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Swelling of ionic microgel particles in the presence of
excluded-volume interactions: a density functional ap-
proach

Arturo Moncho-Jordá,a and Joachim Dzubiellab,c

In this work a new density functional theory framework is developed to predict the salt-
concentration dependent swelling state of charged microgels and the local concentration of mono-
valent ions inside and outside the microgel. For this purpose, elastic, solvent-induced and elec-
trostatic contributions to the microgel free energy are considered together with the free energy
of the ions. In addition to the electrostatic interaction, the model explicitly considers both the
microgel-ion excluded-volume (steric) repulsion and the ionic correlations, in such a way that the
formalism is consistent with the Hypernetted-Chain Closure approximation (HNC). We explore the
role that the solvent quality, chain elasticity, salt concentration and microgel bare charge play on
the swelling state, the effective charge and on the ionic density profiles. Our results show that the
microgel-ion steric exclusion foments the increase of the particle size up to 10%. The role that the
steric effect plays on the counterion distribution becomes more important when the microgel ap-
proaches the shrunken configuration, developing an accumulation peak at the microgel interface
and a reduction in the inner core of the microgel that induce a significant increase of the microgel
effective charge. We further find that deep inside the particle charge electroneutrality is achieved
and a Donnan potential corrected by the steric exclusion is established.

1 Introduction
A microgel (or nanogel) particle is formed by a cross-linked poly-
mer network of colloidal size immersed in a solvent, which can be
designed to swell or shrink in response to many external param-
eters, such as temperature, pH, and solvent quality among oth-
ers.1–4 Particles formed by the copolymerization of monomers of
N-isopropylacrylamide (PNIPAM) or N-vinylcaprolactam (PVCL)
are two examples of microgels. Due to their nanometric size, the
timescale of the swelling response (which is roughly proportional
to the square of the typical spatial dimension of the microgel) is
of the order of seconds, which is very short compared to the ones
observed in the so-called macroscopic gels.5,6 Furthermore, the
soft and porous nature of the microgels allow them to be per-
meated by the solvent, ions and other neutral or charged macro-
molecules. The combination of these properties make microgel
suspensions unique smart materials for industrial and biomedi-
cal applications, such as carrier particles for biomolecules or con-
trolled drug release.7–9
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The encapsulation of solutes inside microgels may depend on
many parameters, such as the swelling state of the microgel, its
internal distribution of bare charge, the net charge of the solute,
or the hydrophobic character of both the solute and the polymer
network.11 In the case of charged solutes immersed in a suspen-
sion of ionic microgels, the total amount of absorbed molecules
may be also strongly influenced by the presence of ions. In fact,
the local concentration of counter- and coions inside and around
the microgel may play a determinant role on how the sorption of
solute takes place (externally at the surface, i.e., adsorption, or
deep inside the polymer network, i.e, absorption).

Due to the local variation of the ionic density profiles close to
the particle surface, charge electroneutrality is not fulfilled at ev-
ery point inside the particle. In this respect, different theoretical
approaches based on integral equations and linear response the-
ory clearly indicate that the ionic distribution leads to a non-zero
effective (or net) charge inside the microgel, Ze f f .12–14 Moreover,
Ze f f is significantly altered when ion-specific effects are taken into
account in addition to electrostatic ones. For instance, its absolute
value grows when counterions become expelled from the inter-
nal volume of the particle due to the excluded-volume repulsion
exerted by the polymer mesh.15 Oppositely, |Ze f f | may decrease
and even show charge inversion when counterions are specifi-
cally attracted to the polymer network by means of short-range
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hydrophobic forces.16 In all these works, however, the microgel
was represented by a fixed object which creates a constant exter-
nal field for the ions, but the swelling response of the microgel
was not accounted for.

