. Alternatively, 9 can be condensed with an o-phenylenediamino derivative (30b) in a carefully chosen reaction medium (formic acid at room
temperature) to afford a α-diketone 36 in very good yield (83%). This α-diketone can be further condensed with other different o-phenylenediamine derivatives (37a-c) to form the corresponding nontrigonal HAT derivatives 38a-c (Scheme 9). On the other hand, the intermediate α-diketone derivative 36 can also be obtained from rhodyzonic acid (4) by condensation with an o-phenylenediamine derivative (34b), followed by oxidation (Scheme 9). Furthermore, Wang and coworkers reacted the α-diketone derivative 36 thus obtained with 2,3-diaminomaleonitrile (10) to afford the nontrigonal HAT derivative 39 with a high electron accepting capability due to the presence of the nitrile groups and with smectic liquid crystalline properties, these due to the long alkyl chains and the flat HAT core.

Scheme 8 First controlled synthesis of non-trigonal HATs.

Scheme 9 Synthesis of nontrigonal HAT derivatives from different oxocarbons as starting materials.
A completely different approach has been developed by Scondo and Fages for the synthesis of nontrigonal HAT derivatives laterally bridged with two macrocyclic units (41, Scheme 10). The procedure involves the condensation of a linear trisbenzil precursor (40) with hexaaminobenzene (6) acting as both a reagent and template (Scheme 10). Here, the stepwise creation of the six imine bonds, leading to the formation of the HAT core and the concomitant construction of the two lateral macrocycles, was reasoned to imply the wrapping of one molecule of the linear trisbenzil precursor (40) around the hexaaminobenzene (6) nucleus in a sequence of one bimolecular and two intramolecular condensations. The novel routes toward nontrigonal HATs open up a field of novel materials and applications of HAT derivatives, as will be outlined in the following sections.

2.3 Post-synthesis functionalization of HAT derivatives

In almost all of the previous synthetic sequences the last step consists on the formation of the HAT nucleus. In this section, we will present functionalized HAT derivatives that can be further modified.

The first example of post-synthesis functionalization of a HAT derivative was based on the conversion of the functional groups attached to the HAT core and it has already been presented in scheme 3. Thus, the cyano groups of hexacyano HAT (11) can be reduced to the hexaamido derivative (12) which can be converted to the corresponding hexa(methylcarbonyl) analogue (13) which can be further hydrolysed to the hexacarboxylic acid HAT derivative (14). In addition, the hexa(methylcarbonyl) derivative (13) has been reported to react with different amines to yield the corresponding amides.

Czarnik et al. reported the synthesis of HAT-trisimides 44a-d by reaction of HAT-trianhydride (42) with different amines (43a-d, Scheme 11). In addition, they explored the influence of different amounts of HAT-trianhydride (42) in polymerization reactions between pyromellitic dianhydride and 4,4'-oxydianiline (43d). In these reactions, 42 is used as a crosslinking agent in the synthesis of polyimides due to its trifunctional character.42

Another functionalization based on a functional group transformation has been reported by Aumiller et al. which have been able to synthesize hexakis-(dihalomethyl) HATs (46 and 47) and hexaformyl HAT (48) by halogenation and oxidation reactions of hexamethylhexazatriphenylene (45, scheme 12) respectively.45
Our group have reported the synthesis of a dibromomethyl substituted HAT derivative (49) and its further conversion to the corresponding diphenylphosphonate derivative (50) which can undergo Horner-Wadsworth-Emmons olefination reactions with different aromatic aldehydes to yield donor-acceptor-donor HAT derivatives (28-30, Scheme 13) with nonlinear optical properties. HexacyanohAT (11) has also been used as the substrate for nucleophilic aromatic substitutions where the CN groups act as leaving groups. Thus, the reaction of 11 with alkyl thiols yielded the corresponding hexahexylthio derivatives (52). In contrast, analogous reaction of 11 with alkyl alcohols afforded HAT derivatives in which only three CN groups are substituted (51a,b).

Scheme 12 HAT derivatives obtained by post-synthesis functionalization

Scheme 13 Donor-acceptor-donor HAT derivatives obtained by post-synthesis functionalization

Scheme 14 Post synthesis functionalization of HATs based on aromatic nucleophilic substitution
It can thus be seen that the possibility of obtaining HAT derivatives endowed with functional groups greatly enhance the possibility of incorporating the HAT moiety in novel molecular and macromolecular materials as well as in supramolecular assemblies.

2.4 Expanding the HAT core conjugation

The first example of a HAT derivative with two-dimensional expansion of the π-conjugated system (57, Figure 8) was reported by Lehn and coworkers in 1996 in the search of rigid ligands for polymetallic molecular architectures. The novel HAT derivative was obtained by reaction of hexaaminobenzene (6) with a suitable diketone to yield only the symmetrical product. Other HAT derivative with two-dimensional expansion of the π-conjugated system is the planar conjugated macrocycle 61 (Figure 10) which has also been used as a ligand. After coordination of 61 with three Co ions, the [CoN₄]₃ complex shows an excellent behavior as nonprecious metal catalysts (NPMCs) for fuel cell applications.

We and others have synthesized HAT derivatives with two-dimensional expansion of the π-conjugated system such as 58, 59, 60 and 62 (Figure 8) with the aim to investigate their self-assembling properties both in solution and in the solid state as it will be summarized in the following section.

![Fig. 8 HAT derivatives with two-dimensional expansion of the π-conjugated system](image_url)
Fig. 9 Frontier orbitals tuning of a series of HAT derivatives (63-66) with different number of pyrazine units. Adapted with permission from Org. Lett., 2011, 13, 4378-4381. Copyright 2011 American Chemical Society

Scheme 15 Multistep synthesis of planar conjugated macrocyclic HAT derivative 61

HAT derivatives directly conjugated with strong electroactive moieties (75, 76, 77, Figure 10) have been also synthesized. Liu and coworkers reported the synthesis of a redox-active tri-star molecule 75 combining the strong electron donor tetraphiafulvalene (TTF) and HAT. The target compound was obtained via the direct condensation reaction of hexaketocyclohexane (9) with a TTF derivative endowed with a diamino functionality. 61

This journal is © The Royal Society of Chemistry [year]

Journal Name, [year], [vol], 00–00 | 12
3 Self-assembling properties of HAT derivatives

Molecular self-assembly via noncovalent interactions has been employed as a tool for obtaining supramolecular architectures. Among these noncovalent interactions, the controlled self-assembly of π-conjugated molecules into ordered supramolecular architectures via π-π stacking is a subject of increasing research interest for the tailoring of their functionalities, and for their application in organic electronic devices. Such ordered supramolecular aggregates are more attractive candidates for electron transporting materials than glassy-type amorphous aromatics with unfavorable positional and energy disorder.

The outcome of the self-assembly at the molecular scale can be visualized at different levels such as (i) three dimensional (3D) ordered liquid crystals (LC) in the solid state, (ii) one dimensional (1D) micro/nanostructures and (iii) assemblies on solid surfaces. We will review how HAT derivatives are used to generate supramolecular architectures at the three above mentioned levels and we will also summarize the available research on the self-assembling properties of HAT derivatives in solution.

3.1 Self-assembly in solution

As it has been already mentioned, HAT derivatives can be self-assembled both in solution and in the solid state. Although most of the applications of the supramolecular assemblies are based on solid-state materials, the first evidences for the aggregation are provided by means of spectroscopic techniques very often performed in solution. For example, Ishii and co-workers, in the search of new large-sized self-assembling n-type semiconductors, investigated the aggregation properties of a family of HAT derivatives with two-dimensional expansion of the π-conjugated system (57-58, Figure 8) by means of UV-vis, fluorescence, 1H-NMR spectroscopies and MALDI-TOF mass spectrometry. They observed concentration- and temperature dependent spectral changes in 1,1,2,2-tetrachloroethane solutions which were attributed to dynamic exchange between monomer and aggregate species. The trends observed are very similar to those of the π-stacked aggregates with an H-type parallel stacking mode which is rationalized by the molecular exciton model. The aggregation of these HAT derivatives is also reflected in the fluorescence spectra. In 1,1,2,2-tetrachloroethane, a significant concentration dependence was observed due to the dynamic exchange between the monomer and aggregates species, as found in the UV-vis spectra. They also observed in 1H-NMR line-broadening effects arising from the aggregation. By addition of trifluoroacetic acid-D2O, the broad peaks became sharp according to aggregate dissociation. Sharpening of the 1H-NMR signals can be also appreciated at temperatures higher than 100 °C indicating also aggregate dissociation at higher temperatures. Interestingly, a direct evidence for aggregation could be also obtained by MALDI-TOF mass spectrometry in which assemblies of three, four and even five molecules could be detected.

A similar study has been also reported by Wang et al. for HAT derivatives with tunable LUMO levels (63-66, Figure 9) where a growing tendency towards molecular aggregation with increased number of fused aromatic rings is observed. In the frame of a joint theoretical and experimental study, we investigated the aggregation behaviour in solution of the so-called tri-HAT derivative 60 (Figure 8) which has the same amount of fused aromatic ring as those systems described by Ishii-I (57-58, Figure 8) but containing six more nitrogen atoms in the conjugated backbone. We investigated the electronic and molecular structure of these novel molecules bearing three fused HAT moieties and fully characterized them by means of optical and vibrational Raman spectroscopy, electrochemistry, solid state UV, inverse photoemission spectroscopy (UPS and IPES), and by comparison with quantum-chemical calculations. Concerning the aggregation in solution, concentration and temperature-dependent UV-vis and fluorescence measurements provide a similar behaviour to that reported by Ishii-I for HAT derivatives 57-58.
parallel or antiparallel dispositions. The energy profiles obtained predict that the antiparallel π-stacking interaction is the most stable conformation for 60 as well as for pristine HAT. This conclusion was also supported by photophysical data. Indeed, upon dimerization, the lowest excited energy level is expected to redshift in both parallel (perfectly co-facial) and anti-parallel configurations. However, the emission from this state in the parallel configuration is prohibited due to symmetry. Analyses of the different energy contributions indicate that electrostatic interactions are responsible for the stabilization of the antiparallel cofacial arrangement in relation to the parallel one in both HAT and tri-HAT 60 dimers.