The swelling behavior of ionic microgel particles were formerly
tackled on a coarse-grained level by means of a combination of
the Flory-Huggins theory for the elastic and solvent-induced con-
tributions, and the Debye-Hückel linear screening approximation
for the effect of the counterions.10,11,17,18. Some recent works
address the microgel volume transition in the presence of ions or
charged surfactants using more sophisticated theories and simu-
lation methods.19–21. However, all those approaches did not con-
sider ionic correlations nor excluded-volume effects. Sing et al.22

applied an integral equation formalism that considers the finite-
size ionic correlations to predict a reentrant swelling for large
salt concentrations. For this purpose, they used a two-phase de-
scription (the macroscopic gel and the bulk phase) so that the
exchange of ions between both phases was permitted at a fixed
chemical potential and preserving electroneutrality. A similar
grand canonical description was employed by Ahualli et al.23 but
in this case making use of coarse-grained computer simulations to
model the macroscopic gel, also under electroneutral conditions.
They compared the simulation results for microgel swelling with
a theoretical approach based on the Poisson-Boltzmann equation,
and found good agreement as soon as excluded-volume effects
promoted by the cross-linked polymer matrix were properly con-
sidered. Recently, Colla et al.24 went beyond this two-phase de-
scription and studied the uniform swelling and the local variation
of the ionic concentrations for finite-sized and uniformly charged
microgel particles. In that work, the authors employed a den-
sity functional approach that included the free energy of both the
microgel particle and the ions. Their model, however, is a mean-
field Poisson-Boltzmann approach that neglects the ion correla-
tions and the excluded-volume effects, which have been proven
to be important for de-swollen configurations.15,25

The main goal of this work is to propose a density functional
theory (DFT) able to predict consistently both the equilibrium
counterion and coion density profiles (ρ+(r) and ρ−(r), respec-
tively) and the swelling response, but taking special care of con-
sidering ion-specific excluded-volume effects and finite-size ion
correlations in addition to the electrostatic interactions. The
model gathers the elastic, solvent and electrostatic free energy
contributions coming from the polymer network inside the mi-
crogel, together with the free energy of the ions in the presence
of the microgel. Moreover, the ion free energy term is built to
be compatible with Ornstein-Zernike (OZ) integral equation the-
ory within the Hypernetted-Chain Closure (HNC) for ion-ion and
microgel-ion correlations. Although this approximation neglects
the bridge functions, it has been shown to perform quite well
when compared to other theories and simulations.14,25 For this
purpose, a quadratic functional Taylor expansion with respect to
the bulk densities of the ions is included in the ionic free energy,
which accounts for the ionic correlation beyond the mean-field
electrostatic treatment. Similar approximations have been used
in the literature to describe various charged soft matter systems
such as grafted polyelectrolytes,26,27 polyelectrolytes near oppo-

sitely charged interfaces,28 ions near charged electrodes,29 and
mixtures of charged macroions or colloids and electrolyte.30,31

We focus of the particular case of 1:1 electrolyte suspensions, al-
though the generalization of this method to multivalent ions is
straightforward.

The paper is organized as follows: In Section 2 the particle
interactions among the different components of the system (mi-
crogels, counterions and coions) are described. Section 3 briefly
explains the OZ-integral equations method and the HNC relation
used to determine the ionic density profiles around the charged
microgel. Then, a DFT consistent with HNC that includes both
ionic correlations and the microgel-ion excluded-volume interac-
tions, is developed in Section 4 to incorporate also the micro-
gel swelling. Section 5 specifies the system conditions and de-
scribes the details related to the numerical implementation of the
method. In Section 6 the theoretical predictions for the parti-
cle swelling, effective charge and local ionic concentrations are
shown in terms of many system parameters. Finally, we summa-
rize the most important results in Section 7.

2 The model system
We consider a three-component mixture formed by microgels,
counterions and coions (indexes m, + and −, respectively) im-
mersed in a continuous solvent with a electric permittivity, ε.
Counterions (coions) are assumed to be modeled by charged hard
spheres of radius R+ (R−) and valence Z+ (Z−). This allows to ac-
count for the finite size effects. Microgels are here treated as per-
meable spheres with a uniform mass holding a total bare charge
Zm homogeneously distributed within a sphere of radius Rm. It
should be emphasized that Rm is not a constant quantity, since it
depends on many parameters such as temperature, salt concen-
tration, microgel charge, etc. The polymer volume fraction inside
the microgel particle may be written as

φ = φ0 (R0/Rm)
3 (1)

where R0 and φ0 are the radius and polymer packing fraction of
the microgel in a reference swelling state.