In 2014, Zhao and coworkers have used the ability of HAT derivatives for self-assembly to produce an unusual chiral amplification phenomenon in a very simple four component supramolecular system constructed by the coassembly of achiral hexa-2-pyridyl-HAT (78) with aminoacid derivatives 79-81 (Figure 11).\(^\text{T}\)

The coassembly of achiral HAT derivative 78 and chiral aminoacids allow to construct propeller-like supermolecules driven by intermolecular hydrogen bonding. Both the “sergeants-and-soldiers” principle and “majority-rules” effect are applicable in these discrete four-component supermolecules, which are the simplest supramolecular system ever reported that exhibit chiral amplification.

It can be concluded from these studies that the extension of the π-cores is a useful approach not only to tune the electronic properties of these materials but also to enhance their tendency for aggregation and even to participate in chiral amplification.

3.2 Self-assembly in the bulk. Liquid crystal behaviour and charge transport properties

Discotic liquid crystals (DLCs)\(^\text{75, 72}\) have attracted the attention of many research groups since their discovery by Chandrasekhar in 1977\(^\text{73}\) and many efforts have been made to exploit DLCs in organic electronic devices.\(^\text{74}\)

Simple discotic mesogens such as triphenylene (82, Figure 12) derivatives have a more or less rigid planar core with typically six or eight flexible chain substituents laterally attached to the core.\(^\text{66}\)

Thus, in 1988 it was reported that 2,3,6,7,10,11-hexakis(hexylthio)triphenylene (83, figure 12) can order in a columnar liquid crystalline structure.\(^\text{75}\)

This discovery was followed by the observation of a charge carrier mobility (µ) of µ = 0.1 cm\(^2\) V\(^{-1}\) s\(^{-1}\) for 83 in the ordered columnar liquid crystal (LC) state which was the best value in that time for a non-crystalline organic compound.\(^\text{76}\) By that time, the charge carrier mobilities of other mesogens based on hexabenzocoronene or phthalocyanine aromatic cores were also investigated\(^\text{77}\) and values of µ as high as 0.1 cm\(^2\) V\(^{-1}\) s\(^{-1}\) were reported for the columnar mesophase of hexabenzocoronene derivatives.\(^\text{78}\) However, most of the discotic mesogens reported at that time were better hole carriers than electron carriers creating, therefore, the need for new electron acceptor discotic mesogens.

HAT, incorporating six nitrogen heteratoms within a triphenylene core, is a good electron acceptor and therefore it was expected that it should facilitate electron injection and collection. Because of its structural similarity with triphenylene (82), HAT derivatives were then proposed as good candidates to be investigated as electron-deficient mesogens.

In 1985, Kohne and Praefcke synthesized a family of HAT derivatives endowed with alkyl and aryl functionalities (6c,6d,6g,6h, Scheme 2) with the aim to explore their liquid crystalline properties by analogy with the parent triphenylene analogues. However, liquid crystalline properties were not

![Fig. 11](image1.png)

Fig. 11 top: chemical structures of achiral hexa-2-pyridyl-HAT (78) and aminoacid derivatives 79-81. Bottom: Schematic illustration of the origin of the “sergeant-and-soldiers” principle on the basis of the transfer of chirality from the D-phenylalanine derivative to the other part of the complex.
observed by any of these compounds. Although Bushby and coworkers reported the ability of HAT derivatives to enhance the mesophase ranges by mixing with triphenylene derivatives, seminal work in the development of liquid crystalline HAT derivatives was performed by Lehmann, Geerts and coworkers that, in a series of papers, investigated the mesophase characterization of discotic mesogens based on HAT derivatives (52, 53, 84, Figure 13).

![Fig. 13 HAT derivatives used to investigate their thermotropic liquid crystalline behavior](image)

Surprisingly, it was found that hexathialkylhexaazatriphenylene derivatives (52, Figure 13) do not form columnar LC phases like their corresponding triphenylene analogues, probably because of the large negative charges on the nitrogen atoms, which lead to the repulsion of the adjacent cores. In HAT derivative 84 (Figure 13), hydrogen bonds were used to counterbalance and overcome this Coulombic repulsion, leading to the formation of a discotic mesophase with charge-carrier mobility ca. 0.1 cm² V⁻¹ s⁻¹ (determined by microwave conductivity measurements). The amide hydrogen bonds serve as non-covalent “clamps” in the crystal phase of hexacarboxamidohexaazatriphenylene (84, R = H, Figure 13). The resulting interplanar distance is as short as 3.32 Å which is significantly smaller (3.50-4.00 Å) than the one that was found for other semiconducting columnar mesogens.

Meijer and coworkers synthesized hexaazatriphenylene-hexacarboxytrimide (86, Figure 13) which combines HAT as the acceptor core and 3,4,5-tridodecyloxyphenyl groups to introduce mesogenic character. The electron deficient LC material shows photoinduced electron transfer with poly-3-hexylthiophene as a donor which would make it interesting to be tested in organic solar cells. However, to the best of our knowledge, there are so far no reports on organic solar cells fabricated with this HAT derivative.

HAT derivatives with alternating donor alkoxy side chains and nitrile acceptor substituents (51b, Scheme 14) have been also investigated as potential mesogens. Only the derivative with the longer hexyl chain exhibit liquid crystalline behavior. For this particular derivative the intracolumnar disk-to-disk distance is of 3.39 Å. The presence of the alkoxy groups in the electron deficient HAT nucleus over-rides the non existing π-complexation.

In contrast with HAT derivatives 52, the larger hexaazatinaphthylene analogues (53, Figure 13) exhibit at least one LC mesophase before decomposition around 250 ºC (46, 48), which is in agreement with the enhancement in the tendency for aggregation with the extension of the π-cores as it was observed in solution. The electron mobility was found to be higher in the crystalline than in the liquid crystalline phases (helical phase), with maximum values of 0.9 and 0.3 cm² V⁻¹ s⁻¹ respectively (82, 83).

The difference in mobility between the LC and the crystal phases has been rationalized in terms of the order lost in the columnar mesophase due to the movements of the disks that can deform the columns preventing a correct electron jumping between them. Similar HATNA derivatives with six decyloxy side chains have been also reported to show LC behavior and they have been used to investigate the orientational packing of this discotic mesogens when they are in a confined space, i.e., between two flat glass substrates. It is observed that the thermal state of the mesogen during molecular stacking is crucial for an conveniently oriented columnar aggregation.

We have investigated the LC properties of triHAT derivatives 60 (Figure 8) with a two-dimensional expansion of the π-conjugated system. The higher number of heterocyclic N atoms makes triHAT derivatives better electron acceptors than unsubstituted HAT. Derivatives with n-hexyl and n-decyl alkyl chains reveal mesomorphic properties, thus confirming the beneficial effect of conjugation extension in order to achieve liquid crystalline properties. However, the study of the mesomorphic properties of the HAT derivative with shorter alkyl chains was impeded by its decomposition before reaching its clearing point.

The mesogenic properties of a HAT analogue of 56, in which the peripheral benzene rings were replaced by thiophene moieties (85, Figure 13), were also investigated but it was found that the hexaalkylsulfanylxhexaazatriothianaphthene derivatives (85) do not show mesogenic properties. The authors rationalize this behavior in terms of Coulomb repulsion effects linked to the charge distribution found in the aromatic cores which could prevail over the stabilizing forces induced by van der Waals interactions.

Ishii and coworkers demonstrated that the use of alkyl chains to obtain HAT derivatives is not necessary with LC properties. They report that HATs with six aromatic side chains (87, Figure 14) aggregate both in liquid crystalline and in organogel phases.
In derivatives 87a-c, the aromatic side chains with terminal flexible groups make up soft regions that cooperatively stabilize the liquid crystalline and organogel supramolecular structures together with the hard regions of the HAT core and therefore have crystalline behaviour with two-dimensional hexagonal packings. In contrast, the analogues with shorter aromatic chains did not show LC behaviour.

Chemical doping of discotic liquid crystals is well known and, in some cases, it produces enhanced mesophase ranges. Hence, Bushby, Lozman and coworkers reported that substantially enhanced mesophase ranges can be obtained by mixing 2,3,6,7,10,11-hexakis(hexyloxy)triphénylene (88a, n = 6, Figure 15) with a HAT derivative with a larger polyaromatic core (89, Figure 15). The special stability of these π-stacked systems is not the result of either charge-transfer or (net) quadrupolar interactions but instead arises from a complementary polytopic interaction (CPI). This strategy provides a tool in order to develop π-stacking tectons in supramolecular chemistry as an alternative to, for example, hydrogen bonds. In this regard, formation of CPI compounds with triphenylene derivatives and 89 (Figure 15) can be used not only to enhance the mesophase range of triphenylene-based discotic liquid crystals but also to induce mesophase behaviour in non-mesogenic triphenylene derivatives, 89,90,91 to improve their conductivity and alignment properties, 89,92,93 to induce microphase separation in block copolymer systems, 91 and to order fullerene C60 molecules in helical columnar structures. 84

Big efforts have been made in order to shed light, with the help of quantum-chemical calculations, on the nature of charge transport at the molecular scale in discotic materials based on HAT derivatives and to establish structure-transport properties relationships. 94,95,96,97,98 Charge transport in discotic liquid crystals is usually expected to correspond to a photon-assisted hopping regime, as is the case in amorphous organic thin films or molecular crystals at high temperature. In such a regime, the charges are localized over a single molecule and jump from site to site to yield a current. A major parameter governing the charge mobility, be it in a (localized) hopping or (delocalized) band regime, is the transfer integral \(t \) which describes the strength of the interactions between adjacent molecules. Quantum chemical calculations demonstrate that the amplitude of the transfer integrals is strongly dependent on geometric fluctuations, in particular ring rotations and translations between consecutive molecules in the columns of the mesophase while an increase in the size of the conjugated core does not necessarily ensure better transport properties. Thus, charge mobilities result from a subtle interplay between the size, nature of the conjugated core and side chains, and relative positions of the molecules in the columns. 95,96

Based on quantum-chemical calculations Brédas, Comil and coworkers predicted a significant increase in the charge mobility when going from triphenylene to hexaazatriphenylethylene which was further confirmed by measurements carried out with the pulse radiolysis time-resolved microwave conductivity technique. Kippen, Marder and coworkers reported effective mobilities of 0.07 cm\(^2\)V\(^{-1}\)s\(^{-1}\) for HATNA derivatives endowed with alkyl ester and pentfluoro benzyl ester side chains (90, 91, Figure 16). The effective charge carrier mobility was studied by the steady-state space-charge limited current technique. It is worth mentioning that this measurements were obtained from noncrystalline films. By using also the steady-state space-charge limited current technique, Chi and coworkers reported mobilities of 3.4 \cdot 10^{-2} cm\(^2\)V\(^{-1}\)s\(^{-1}\) for HAT derivatives end functionalized with dicarboximide groups (92, Figure 16). 101

Fig. 14 HAT derivatives with aromatic side chains investigated as potential liquid crystal materials

Fig. 15. a) Triphenylene (88) and HAT derivatives (89) that exhibit complementary polytopic interaction (CPI). b) Representation of the stacking of 88 and 89 in an alternating manner.
influence on the intracolumnar ordering of these molecules which contrasts with the results of studies on larger discotic molecules, such as hexabenzocoronenes, for which the mobilities in the LC phase are found to be primarily independent of the side chains. Furthermore, transition temperatures above 200 °C were too high for practical use.

In 2014, Hanna and coworkers have synthesized a series of self-organizing \textit{n}-type hexaazatrinaphthylenes with various bay-located side chains (93-95, Figure 17) which are able to form long-range molecular columns with self-directed growth directions. In particular, alkyl substituted \textit{HATNA}s organize themselves as “in plane” molecular columns with axes parallel to substrates, whereas the columnar orientation of the \textit{HATNA}s with alkylethynyl or alkylthio groups strongly depends on the side chains (Figure 18). Interestingly, the derivative with octylthiochains exhibits “out-of-plane” molecular columns, in which electron mobility of up to 10^{-3} \text{cm}^2\text{V}^{-1}\text{s}^{-1} was determined by the time-of-flight technique, highlighting the fact that such molecular columns based on bay-substituted \textit{HATNA}s are promising \textit{n}-type semiconductors for electronic device applications.
Thus, it has been already demonstrated that the electron deficient core of HAT facilitates the electron carrier transport and, by selecting appropriate substituents at specific locations, it is possible to achieve long-range molecular columns for fast charge transport.

3.3 Self assembling on surfaces

Assembly of individual molecules and formation of molecular nanostructures on surfaces have attracted increasing attention as molecular and nanoscale engineering becomes an integral part of miniaturization in electronic and photonic devices. With this aim, in the last recent years some efforts have been devoted to investigate the molecular self-assembly of HAT derivatives on solid surfaces. Molecular self-assembly on solid surfaces is an intricate process involving a balance between adsorbate–adsorbate and adsorbate–substrate interactions and therefore different morphologies have been observed depending on the investigated HAT derivatives and substrates.

Samori and coworkers reported on the structural and electronic properties of N-(2-ethylhexyl)-substituted hexacarboxamido-hexaaazatriphenylene (84, R = 2-ethylhexyl, Figure 13) physisorbed on surfaces. On electrically conductive substrates such as highly oriented pyrolytic graphite (HOPG, Figure 13) scanning tunneling microscopy (STM) investigations at the solid/liquid interface highlighted the formation of ordered monolayers with molecules assembled face-on with respect to the basal plane of the surface forming rows of dimers of the molecule in an oblique (near to rectangular) 2D lattice (Figure 19a). Furthermore, Kelvin probe force microscopy experiments (KPFM) showed that the surface potential in multilayered samples was 4.53 eV. This estimation is of fundamental importance in molecular electronics because it enables the elucidation and correct tuning of differences in energy levels between molecular nanostructures and electrodes, thereby allowing optimization of charge injection.

Ha and coworkers reported their STM investigations on the morphological behavior of 1-2 monolayers (ML) of unsubstituted HATNA (Scheme 1) deposited on Au(111). The first ML consisted of molecules flat on the surface (Figure 19b), arranged in one of three different ordered phases depending on annealing parameters. Regardless of phase, the substrate influences the spatial charge distribution in the organic layer, as evidenced by the visibility of the Au(111) reconstruction features. The substrate-molecule interaction is weak because the desorption temperature is relatively low and ordered multilayers are not formed.

Shortly after these studies, Xu et al. reported on the investigation and control of the orientation of HATNA derivatives on surfaces by tailoring the molecular structures and through the adjustment of external stimuli. They demonstrated that it is possible to adjust the strength of the adsorbate–substrate interaction by changing the surface charge density and to subsequently form tunable assembled structures on the substrate surface (Figure 20). For this purpose, they use electrochemical scanning tunneling microscopy (ECSTM) which is a tool that effectively combines STM with electrochemical techniques. They were able to induce that HAT molecules organize in flat or vertical orientations on the Au(111) surface by applying electrode potentials. The possibility of tuning the molecular orientation on surfaces has been proposed as an approach to build nanostructures or thin films with controllable molecular orientations for electronic applications.

![Fig. 19](image1.png)

Fig. 19 STM image of a) N-(2-ethylhexyl)-substituted hexacarboxamido-hexaaazatriphenylene (84, R = 2-ethylhexyl, Figure 13) at the tetradecane/HOPG interface. Reproduced from 106

![Fig. 20](image2.png)

Fig. 20 Schematic diagram of the orientational transition of HATNA derivatives on Au(111) with varied electrode potentials.

Ha and coworkers have probed by STM the Layer-by-layer growth of tris[2,5-bis(3,5-bis-trifluoromethyl-phenyl)-thieno]-1,4,5,8,9,12-hexaaza-triphenylene (THAP, 96, Figure 19) on Au(111) because of its interest as electron transport material. They show that at least 4 parallel ordered monolayers can be grown where the molecules align parallel to the surface and, at least the first three monolayers, have a bidimensional hexagonal close packing (hcp, figure 21, left). Thus, in the growth from the first to fourth monolayers, each layer induces the order and lattice vector directions of the successive layer.
Nanoscience has experienced a spectacular rise in the last two decades, with significant advances in the synthesis and characterization of low-dimensional nanostructures and nanomaterials. This growth has been driven by advances in the synthesis and interdisciplinary investigation of the properties of molecules and nanomaterials on surfaces, as well as the development of self-assembled nanostructures on surfaces.

The ability for self-assembling together with the versatility of functionalization and electrochemical characteristics of HAT derivatives make these materials good candidates for further development of self-organized nanostructures on surfaces.

3.3 Nano and microstructures built by Self assembly

Nanoscience has experienced a spectacular rise in the last two decades, with significant advances in the synthesis and characterization of low-dimensional nanostructures and nanomaterials. This growth has been driven by advances in the synthesis and interdisciplinary investigation of the properties of molecules and nanomaterials on surfaces, as well as the development of self-assembled nanostructures on surfaces.

The above shown assemblies of individual molecules on surfaces have been investigated on “nonreactive” substrates such as Au or HOPG, with which molecules interact relatively weakly. However, Salomon and coworkers have also studied the interaction between molecule–substrate and molecule–molecule interactions for THAP 96 (Figure 21) and different metals. First, the electronic properties of 96 films deposited layer by layer on medium and high work function metallic substrates (Ag and Au) were investigated by means of ultraviolet and X-rays photoemission spectroscopies. With Ag(110) a charge transfer occurs from the metal to the LUMO of the 96 molecule, leading to the occupation of a new interface gap state. No evidence of charge transfer or chemical reaction is observed for 96 adsorbed on Au(111) which indicates a weaker interaction.

Following this study, the structural aspects of the adsorption of THAP 96 (Figure 21) on a clean Ag(110) surface was also investigated via STM showing that the molecule–substrate interaction plays an also important role as well in defining the structure of the full monolayer. In contrast with the 4 parallel ordered monolayers of 96 grown on Au(111), small adjacent islands were observed when 96 was evaporated on Ag(110) (Figure 21). While intermolecular van der Waals forces dominate in the Au(111) case, a stronger molecule–substrate chemical interaction occurs in the Ag(110) case.