In order to determine the equilibrium ionic density profiles in-
side and around the microgel particle we need to know the ana-
lytic expression of the pair interaction potentials. The dimension-
less pair potentials between ions are given by

βVi j(r) =

{
∞ r ≤ Ri +R j

ZiZ jlB/r r > Ri +R j
(2)

where r is the distance between the centers of both ions, i, j =±,
and lB is the Bjerrum length, defined as lB = e2/(4πεkBT ), where
kB is the Boltzmann constant, T the absolute temperature and
β = 1/(kBT ).

The pair interaction between ions and a microgel particle will
be split into an electrostatic and excluded-volume additive contri-
butions15

Vmi(r) =V elec
mi (r)+V exc

mi (r) i =±. (3)

The first term of eqn (3) corresponds to the electrostatic potential
energy between a single ion and the microgel. For a uniformly
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Fig. 1 Bare interactions between the microgel and a monovalent counterion (left panel) or coion (right panel) for different swelling ratios, Rm/R0.
These pair potentials are obtained from eqns (3), (4) and (5) assuming R0 = 30 nm, φ0 = 0.64, Zm =−270, R+ = R− = 0.2 nm and Rmon = 0.4 nm.

charged spherical microgel of radius Rm, this contribution is given
by

βV elec
mi (r) =

{
ZmZilB

2Rm

(
3− r2

R2
m

)
r ≤ Rm

ZmZilB
r r > Rm.

(4)

Here, r is represents the distance between the microgel and
ion centers. The second term of eqn. 3 accounts for the ion-
specific excluded-volume repulsion that an incoming ion expe-
riences when diffusing inside the polymer network. For point-
like ions this interaction is only dependent on the free volume
left by the polymer fibers. However, for finite size ions, this re-
pulsion depends also explicitly on the radius of the monomeric
units (Rmon), the ion size, and on the internal morphology of the
cross-linker polymer network. One of the first models to account
for internal structure of gels assumed that they could be repre-
sent by interconnected spherical pores.32 This hypothesis, how-
ever, did not succeed to predict the simulation results obtained
for the partition coefficient of neutral solutes inside cross-linked
polymer networks.33 Here, we assume that the polymer network
is roughly given by an assembly of randomly placed spherical
monomers. This approximation has been successfully employed
to predict the ionic density profiles inside and outside a single
microgel and the permeation of neutral and charged solutes ob-
tained via Monte Carlo simulations.23,25 Under this assumption,
the ion-microgel steric (excluded-volume) repulsion may be ana-
lytically calculated34

βV exc
mi (r) =

{
− ln(1−φ)(1+Ri/Rmon)

3 r ≤ Rm

0 r > Rm
(5)

Figure 1 depicts the counterion-microgel and coion-microgel bare
interactions (Vm+(r) and Vm−(r), respectively) for a particular
case. The pair potentials show a Coulombic decay for distances
r > Rm. For r < Rm the potential is soft and reaches a maxi-
mum/minimum at the center of the microgel, r = 0, where the
electric field created by the particle is zero. As it may be ob-
served, the steric repulsion introduces a repulsive barrier lo-
cated at r = Rm that partially hinders the ionic permeation in-
side the microgel. The barrier height grows with the polymer

volume fraction, φ , and so it plays a more important role in
shrunken states, whereas it only represents a minor perturbation
for swollen conformations. Please note that any discontinuity in
the pair potential (given by the steric barrier ∆V =V exc

mi (r < Rm)),
yields also a discontinuity in the ionic concentrations, so that
ρi(R+

m) = exp(β∆V )ρi(R−m). Therefore, the jump of the ionic den-
sities grows exponentially with ∆V , leading to huge peaks in the
density profiles of counterions at r = Rm for shrunken conforma-
tions.