The ability for self-assembling together with the versatility of functionalization and electrochemical characteristics of HAT derivatives make these materials good candidates for further development of self-organized nanostructures on surfaces.

Fig. 21 Chemical structure of THAP (104) and STM images of a) one monolayer of 96 on Au(111) (Reprinted with permission from S. D. Ha, Q. Zhang, S. Barlow, S. R. Marder, and A. Kahn, Phys. Rev. B, 2008, 77, 085433. Copyright 2008 by the American Physical Society) and b) submonolayer coverage of 96 on Ag(110). Reprinted with permission from J. Phys. Chem. C, 2008, 112, 9803-9807. Copyright 2008 American Chemical Society.

Fig. 22 Chemical structure of alkylamide-tethered HATNA derivatives (97, 98) and AFM images of (a) nanowires and (b) nanorods pattern of 98 on SiO/Si fabricated by microcontact printing. Reprinted with permission from J. Am. Chem. Soc., 2006, 128, 13042-13043. Copyright 2006 American Chemical Society.
Li and coworkers have reported the fabrication of microbelts through the coassembly of hexa-2-pyridyl-hexaazatriphenylene (78, Figure 23) with primary alkyl ammonium trflate. The strategy was first to construct hydrogen-bonded complexes between 78 and primary alkyl ammoniums to mimic covalently bonded π-core alkyl chain structures, and then the complexes self-assembled into microbelts driven by π–π stacking in the π core and van der Waals interactions between the peripheral alkyl chains. No well-defined aggregates could be observed from the sample obtained from a chloroform solution of 78 indicating that the π core itself was not a good building block for self-assembly. This suggests that a side chain might be necessary to promote ordered aggregation. However, when n-dodecyl ammonium trflate (DAT) was introduced into a solution of 78 in chloroform, flocculent material precipitated out after standing for several minutes. A SEM image revealed that it consisted of well defined microbelts of 1 to 2 μm in width and tens of micrometers in length. The formation of a stable hydrogen-bonded 78-alkyl ammonium complex is believed to be the condition for this sequential self-assembly process, through which the complex could further self-assemble into microbelts (Figure 23). This approach might offer a promising way to construct novel supramolecular architectures via the coassembly of simple components without the need to synthesize supramolecular building blocks with complicated chemical structures.

![Image](63x223 to 103x255)

![Image](76x399 to 128x445)

Fig. 23. Chemical structure of hexa-2-pyridyl-hexaazatriphenylene (78), its hydrogen bonding complex with n-dodecyl ammonium trflate (DAT) and TEM images of microbelts fabricated from the 78/DAT mixture (Upper part). On the lower part are represented (left) the TEM image of the microspheres constructed from the 78/Zn2+ mixture, (middle) and the SEM image of 78/Ag+ microtubes and (right) SEM image of 78/Ag+ microrods. Adapted with permission from Langmair, 2010, 26, 13048-13051 and Chem. Mater., 2011, 23, 1505-1511. Copyright 2010 and 2011 American Chemical Society.

Li and coworkers have also described the construction of three well-defined discrete microstructures—microspheres, microtubes, and microrods—that have been fabricated through metalorganic coordination between hexa-2-pyridyl-hexaazatriphenylene (78, Figure 23) and different transition metal ions. It is interesting to point out that deriving from the same organic unit, the resulting microspheres and microtubes (microrods) exhibit dramatic difference in dimension (0D vs 1D) as a result of different coordination manners of zinc and silver with 78 because of different coordination numbers and size and also by processing the coordination in different solvents.

The approaches described above represent promising methods to construct self-organized molecular assemblies in a tunable way and prove the suitability of HAT derivatives as a π core to build nano and microstructures.

4. HAT-CN, a special case of study

1,4,5,8,9,11-Hexaazatriphenylene hexacarbonitrile, or HAT-CN (IUPAC name: Dipyrazino[2,3-f:2',3'bh]quinoxaline-2,3,6,7,10,11-hexacarbonitrile, 11, Scheme 3), is a cyanooazacarbon, C19N12, first reported by Czarnik and coworkers. It is a strong electron-deficient discotic heterocyclic molecule with a deep-lying lowest unoccupied molecular orbital (DL-LUMO) level (~5.1 eV) and therefore a large electron affinity that acts as an electron-accepting unit. One consequence of this is that it avoids self-π-complexation in its neutral form. In fact, in HAT-CN crystals, obtained from a methanol/acetonitrile mixture, the planar HAT-CN molecules do not align in a parallel manner via π–π stacking, but rather form a staircase-like chain motif with a perpendicular arrangement. The intermolecular spacing is 3.75 Å, which is larger than the expected van der Waals radii sum of 3.54 Å. The overall crystal packing is mainly dominated by CN–π interactions which leads to a complicated, but highly symmetric, 3D hexagonal arrangement. Through this weak intermolecular interaction the self-π-complexation can be avoided, which helps to preserve the large molecular electron affinity in the solid state.

Concerning with its electrochemical behavior, three reductions steps are typically seen in cyclic voltammetry measurements. Although these three reductions are more or less reversible, depending on the conditions, the voltage separation is sufficient for three distinct species to be identified that at appropriate fixed potentials by spectroelectrochemistry. Upon treatment with tetra-n-butylammonium oxalate, HAT-CN is reduced, leaving [tetra-n-butylammonium][HAT-CN] salt and CO2 gas. Magnetic susceptibility measurements on this salt show its ferromagnetic behavior with an estimate Curie temperature of Tc ~ 3 K. In contrast with the staircase-like chain motif with a perpendicular arrangement observed for neutral HAT-CN, the molecular structure of [tetra-n-butylammonium][HAT-CN] is dominated by the stacking of the HAT-CN radical anions which form π-stacked pairs at the remarkably short distance of 3.110 Å. The pair of anions is rotated by 60° with respect to each other, which allows the staggering of the nitrile groups even though the rest of the atoms are almost fully eclipsed with a slip distance of only 1.457 Å. Each close pair is in turn slip-stacked with respect to its neighboring pairs, with an approximately half-molecule slip, or step, of 5.837 Å between adjacent pairs, and a somewhat longer interplanar spacing of 3.302 Å between the slipped pairs (Figure 24). These closely associated pairs of ions are likely responsible for the low temperature ferromagnetism. Dunbar and coworkers investigated also the ability of reduced forms of HAT-CN to be used as ligands. Most binary compounds of the first row transition metals with discrete or extended polymeric structure exhibit paramagnetic behavior with the exception of a polymeric [Cu-HAT-CN] phase which behaves as a canted antiferromagnet.
be thermally evaporated at a low temperature below 300 ºC in vacuum.

Concerning with its optical properties, HAT-CN has a wide band gap of 3.3 eV and it is therefore highly transparent in the visible spectral range. Thus, the UV/vis absorption spectrum shows an onset at ~370 nm (3.35 eV) and a peak at 320 nm (3.88 eV). Furthermore, HAT-CN is characterized by an infrared band at 2243 cm$^{-1}$ (C≡N). Another interesting features of HAT-CN are its good hole injection characteristics and its low refractive index of about 1.7 in the visible wavelength. It has very high stability even under ambient air conditions and it can be thermally evaporated at a low temperature below 300 °C in vacuum.

Furthermore, it has been found that HAT-CN is selectively soluble in 2-propanone and is insoluble in other solvents commonly utilized for solution processing (such as toluene, chlorobenzene, 1,2-dichlorobenzene, 1,2,4-trichlorobenzene, chloroform, and 1,2-dichloromethane). This unique characteristic facilitates its use as a universal hole-injection layer in multilayer solution-processed devices. Electron mobility in thin films of HAT-CN has been found to be $\mu_e \sim 10^{-4}$ cm2/Vs as determined by time of flight measurements. Because of all this features, HAT-CN has found interest for a variety of studies and applications that will be summarized below.

4.1 HAT-CN for (opto)electronic applications

Organic semiconductors have been developed vastly in the past decades as materials for organic (opto)electronic applications due to their numerous advantages such as low cost, mechanical flexibility or versatility of chemical design and synthesis. Organic semiconductors are intensively used as active thin films and electron and hole transporting materials in (opto)electronic devices such as light-emitting-diodes (OLEDs), solar cells (OSCs), organic field-effect transistors (OFETs) and sensors. Recently, transition metal oxides (TMOs) or organic dopants possessing a deep lying-LUMO level have received significant attention for their powerful roles in organic semiconductors. TMOs or organic dopants increase the conductivity and carrier density of organic films when they are doped in an organic semiconductor. In addition, thin layers of the materials can enhance the injection efficiency of charge carriers from the electrode to the organic layer by adjusting the work function of the electrodes, including carbon nanotube electrodes. Furthermore, HAT-CN has some additional advantages as the low refractive index (1.7) which is lower than that of other TMOs, and it effectively protects organic layers below the HAT-CN layer from sputtering damage during the formation of a transparent electrode. In contrast to TMOs, HAT-CN is highly conductive and transparent, even in layers that are several tens of nanometers thick, thereby minimizing the optical and electrical power loss and improving the performance of organic electronic devices. Thus, also naked HAT-CN layers have been widely used in place of doped layers because of the good electrical properties of pristine HAT-CN layers. The molecular alignment and nanostructure of HAT-CN thin films on organic surfaces has been investigated. HAT-CN molecules have been found to stack with a (001)$_{\text{ac}}$ preferred orientation on different organic surfaces and the orientation is maintained with increasing thickness. Even more interestingly, because the electronic properties of organic electronic devices depend strongly on the specific electrode-semiconductor interface, some efforts have also been devoted to investigate the layer growth, thermal stability and desorption behavior of HAT-CN on different electrodes. It has been found that, in contrast to growth on organic surfaces as indicated above, the thermal stability and preferred orientation of the HAT-CN molecules is related to the thickness of the film and the nature of the electrode substrate. Thus, the role of HAT-CN either as dopant or as naked layers has been tested in the following devices:

4.1.1. HAT-CN in organic light emitting diodes (OLEDs)

Conventional OLEDs are formed by selected organic materials (sometimes consisting of several layers) deposited between two electrodes. Usually the organic layers consist in an emitting layer (EML) between an electron injection layer (EIL) and a hole injection layer (HIL). (Figure 25).

![Fig. 25 Schematic structure of a conventional OLED](image)

Optimized carrier injection from the electrodes to the emitting layer is usually desired, with the goal of manufacturing efficient and reliable organic light-emitting diodes (OLEDs). In general, large energy barriers between the organic emitting materials and the electrodes will cause high operation voltage, low electroluminescence efficiency, and fast degradation in OLEDs. One efficient strategy in order to enhance hole injection and lower operation voltage in OLEDs involves the use of a doped hole-injection layer HIL (Fig. 25) which is typically made.
by doping a strong electron acceptor material \((\text{i.e.}, \text{p-type dopant}) \), in a hole transport material to generate free charges in the injection transport layer.\(^{142-144}\) The enhanced electroluminescence performance is attributed to the formation of charge transfer complexes in doped organic host materials through electron transfer from organic molecules to the dopants.\(^{145}\) In this respect, HAT has been successfully used as a highly efficient \(p \)-type dopant with common hole transport materials in OLEDs and compared favorably with inorganic dopants in terms of power efficiency, half lifetime and lower temperatures for thermal evaporation.\(^{145-148}\)

An alternative strategy to optimize hole injection barriers comprises the use of basic HAT-CN layers in place of doped layers.\(^{149}\) It has been found that such HAT-CN acceptor interlayers significantly reduce the hole injection barriers for organic semiconductors. With this aim, HAT-CN has been successfully employed as interlayer in different OLED architectures\(^{150,151,151,152,156}\) including multi-stacked,\(^{153,154}\) inverted,\(^{128,129,155}\) tandem,\(^{126,156,157}\) \(p \)-n,\(^{158}\) and phosphorescent OLEDs.\(^{159-166}\) Thus, this approach proved to be very useful to improve the driving voltage of OLEDs, avoiding the more complex processing of doping layers.

4.1.2. HAT-CN in organic solar cells (OSCs)

Intensive work is currently done in search of high efficiency solar cells with low-cost fabrication. In this respect, in recent years, there has been a growing interest in organic-based photovoltaic technology. Organic semiconductors show great promise owing to their synthetic variability, low-temperature processing, and the possibility of producing lightweight, flexible, easily manufactured, and inexpensive solar cells.\(^{167-169}\)

HAT-CN has been used in both small-molecule-based and semiconducting polymers-based organic photovoltaics. Thus, the efficiency of a copper phthalocyanine (CuPc):C_{60} based Organic Solar Cells (OSCs) can be improved by using a hole-transporting HAT-CN templating layer at the ITO anode that results in an ordered, vertical standing CuPc morphology. HAT-CN induces an ordered vertical phase in contrast to the more conventional flat lying orientation using strongly binding templates such as perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA).\(^{170}\) This reduces the layer resistance to charge transport between the CuPc donor and the ITO anode, thereby significantly increasing both short circuit current \((J_{sc}) \) and field factor \((FF) \) and hence the cell power conversion efficiency \((PCE) \).

HAT-CN has been also used as electron conducting window layer for separating the photoactive region from the cathode in organic small-molecule-based \(p \)-\(n \) type solar cells. The use of HAT-CN in this type of devices was prevented by its exceptionally high electron affinity, estimated 4.8 eV, which introduces an electron injection barrier to the photoactive acceptor material C_{60}. Nevertheless, the introduction of doped and undoped C_{60} intermediate layers efficiently removes the injection barrier and allows for using HAT-CN as window layer in small-molecule-based \(p \)-\(n \) type solar cells.\(^{171}\)

The use of HAT-CN as the organic interlayer for hole collection at the anode in semiconducting polymer-based organic photovoltaics has been also demonstrated. Thus, the open circuit voltage \((V_{OC}) \), \(FF \) and power conversion efficiency of inverted OSCs based on poly(3-hexyl thiophene)(P3HT): [6,6]-phenyl C61-butyric acid methyl ester (PCBM) can be greatly improved by inserting a HAT-CN interlayer between the active layer and the cathode.\(^{172}\)

The above examples show the relatively unexplored possibilities of HAT-CN to improve the performances of OSCs.

4.1.3. HAT-CN in organic field effect transistors (OFETs)

Due to the potential applications in integrated circuits for large area, flexible, and ultralow-cost electronics, organic field-effect transistors (OFETs) have received much attention all over the world.\(^{173}\) Although the performance of \(n \)-type OFETs has improved in last recent years, compared to \(p \)-type semiconductors, fewer \(n \)-type semiconductors have been investigated.\(^{174}\) Thus, because of the \(n \)-type character of HAT-CN, its performance in OFETs has been investigated. A mobility of 2.5 \(\times \) \(10^{-3} \) cm²/V⋅s with an ON/OFF ratio of up to 2 \(\times \) \(10^{5} \) has been measured at room temperature in a bottom-contact \(n \)-channel OFET with SiO₂ dielectric and gold drain/source electrodes.\(^{175}\)

HAT-CN has been also investigated in magnetoresistive field effect transistors. The phenomenon of organic magnetoresistance, usually abbreviated to OMAR, refers to the change in electrical resistivity in sandwich structures of nonmagnetic metals and organic materials under a magnetic field.\(^{175}\) The OMAR phenomenon has been studied in various organic materials with the aim to address fundamental questions about spin transport and spin manipulation in organic materials, but also because of its promising potential for the construction of lightweight, flexible, and multifunctional electronic devices without the use of ferromagnetic compounds.\(^{176}\) Until recently, OMAR was nearly always analyzed in two terminal devices. For a deeper understanding of OMAR, it is of high importance to explore this phenomenon in organic field-effect transistors (OFETs), because this (three-terminal) device geometry allows the verification of the charge carrier sign in the conducting channel as well as the determination of the corresponding mobility. In 2012, Saragi and coworkers reported for the first time on magnetoresistive field effect transistors sensitive to ultrasmall magnetic fields \((\lesssim 5 \text{ mT})\) by using a charge transport layer achieved by mixing HAT-CN as a strong electron acceptor and \(2,2',7,7' \)-tetrakis-(\(N,N \)-di-p-methylphenylamino)-9,9'-spirobifluorene (spiro-TTB) as electron donor (Figure 26).\(^{177}\)

This blends leads to a high density of coulomb-correlated Intermolecular Radical Pair (IRP) states with magnetic-field-dependent formation, dissociation and interaction rates. The amount of IRP states can be tuned by changing the blending composition and, as a result, the magnetoresponse of the devices can be adjusted as well. Thus, the use of HAT-CN in donor-acceptor blends in organic semiconductor devices is a powerful tool to fabricate magnetoresistive devices.
4.1.4. Noncovalent functionalization of graphene with HAT-CN for the design of conductive graphene electrodes with tailored work function

It has been demonstrated that the electronic properties of graphene can be tuned by metal doping or chemical modification. However, it has been shown that the induced structural defects produced by these modifications can easily destroy the excellent properties of graphene, especially its high carrier mobility. On the contrary, noncovalent functionalization, through physisorption of electron withdrawing/donating molecules on the graphene surface, has been reported to be a simple and effective scheme to nondestructively dope graphene. Chen and coworkers have recently performed density functional theory (DFT) calculations to assess the electronic structure of graphene overlaid with a monolayer of electro-active conjugated molecules including HAT-CN. Calculations show that HAT-CN adopts AB-stacking and keeps its planar geometry when adsorbed on graphene; there is no significant distortion of graphene with a rumpling of less than 0.1 Å; the mean distance between graphene and HAT-CN is around 3.2 Å (Figure 27). Interestingly, the noncovalent functionalization results in a work function modification that scales with the electron transfer from graphene, in line with the formation of an interfacial dipole. The use of the Boltzmann transport equation combined with the deformation potential theory shows that large charge carrier mobilities are maintained upon noncovalent functionalization of graphene, thereby suggesting that molecular doping is an attractive approach to design conductive graphene electrodes with tailored work functions.

4.2. HAT-CN in immobilized one-dimensional columnar charge transfer assemblies

Charge-transfer complexes are combinations of charge donating (D) and charge-accepting (A) materials. While the constituting compounds tend to be unipolar semiconductors, the CT complex can have entirely different properties; it can be an ambipolar semiconductor, a metal, or even a superconductor. Apart from their electronic properties, many CTCs have also been reported to show interesting long-wavelength optical absorption bands that are not observed in their constituting materials.

For a variety of applications using charge transfer (CT) complexes, long range structural ordering of donor/acceptor assemblies are important. In this respect, HAT-CN among other acceptors has been found to form CT complexes with amphiphilic triphenylene derivatives 99a,b shown in Figure 28. Aida and coworkers have used mesoporous silicates to provide highly ordered, unidimensional channels that are optimal for the long-range structural ordering of this charge transfer assemblies.