3 HNC-Ornstein-Zernike equations
The main aim of the work is to develop a DFT consistent with
Ornstein-Zernike (OZ) integral equation theory within the HNC
approximation. In this Section we briefly discuss how the integral
equations method are able to provide the ionic density profiles
around a fixed microgel particle. In the limit of very dilute micro-
gel suspensions, these equations are given (in the Fourier space)
by35

ĥ++ = ĉ+++ρb
+ĉ++ĥ+++ρb

−ĉ+−ĥ+−
ĥ+− = ĉ+−+ρb

+ĉ++ĥ+−+ρb
−ĉ+−ĥ−−

ĥ−− = ĉ−−+ρb
+ĉ+−ĥ+−+ρb

−ĉ−−ĥ−−

 , (6)

for the ion-ion correlations, and

ĥm+ = ĉm++ρb
+ĉ++ĥm++ρb

−ĉ+−ĥm−
ĥm− = ĉm−+ρb

+ĉ+−ĥm++ρb
−ĉ−−ĥm−

}
, (7)

for the ion-microgel correlation. ρb
+ and ρb

− represent the num-
ber density of counterions and coions in the bulk, far away from
the perturbation caused by the microgel particle. These equa-
tions consider the particular case of a single microgel particle,
and so, they actually correspond to an infinitely diluted micro-
gel suspension, ρb

m→ 0 (the study of the ionic density profiles for
concentrated colloidal suspensions would necessarily require the
knowledge of the microgel-microgel interaction potential). hi j(r)
and ci j(r) are the so-called total and direct correlation functions.
In order to solve these equations, five additional closure rela-
tions are required to couple both functions. In this work, the
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Hypernetted-Chain Closure (HNC) is used for all particle correla-
tions

hi j(r) = exp
[
−βVi j(r)+hi j(r)− ci j(r)

]
−1, (8)

as it has shown to represent a quite accurate approximation for
ionic microgels in salty suspensions.14,15 Using the bulk ionic
concentrations and the pair interaction potentials (see eqns (2),
(3), (4) and (5)) as input functions, both sets of equations are
successively iterated until convergence is achieved. The sought
ionic density profiles are finally given by

ρi(r) = ρ
b
i [hmi(r)+1] with i =±. (9)

It should be noted that the electroneutrality condition

Z+ρ
b
++Z−ρ

b
− = 0 (10)

is automatically satisfied when solving the OZ-HNC equations.
This means that, as soon as we introduce in the system a charged
microgel, there is an exchange of ions with the bulk reservoir in
order to counterbalance the microgel charge. Integrating those
ionic density profiles over the volume of the microgel yields the
effective charge of the particle

Ze f f = Zm +4π

∫ Rm

0
[Z+ρ+(r)+Z−ρ−(r)]r2dr. (11)

4 Density functional theory

In our model, the system is consistent of a large spherical open
cell with a single charged microgel placed in the center, at r = 0.
Since we are interested in the knowledge of the ionic density pro-
files around a microgel particle, our functional must consider the
microgel as an external potential for the ions. In particular, our
external potential, Vmi(r), is the one given by eqns (3), (4) and
(5). In the presence of the microgel, the ionic densities become
non-uniform and show a dependence on the distance to the mi-
crogel center, ρi(r). This heterogeneous system formed by the
central microgel and the surrounding ions is in equilibrium with
a homogeneous reservoir filled exclusively by ions: the bulk. The
bulk number densities ρb

i are determined from the salt concen-
tration added to the microgel suspension. Finally, the mass equi-
librium between the system and the reservoir is controlled by the
chemical potential of counter- and coions, µ±.