4.3 Interactions between anions and HAT-CN

In last recent years, the presence of noncovalent interactions of anions has garnered much interest with the goal of designing anion-specific molecular sensors and receptors for applications in biological and medicinal chemistry, e.g. transmembrane anion-π-slitides. In 2002, the term “anion-π interaction” was used by Deyá, Frontera et al. to describe the interaction of anions with electron-deficient arenes. Several studies have shown that certain arenes possessing strong electron-accepting abilities and large quadrupole moments undergo significant changes in their absorption and emission spectra upon interaction with anions. In these systems, the π-acceptor/anion interaction involves charge transfer (CT), which in several cases is accompanied by the appearance of highly colored solutions or crystals, rendering them promising candidates for designing selective anion-sensing receptors.

Considering the high π-acidity of HAT-CN, due to the conjugated cyano groups, its high molecular polarizability, and positive quadrupole moment, it was suggested that HAT-CN could be a particularly attractive heterocyclic system to establish anion-π contacts. Thus, Dunbar and coworkers showed the existence of CT bands in the complexation process of HAT-CN...
CN with several halide anions (i.e., X = Cl, Br, and I) using THF as solvent. The dominant multisite CT interactions afforded extremely high values ($K_{CT, X} = (1 − 4) \times 10^4 \text{ M}^{-1}$) as compared to those typically determined ($1−10 \text{ M}^{-1}$) for related complexes also displaying CT-bands.187

Shortly afterwards, Ballester and coworkers reported experimental evidence indicating that the nature of the interaction established between HAT-CN with mono- or polyatomic anions switches from the almost exclusive formation of reversible anion–π complexes, featuring a markedly charge transfer (CT) or formal electron-transfer (ET) character, to the quantitative and irreversible net production of the anion radical [HAT-CN$^-$] and the dianion [HAT-CN]$^{2-}$ species.191

The high stability of the distinctly colored complexes assembled with different anions as directing elements and the simultaneous multisite CT interactions in which HAT-CN engages are unique in the literature of this area. These are highly desirable features for the design of anion-sensing receptors. These seminal studies pave the way for further studies of interactions of HAT-CN with other anions.

4.4 HAT-CN as source for patterned graphene growth

Since the successful isolation of graphene via mechanical exfoliation of graphite,192,193 various methods of graphene synthesis have been developed, including chemical vapor deposition (CVD),194,194,195 chemical reduction of graphene oxides,196,197,198 and organic synthesis from micromolecules.199,200

However, one limitation is that for these procedures it is necessary to physically transfer the grown graphene onto desired substrates for subsequent device processing. Thus, intense efforts are currently focusing on developing alternative synthetic methods that can avoid transfer and the introduction of defects into the graphene sheet associated with the transfer process. In this respect, in 2015 Sun and coworkers have reported a simple, transfer-free method capable of synthesizing N-doped graphene directly on dielectric substrates at temperatures as low as 600 °C using HAT-CN as polycyclic aromatic hydrocarbon as the carbon source.201 The carrier mobility of N-doped graphene from HAT-CN was measured at 1835 cm2 V$^{-1}$ s$^{-1}$ without optimization and a square resistance of 850 Ω cm$^{-2}$ at the lowest growth temperature (~ 600 °C) which is compatible with direct growth on glass substrates. Thus, this method should provide a possible route to directly grow graphene on a variety of substrates, for example, quartz or glass, without the need for any transfer process.

5. Miscellaneous studies and applications for HAT derivatives

In addition to the self-assembling properties of HAT derivatives and the applications outlined above for HAT-CN, there are additional interesting studies and applications found for other HAT derivatives that will be reviewed below.

5.1 HAT derivatives and energy transfer processes

Energy transfer in donor–acceptor systems is an important process in a natural photosynthetic system190 as well as for the development of light harvesting antennas which are important and practically useful for the design of artificial photovoltaics.202 In this respect, taking advantage of the strong tendency for self-assembly of HAT, IshibI and coworkers designed and prepared an energy transfer system based on the incorporation of HAT possessing perylenebisimide (PBI) acceptor moiety into HAT-based columnar-type aggregates (Figure 29).204

PBI was selected as the acceptor moiety because of its strong accepting nature, suitable overlap of its absorption spectrum with the fluorescence spectrum of the HAT chromophore used as energy donor moiety, and good separation between the fluorescence spectra of the HAT and PBI chromophores.

In order to investigate the energy transfer process, a film of a HAT derivative with six octyloxy-containing biphenyl groups (HAT-OC8) doped with 5 mol % HAT-PBI 100 was prepared by spin coating. It was observed that in the presence of HAT-PBI 100 the emission from HAT-OC8 was quenched even upon excitation of the HAT chromophore. In addition, the PBI emission upon indirect excitation of the HAT chromophore was enhanced by a factor of 4 times compared to that observed upon direct excitation of the PBI chromophore which indicates the efficient light harvesting properties of the HAT-OC8 based medium. The energy transfer phenomenon can be easily visualized by change in the emission color from green HAT emission to red PBI emission.

Another efficient energy transfer system based on HAT derivatives and triphenylene (TP) derivatives endowed with (diphenylaminobiphenyl)biphenyl (DAB), phenoxypyphenyl (POB) and biphenyl (BP) groups was reported. In this case the HAT derivatives act as energy-acceptor. Thus, in 1:1 mixtures of TP/HAT, the blue emission from TP was completely quenched and only the green emission from HAT was detected and, even in the presence of 10 equivalent of HAT, the quenching of TP-DAB emission occurred significantly. Thus, an energy transfer system can be created by combination of triphenylene and HAT moieties with structural similarity and electronic complementarity.205
It can be concluded from these results that HAT derivatives can be efficiently used to provide self-assembled light harvesting and energy transfer systems.

5.2 Nonlinear optical (NLO) properties of HAT derivatives
Nonlinear optics is the branch of optics that describes the behavior of light in media where the dielectric polarization responds nonlinearly to (the electric field component of) light. The doubling of the frequency of the incident beam, through the second harmonic generation (SHG) process, constitutes one example of nonlinear optical (NLO) phenomena that is currently exploited in laser components as well as in optical information processing and data storage devices.

The most important class of molecules that has received significant attention in this field are donor-acceptor dipolar molecules in which the ease of polarization in one direction within the molecule is easier than that in the opposite direction. However, Zyss and coworkers showed that octupolar molecules with C3 symmetry exhibit first hyperpolarizability comparable to those of the donor-acceptor dipoles and a great deal of interest have been devoted to the use of this type of systems for NLO applications. Indeed, the lack of permanent dipole moment of octupolar structures, usually associated with an improved hyperpolarizability and with a good transparency, constitutes a strong advantage over more classic dipolar structures for many applications. In this respect, the HAT moiety has been identified as a good scaffold to build octupolar systems and the NLO properties of some HAT derivatives (101-103, Figure 30) have already been investigated. Thus, we have recently explored the electron-withdrawing property of HAT by ramifying and fully substituting its six peripheral positions with electron donor arms giving rise to new octupolar extended HAT dyes (101a,b, 102a,b) (Figure 30) in a donor-to-acceptor pattern with modulation of the charge transfer character. In addition, we have compared the nonlinear optical behavior of these charge transfer compounds with that of 103 which consists of the fusion of three HAT molecules and that, without relying on donor–acceptor derived noncentrosymmetry (as necessitated in linear conjugated structures), epitomizes the purely octupolar implementation of noncentrosymmetry. First hyperpolarizability (β) values between 250 and 510×10^{-30} esu were found for the charge transfer compounds 101a,b, 102a,b. Among them it was observed that the amine derivatives turned out to enhance the NLO activity due to their large electron donor capacity. On the other hand, a β value of 690×10^{-30} esu was found for 103. The conclusion of this study was that the modulation of the second order optical response is a balance of charge transfer and octupolar contributions.

Cho and coworkers found that the NLO properties of HAT derivatives 101c-d can be increased by complexation of the HAT derivatives with Cu(I) at the center of the octupolar molecules. This behavior is in agreement with the increase in the acceptor strength of the HAT moiety upon complexation. Apart from the NLO optical properties of HAT derivatives with C3 symmetry, we have also explored in a joint theoretical-experimental study the nonlinear optical properties of V-shaped HAT derivatives with C2 symmetry (26-30, Figure 7). β values between 30 and 66×10^{-30} esu were determined and it was found that by varying the type of linkage and the nature of the donor moiety, the electrochemical properties as well as the absorption spectra of the well-defined asymmetric donor-acceptor...
conjugated systems can easily be tuned and, again, the highest values were obtained for HAT derivatives containing the more electron-rich dibutylamino moiety.

The study of multiphoton-absorbing materials is another research field that has grown rapidly in the area of organic nonlinear optical materials because of its broad technological impact. The technologically useful multiphoton excitation-based applications, especially by two-photon absorption TPA, have drawn considerable attention including (but not limited to) three-dimensional (3D) fluorescence imaging, photodynamic therapy, nonlinear optical transmission, optical power limiting, up-converted lasing, three-dimensional data-storage, 3D microfabrication, and uncaging of bioactive species.213

Two-photon absorption (TPA) is a process whereby molecules simultaneously absorb two photons and is inherently weak at normal light intensities. From the design point of view it has been identified that donor-acceptor substitution can enhance the two-photon absorption activity of molecules through an increase in the transition dipole moment or the dipole moment difference between the ground and excited states. Furthermore, TPA crosssections (δ) can also be enhanced by intermolecular dimers and aggregates.214 With this in mind, Ishii and coworkers synthesized a family of donor-acceptor HAT derivatives bearing six electron-donating moieties 104-d (Figure 31).215

An enhancement of the two-photon absorption cross-section was observed for the self-assembled 104b system to give a δ value of 1460 GM (at 870 nm), which is 1.4 times larger than the value for the non-aggregate 104c (1080 GM at 850 nm) system bearing bulky tert-butyl groups. The δ value increased with expansion of the π-electron system from 104b to 104d (2560 GM at 850 nm). Compared to the phenanthrene-fused 104b system, the phenanthroline-104a demonstrated a larger δ value (2420 GM at 870 nm). Thus, the order of the two-photon absorption nature was determined to be in agreement with the aggregative nature of the molecules.

We have also investigated the TPA properties of HAT derivatives 101a-b and 102a-b (Figure 30).212 We found that in this family of compounds that the increase of the TPA crosssection (δ) values is consistent the rise of the first hyperpolarizability (β) and with the decrease of the experimental and theoretical HOMO-LUMO gaps. The linear relationship between β and δ values can be a useful guide for developing new strategies to synthesize compounds with great NLO and TPA properties. The above contributions show how the chemical design of suitable molecular structures is an efficient method to tune nonlinear optical properties.

5.3 HAT derivatives as photoinitiators for polymerization reactions

The photoinitiating systems play an important role in free radical polymerization (FRP), thiol-ene polymerization (TEP), cationic polymerization (CP) or free radical promoted cationic polymerization (FRPCP) and interpenetrated polymer networks (IPN) synthesis. Great efforts are being devoted to the design of UV, visible and near IR sensitive photoinitiating systems working upon exposure to monochromatic or polychromatic lights, under high or low intensity sources, in laminate, inert atmosphere or under air.216

In this respect, phenazine derivatives have been used in photopolymerization reactions and benzo [2,3-b]phenes have been found to be quite efficient photosensitizers in radical as well as cationic polymerization processes, but only upon high intensity Xenon lamp exposure.217 HAT derivatives exhibit enhanced light absorption properties compared to the previously used phenazine analogues which exhibit only UV light absorption. This is due to the fact that the lowest energy transition exhibits a π/π* character and involves strongly delocalized molecular orbitals. Thus, basic HATNA as well other HAT derivatives (105, 106, Figure 32) have been proposed as suitable photoinitiators and it has been recently shown that HAT- based three component photoinitiating systems allow efficient radical polymerization of acrylates and cationic epoxides upon exposure to easily accessible, energy saving and cheap LEDs at 385, 395 and 405 nm as well as a laser diode at 405 nm or a halogen lamp.218

The excellent absorption properties in the 380 to 425 nm range resulting from the presence of strongly delocalized molecular orbitals are promising for the development of other derivatives exhibiting a red-shifted absorption.

5.4 HAT derivatives for molecular recognition and sensors

Different HAT derivatives have been designed and synthesized with the aim to use them for molecular recognition and sensors. Badjic and coworkers synthesized internally functionalized and dynamic cav tand of type 107a-c (Figure 33) which can be used as “claws” for selectively “grabbing” small chemical analytes such as CBr₄.219

Fig. 31 Formulas of TPA dyes 104a-d based on HAT and schematic representation of the enhancement of the TPA nature by self-assembly.

Adapted from Tetrahedron, 2013, 69, 29-37. Copyright 2013, with permission from Elsevier.

Organogels based on HAT derivative 108 (Figure 33) have been used for silver(I) recognition. The strong stacking between the large planar HAT core and the van der Waals forces of the six aliphatic chains of this C$_2$-symmetric molecules greatly facilitate the formation of organogels in several solvents. It is observed that introduction of silver(I) nitrates were tested, with the metals ranging from alkali, alkaline-earth to transition metals and, remarkably, only Ag$^+$ was found capable of breaking the organogel which was ascribed to the strong complexation between 108 and Ag$^+$ in aqueous medium. This is a nice example that suggests a new way for the fabrication of gel-based sensing systems or smart soft materials.

HAT derivatives have been also used as chemosensors capable of selectively and efficiently detect fluoride anions. Thus, HAT derivative 109 (Figure 33) displays a high degree of F$^-$ discrimination both in organic solvent and aqueous mixture by direct deprotonation of phenolic OHs. Compound 109 is fluorescence silent, which might be attributed to the charge transfer between electron-deficient HAT core and electron-rich phenol units. Therefore, the fluorescence emission of 109 could not be turned on upon addition of anions and its recognition behavior had to be investigated using UV-vis spectroscopy. Thanks to the high acidity of the phenolic OH units and the strong intramolecular hydrogen bonds formed between them and the HAT core, the formation of intermolecular hydrogen-bonding between the OHs and anions was blocked and thus only direct deprotonation of OHs by F$^-$ could occur, which led to a high selectivity to fluoride over other anions.

The same HAT derivative 109 has been also recently used for selective recognition of Cu$^{2+}$ through the formation of coordination polymer which further aggregates into metal-organic nanospheres. The polymer is formed through the coordination interactions between the phenolic hydroxyl groups of 109 and Cu$^{2+}$. It exhibits distinct color changes and absorption variation toward Cu$^{2+}$ without being interfered by other competing metal ions and a satisfactory visual detection limit of 6.25 x 10$^{-6}$ M can be reached. This is a good example of how coordination polymers can also exhibit high selectivity and sensitivity as chemosensors for the recognition of metal cations.

While the introduction of phenolic substituents in the HAT core produce fluorescence silent derivatives, introduction of other less electron-donating aromatic rings makes the compounds emissive. This is interesting considering that, due to operability and sensitivity, fluorescent sensors are powerful tools for the detection of metal ions and widely used not only in environmental monitoring but also in biological studies. Thus, HAT derivative 78117,118 (Figure 33) with electron-deficient pyridine substituents has been found to have excellent fluorescent selectivity for Cd$^{2+}$ over many other metals (K$^+$, Na$^+$, Ca$^{2+}$, Mg$^{2+}$, Mn$^{2+}$, Fe$^{3+}$, Ni$^{2+}$, Co$^{2+}$, Cu$^{2+}$, Ag$^+$, Hg$^{2+}$, Zn$^{2+}$, and Cr$^{3+}$). This fact is of interest, as developing a Cd$^{2+}$ selective fluorescence sensor that can discriminate Cd$^{2+}$ from Zn$^{2+}$ as a consequence of the similar chemical properties of Cd$^{2+}$ and Zn$^{2+}$ has been a great challenge. Thus, compared with the weak fluorescence in solution of the free HAT derivative 78, the emission color of the solution changes from dark to bright blue after addition of Cd$^{2+}$ ions. The monitoring event can be even observed in a naked-eye experiment under UV-vis light irradiation because the emission color changes perceptively from dark to bright blue. The recognition process of Cd$^{2+}$ by 78 is reversible. This was demonstrated by addition of an equal amount of an ethylenediaminetetraacetic acid (EDTA) aqueous solution into the glowing 78-Cd$^{2+}$ solution, which recovers the original emission of 78 (Figure 34).
Inspired by the pioneering work described above, a series of HAT derivatives with different coordination structures, such as non-centrosymmetric HATs, have been designed and synthesized in order to obtain different fluorescence sensors for different metal ions. Thus, two C₂-symmetrical HAT derivatives (110a, 111a, Figure 33) bearing different number of pyridine and phenyl groups were synthesized. The two C₂-symmetrical HAT derivatives 110a and 111a are architecturally different in their coordination geometry compared with the symmetrical analogue 78. Both 110a and 111a exhibit ratiometric and colorimetric fluorescence recognition of Zn²⁺ nearly without interference by many other background metal ions, including alkali ions, alkaline earth ions and a wide range of transition metal ions, including Cd²⁺. Compound 110a, with a detection limit of 0.095 µM, is more sensitive toward Zn²⁺ than 111a.

Considering that Cd²⁺ has similar electronic structure but larger size relative to Zn²⁺, it has been shown that replacing the phenyl groups with smaller substituents, such as methyl groups, thus reducing the steric hindrance to metal ions and enhancing the binding ability to Cd²⁺, is an efficient strategy for the design of Cd²⁺ response fluorescent sensors. With this aim, two C₂-symmetrical HAT derivatives bearing methyl groups instead of phenyl rings (110b, 111b, Figure 33) have been synthesized and investigated as chemosensors. They both exhibit selective turn-on fluorescent recognition of Cd²⁺ ion that is nearly unaffected by many other background metal ions including Na⁺, K⁺, Ca²⁺, Mg²⁺, Mn²⁺, Fe³⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Ag⁺ and Pb²⁺. One common strategy to improve the sensitivity of chemical sensors consists on enhancing the fluorescence emission of the complex formed between sensor and analyte. Thus, a novel HAT derivative (112, Figure 34) that retain the receptor structure of 78 but with an extended chromophoric group has been prepared with the aim of getting a more sensitive response to the Cd²⁺ ion. The detection limit of 0.02 µM is remarkably lower than that of the parent HAT derivative 78 due to the extension of the chromophoric group with pyrene in 112 that exaggerates the fluorescence response. Interestingly, 112 exhibit water tolerance, low cytotoxicity and cell membrane permeability which allow for its use as in vivo sensor of intracellular Cd²⁺ levels.