In addition, microgel particles are deformable objects that can
adopt different swelling states depending on the solvent condi-
tions, the cross-linker concentration and the bare charge. In the
presence of ions, the microgel interacts with them, and the equi-
librium radius Rm becomes also dependent of the salt concen-
tration. Therefore, the grand canonical potential of the system
should incorporate the free energy of the microgel, Fm, the free
energy of the ions, Fions and the contribution coming from the
microgel-ion interactions. Hence, we have

Ω[{ρi(~r)},Rm] = Fm +Fions + ∑
i=±

∫
[Vmi(~r)−µi]ρi(~r)d~r. (12)

4.1 Free energy of the microgel

The free energy of the microgel will be split into three dif-
ferent terms: elastic, solvent-induced, and electrostatic self-
contributions

Fm = Felastic
m +Fsolvent

m +Fsel f−el
m (13)

For the elastic free energy we make use of the popular rubber
elasticity model3

βFelastic =
3Nchains

2

[(
Rm

R0

)2
− ln

(
Rm

R0

)
−1

]
(14)

where Rm is the microgel radius, R0 is its radius in the undeformed
state and Nchains is the number of cross-linked chains. The elastic-
ity strongly depends on the average chain length. We will define
ν as the number of monomeric units per chain. The internal mor-
phology of the microgel and the elastic response is specified by
ν . Indeed, short chains imply that the particle has a larger cross-
linker concentration and so it is more difficult to stretch. On the
contrary, for long chains the microgel is likely to be deformed
by any external stimuli with a relatively small elastic free energy
cost. Assuming that monomers have a spherical shape of radius
Rmon, we have

Nchains =
φ0V0

νvmon
=

φ0

ν

(
R0

Rmon

)3
. (15)

where vmon = 4πR3
mon/3. Hence, the elastic contribution, ex-

pressed in term of the polymer packing fraction (see eqn (1)),
reads as

βFelastic
m =

3
2

φ0

ν

(
R0

Rmon

)3
[(

φ

φ0

)−2/3
+

1
3

ln
(

φ

φ0

)
−1

]
. (16)

We need to specify the packing fraction for the reference state, φ0.
Most of the authors assume that such state is reached when the
polymer is being cross-linked to create the permanent network.
In other words, the reference state corresponds to the conforma-
tion of the particle when it was synthesized. In the particular
case of microgels, the synthesis usually happens under bad sol-
vent conditions, so the microgel is in the hydrophobic, collapsed
state.3 Hence, we assume that φ0 ≈ 0.64, which corresponds to
the packing fraction in conditions of random-close packing of
spheres (monomers).

The next step is to define the solvent free energy. In the typical
Flory picture, this contribution has an entropic part and a solvent-
polymer interaction part3,17,18,20

βFsolvent
m = ns lnφs +χnsφ , (17)

where ns is the number of solvent molecules inside the microgel
and φs is the volume fraction filled by the solvent inside the micro-
gel, which is supposed to be given by φs ≈ 1−φ . This assumption
neglects the local packing fraction of absorbed counterions and
should be valid for not too high microgel charges (about volu-
metric charge densities below 50 C/cm3). χ is the Flory-Huggins
parameter (which controls the degree of solvent quality for the

4 | 1–14Journal Name, [year], [vol.],

Page 4 of 14Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



polymer chains).For χ = 0, polymers behave as athermal, so its
conformation only depends on the excluded volume interactions
between the monomers. For χ = 1/2 the hydrophobic attraction
between the polymer chains exactly compensates the excluded
volume repulsion, leading to an ideal Gaussian behavior. For
larger values of χ, the polymer tends to be more hydrophobic,
so the microgel shrinks expelling the solvent from inside. The
larger χ is, the smaller the microgel size becomes. For PNIPAM
microgels χ increases with temperature, and the transition from
swollen to shrunken conformations occurs at temperatures close
to T = 307 K. However, the dependence of χ with T is not known
in general, and depends on other parameters. For this reason
we performed the study in terms of χ instead of using T . As-
suming that the solvent particles have the same volume than the
monomeric units, vs = vmon we get

ns =
(1−φ)V

vs
= (1−φ)

(
Rm

Rmon

)3
. (18)

Therefore,

βFsolvent
m =

(
Rm

Rmon

)3 [
(1−φ) ln(1−φ)−χφ

2
]

(19)

Please note that in the last equation we omitted a contribution
proportional to χφR3

m = χφ0R3
0 because it only represents an addi-

tive constant that does not have any influence on the equilibrium
swelling state.