The strategy of extending the conjugated systems of the chromophore has been also used for other HAT derivatives (113, 114, Figure 35) used as Hg²⁺ fluorescent chemosensors. The novel derivative 113 is analogous to 112 but the peripheral pyridine moieties substituted by phenyl rings. Thus, through this alteration of the binding site, the two HAT-based sensors can selectively respond to different metal ions. The detection limits of 113 and 114 are 2.8 and 3.1 nM which is lower than the toxic level of Hg²⁺. Thus, this HAT derivatives suitable for the detection of sub-micromolar level of Hg²⁺ in many biological and environmental systems. Furthermore, these sensors maintain their fluorescence sensing properties on test paper, which makes their practical application more convenient.

5.5 HAT derivatives as scaffolds for microporous frameworks

Until recently, organic polymers have not been considered as materials for gas storage because polymers generally have enough conformational and rotational freedom to pack space efficiently and thus do not offer high surface areas. However, the polymers of intrinsic microporosity (PIMs) have been developed that are composed wholly of fused ring subunits designed to provide highly rigid and contorted macromolecular structures that pack space inefficiently. In the search of polymers for hydrogen storage, McKeeon, Budd and coworkers developed a polymer of intrinsic microporosity (PIM) based on HAT (115, Figure 36).
The polymer can be obtained by reaction between hexachlorohexaaza-trinaphthylene (18a, Figure 5) and a spirocyclic bis(catechol) monomer. A Brunauer–Emmett–Teller (BET) surface area of 820 m2 g$^{-1}$ was measured for 115 by nitrogen adsorption at 77 K. The measurements for H$_2$ adsorption reveals that 115 adsorbs significant quantities of H$_2$ (1.4 % by mass) at relatively low pressures with saturation being reached at less than 10 bar pressure and with most of the adsorption taking place below 1 bar. Calculations show that the maximum number of hydrogen molecules adsorbed per fused-ring of the polymeric repeat unit is approximately 0.43 H$_2$ per ring. One interesting characteristic of this system is that unlike other types of microporous materials (zeolites, MOFs), the structures of this system is not necessarily constrained by a fixed network structure and may be dissolved in suitable solvents and swollen by suitable nonsolvents. Thus, polymer structural manipulation can be used to optimize H$_2$ adsorption; for example, the rapid removal of solvent from the swollen network could generate additional free volume and thus provide greater accessible surface area.

An important class of porous frameworks are those named π-conjugated microporous polymers (CMPs) which consist on an extended π-conjugated system and inherent nanopores.230,231 The combination of the porous structure and the characteristics of π-conjugated systems open the field for new applications. Thus, Jiang and coworkers reported the synthesis of porous framework based on an aza-fused CMPs with the general structure (116, Figure 37a) and highlighted their functions in supercapacitive energy storage and electric power supply.232

Different Aza-CMPs with the general structure 116 were ionothermally synthesized by a condensation reaction of 1,2,4,5-benzenetetramine (117) with hexaketoxyhexane (9) at 300, 350, 400, 450, and 500 °C. BET areas of up to 1200 m2 g$^{-1}$ were obtained for the polymer obtained at higher temperatures. Aza-MPs are amorphous and they can be used to prepare free standing flexible thin film electrodes films with different shapes (Figure 37c). Galvanostatic charge-discharge cycling experiments with disk-shaped films were done in order to test the supercapacitive performance. The highest capacitance measured was of 946 F g$^{-1}$ which is superior to the specific capacitance of nitrogen-enriched porous carbon materials and state-of-the-art carbon nanostructures such as graphenes and carbon nanotubes and exceeds that of the best values of supercapacitors with a redox ruthenium oxide electrode.233 The energy density is higher than those of nanostructured porous carbon materials and reaches the regime of batteries such as Pb-acid, NiCd and even lithium ion battery. Furthermore, it has an excellent cycle life as well.

More recently, Jiang and coworkers have synthesized another HAT-based CMP (118, Figure 38) as a new platform for lithium-battery energy storage with a built-in redox active skeleton and permanent nanopores.234 The HAT-based CMP (118) was synthesized via Sonogashira cross-coupling polycondensation of 1,4-diethynylbenzene and hexaiodoHATNA in the presence of tetrakis(triphenylphosphine) palladium and copper iodide catalyst and diisopropylamine base. The CMP strategy provides a useful platform for crosslinking redox-active modules into highly stable porous electrodes (the porosity of 118 was revealed by a BET surface area of 616 m2 g$^{-1}$); such organic cathode materials have been long pursued in the exploration of next-generation green batteries.235,236 It is worth pointing out that the structural features of the CMP work...
together in energy storage with lithium-ion batteries because the HAT-based built from redox-active units that serve as energy-storing and power supplying modules, it bears inherent open nanopores that are accessible to lithium ions and it possesses a high surface area that facilitates the charge dynamics. Thus, it has been found that batteries fabricated with 118 exhibit a near-unity coulombic efficiency, high capacity and energy density, and enable repetitive energy storage and supply with good cycle stability.

![Schematic representation of the HAT-based CMP 118 (upper part) and its elementary pore structure (lower part).](image)

Fig. 38 Schematic representation of the HAT-based CMP 118 (upper part) and its elementary pore structure (lower part).

The above examples demonstrate the enormous potential of HAT-derived CMPs as green electrode materials for designing high-energy storage and power supply devices.

Summary and Conclusions

The first three decades after the synthesis of HAT have witnessed a great interest on this system from the synthetic, theoretical and applications point of view. As for the applications, it has revealed itself as a basic scaffold in the areas of organic materials and nanoscience.

The structural behaviour of HAT has been investigated showing that, because of its discotic D$_{3h}$ symmetry and planarity, the HAT core has a strong tendency towards π-π stacking. Furthermore, the presence of six nitrogen atoms with sp2 hybridization provides HAT a good electron acceptor ability as demonstrated by electrochemical and UPS/IES experiments. Thus, the understanding of the particular structural and, moreover, electron acceptor ability of HAT as well as the establishment of accessible method for the synthesis and functionalization of this unique molecule has allowed the smart design of materials with tailored properties.

In the review we have summarized the main general synthetic methods for the synthesis of HAT derivatives with D$_{3h}$ symmetry. We have also highlighted the few examples of synthetic strategies toward HAT derivatives with non-trigonal symmetry which open up the way for the development of V-shaped NLO materials or the tuning of the liquid crystalline properties, among others. We have also outlined the main synthetic strategies for the post-synthesis functionalization of HAT derivatives which has allowed the incorporation of a variety of functionalities to HAT including electroactive moieties. We have summarized the main synthetic strategies followed to expand the HAT core conjugation with the aim to create n-type self-assembling semiconductors.

The outcome of the self-assembly of HAT derivatives at the molecular level has been investigated at different levels. (i) HAT-based three dimensional ordered liquid crystals have been prepared and n-type charge carrier mobilities have been measured for some HAT derivatives. (ii) HAT derivatives have revealed as excellent scaffolds for the development of self-organized nanostructures on different surfaces. It has been found that by using electrochemical scanning tunnelling microscopy it is possible to induce HAT molecules to organize in flat or vertical orientations on metallic surfaces which is a suitable way to build nanostructures or thin films with controllable molecular orientations for electronic applications. (iii) Different HAT derivatives have been used for the production of nano and microstructures including microbelts, microtubes or microspheres by using additional hydrogen bonding or metalorganic coordination interactions.

We have also reviewed the main applications found for HAT derivatives. In this respect we have remarked the special character of a HAT-CN, a HAT derivative endowed with six electron accepting nitrile groups. HAT-CN is a strong electron-deficient discotic heterocyclic molecule with a deep-lying lowest unoccupied molecular orbital (DL-LUMO) level (~5.1 eV) which has found extensive application as charge transport layer or as dopant in different (opto)electronic devices such as organic light emitting diodes, organic solar cells, organic filed effect transistors including magnetoresistive field effect transistors. It has also been used (i) for the work function tuning of graphene through noncovalent interactions, (ii) for the development of unidirectional nanoscopic channels (iii) for applications related with its ability of anion-π interactions and (iv) as source for the production of N-doped graphene.

Other important applications of HAT derivatives have been also summarized. By attaching suitable light harvesting antennas such as perylene bisimide derivatives to the HAT core it has been possible to show that HAT derivatives can be efficiently used to provide self-assembles light harvesting and energy transfer systems. Because of it octupolar character with trigonal symmetry appropriately functionalized HAT derivatives have proven as
suitable materials for NLO applications and as chromophores of multiphoton absorption. By attaching appropriate functionalities HAT derivatives can be efficiently used as efficient and fluorescent selective sensors of small chemical analytes such as CBr₄, fluoride anions or metal ions including Zn²⁺, Cd²⁺ or Hg²⁺. HAT derivatives can be also used as high performance photoinitiators for the ring opening polymerization of epoxy monomers as well as for the free radical polymerization of (meth)acrylates.

Very recently, HAT derivatives have also proved to be excellent scaffolds for the development of microporous frameworks, including conjugated microporous polymers (CMP). Thus, batteries fabricated with HAT-based CMPs have been found to exhibit a near unity coulombic efficiency, high capacity and energy density that enable energy storage and supply with good cycle stability.

In summary, HAT is a molecule whose interesting electronic properties have challenged the creativity and inventiveness of chemists in areas such as organic, polymer, supramolecular and materials chemistry as well as in nanoscience. The knowledge accumulated during this years of research based on this system will certainly lead to novel applications for this unique molecule.

Acknowledgements

Financial support from Spanish Government (Project MAT2014-52305-P) and a UCM-BSCN joint project (GR3/14) is acknowledged. The authors wish to give credit to the scientists who have participated in the development of this research field whose names are cited in the references.

Notes and references