Finally, the third contribution corresponds to the electrostatic
energy of the charge distribution inside the microgel, in the ab-
sence of ions. Formally, this energy is given by

βFsel f−el
m =

lB
2

∫ ∫
ρmon(~r)ρmon(~r′)
|~r−~r′|

d~rd~r′ (20)

In our particular model, we supposed a uniform distribution of
charge inside the microgel, so that

ρmon(r) =

{
3Zm

4πR3
m

r ≤ Rm

0 r > Rm.
(21)

For this choice, the electrostatic self-energy of the microgel is sim-
ply given by

βFsel f−el
m =

3
5

lB
Z2

m
Rm

. (22)

The total bare charge, Zm, may be connected to the fraction of
charged monomers, f as

Zm =− f φ0(R0/Rmon)
3. (23)

The negative sign is due to the fact that monomers are assumed
to be negatively charged, Zmon =−1.

4.2 Free energy of the ions

The free energy of the ions is split into ideal and excess contribu-
tions

Fions[{ρi(~r)}] = F ideal
ions [{ρi(~r)}]+Fexcess

ions [{ρi(~r)}], (24)

for which the ideal gas part is known exactly as

βF ideal
ions [{ρi(~r)}] = ∑

i=±

∫
ρi(~r)

[
ln(ρi(~r)Λ3

i )−1
]

d~r, (25)

where Λi = h/(2πmikBT )1/2 is the thermal wavelength of ion i.
For the excess free energy of the ions, we assume that it may be
written in two additive parts, a Coulombic electrostatic term plus
a correction which accounts for the ionic correlations beyond the
mean-field electrostatic contribution.30,36–38 Therefore,

Fexcess
ions [{ρi(~r)}] = Fel

ions[{ρi(~r)}]+Fcorr
ions [{ρi(~r)}] (26)

The mean-field electrostatic contribution is given by

βFel
ions[{ρi(~r)}] =

lB
2 ∑

i, j=±
ZiZ j

∫ ∫
ρi(~r)ρ j(~r′)
|~r−~r′|

d~rd~r′

=
lB
2 ∑

i, j=±
ZiZ j

∫ ∫ (ρi(~r)−ρb
i )(ρ j(~r′)−ρb

j )

|~r−~r′|
d~rd~r′. (27)

Note that the second equality holds because system fulfills elec-
troneutrality (see eqn (10)). The correlation part may be es-
timated by means of different ways. Here, we employ one of
the simplest approximations, in which this contribution is Tay-
lor expanded up to second order of the local ionic concentrations
around the bulk densities, and higher order terms are neglected:

βFcorr
ions [{ρi(~r)}] = βFcorr

ex [{ρb
i }]− ∑

i=±
∆c(1)i

∫
(ρi(~r)−ρ

b
i )d~r

−1
2 ∑

i, j=±

∫ ∫
∆c(2)i j (|~r−~r′|)(ρi(~r)−ρ

b
i )(ρ j(~r′)−ρ

b
j )d~rd~r′ (28)

In this expansion βFcorr
ex [{ρb

i }], ∆c(1)i and ∆c(2)i j (|~r−~r′|) are the
Helmholtz free energy, the first-, and the second-order direct cor-
relation functions of ions in the bulk (with uniform number den-
sity ρb

i ) arising from the ionic correlations. As will be shown later

on, βFcorr
ex [{ρb

i }] and ∆c(1)i are two constants that don’t have any
influence on the ionic density profiles and the swelling ratio of
the microgel at equilibrium. However, ∆c(2)i j (r) is indeed very im-
portant. Since the Coulomb contribution is explicitly taken into
account through eqn 27, these functions are given by

∆c(2)i j (r) = ci j(r)+ lB
ZiZ j

r
i, j =± (29)

where ci j(r) are the ion-ion direct correlation functions in the
bulk.

4.3 Functional differentiation

Once all the contributions of the grand canonical potential are
explicitly known, we can perform functional derivatives to obtain
the ionic density profiles via minimization of the grand canonical
potential

δΩ [{ρi(~r)},Rm]

δρ+(~r)
= 0 ,

δΩ [{ρi(~r)}Rm]

δρ−(~r)
= 0. (30)
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Performing the functional differentiation, and using that ρi(r)−
ρb

i = ρb
i hmi(r) together with the definition of the ion-ion correla-

tion functions (eqn 29), we obtain

ln(ρi(r)Λ3
i )− ∑

j=±
ρ

b
j

∫
ci j(|~r−~r′|)hm j(~r′)d~r′

+βVmi(r)−∆c(1)i −β µi = 0 i =± (31)

The same identity may be applied in the reservoir, where ions are
uniformly distributed and so the density profiles are flat. In this
case, there is no external field, so hmi(r) = 0, and the previous
equation reduces to

ln(ρb
i Λ

3
i )−∆c(1)i −β µi = 0 i =± (32)

Using eqn (32) in eqn (31), we can eliminate the constant param-
eters µi, ∆c(1)i and Λi in terms of the bulk densities ρb

i . Moreover,
we can make use of the OZ equations (eqn (7)) to reduce even
further. We obtain

ρi(r)
ρb

i
= hmi(r)+1= exp [−βVmi(r)+hmi(r)− cmi(r)] i=± (33)

These expressions are completely consistent with the HNC formu-
lation (eqn (8)). Therefore, the DFT proposed here is equivalent
to solving the OZ-HNC integral equations. Note that the present
theory for the microgel-ion correlations reduces to the simpler
mean-field Poisson-Boltzmann approach if ions are assumed to be
point-like and ionic correlations are neglected (∆c(2)i j = 0), so that
the ion-ion direct correlation functions are provided by the mean
spherical approximation (MSA), ci j =−lBZiZ j/r.

Finally, The swelling state of the microgel is obtained by per-
forming the derivative with respect to the particle radius, Rm, via

δΩ [{ρi(~r)},Rm]

∂Rm
= 0 i =±. (34)

5 Numerical implementation and choice of
the conditions

In the calculations we investigate the particular case of mono-
valent salt, although the method can be also easily extended to
consider multivalent ions. Also, we restrict the study to the case
where the solvent mediated short-range hydrophobic/hydrophilic
forces between ions and polymer chains are negligible, so that
only steric and electrostatic forces are involved. The monomer
radius is assumed to be Rmon = 0.4 nm, which corresponds to
the average effective size of the monomers for PNIPAM polymer
chains. For the ions’ diameter we employ a generic and symmet-
ric R+ = R− = 0.36 nm, while in future more specific values39,40

shall be tested. However, when an ion diffuses inside the cross-
linked polymer network, the solvent layer surrounding the ion
can be disrupted in the region between the ion and the polymer
chain.41 For instance, Na+ is known to have some affinity to the
carbonyl group of the PNIPAM amide bringing them to close con-
tact.42 Still, the water disruption will depend on the specific ion
and the detailed physicochemical properties of the polymer. In
order to provide a simple treatment for this effect we assumed

that the ion size which enters into the microgel-ion steric repul-
sion (eqn 5) is the one for completely dehydrated ions and we fix
it to 0.2 nm in our calculations. The microgel radius in the ref-
erence (collapsed) state has been chosen to be R0 = 30 nm, and
the polymer packing fraction in this state is φ0 = 0.64, which cor-
responds to the random close packing configuration of spherical
monomers. The Bjerrum length, that controls the intensity of the
electrostatic interactions, is taken to be lB = 0.71 nm, which is the
typical value for an aqueous solution at room temperature.

We investigate the equilibrium density profiles of counter- and
coions, and the swelling state of the microgel at different con-
ditions of microgel chain flexibility, bare charge and salinity.
In particular, we explore charge fractions (average charge per
monomer) from f = 0 to 0.05, whereas the salt concentration,
ρs, is varied from 0.1 mM to 300 mM. The average chain length
between two cross-linker nodes is varied between ν = 100 and
500. In all cases electroneutrality is fulfilled. We also investigate
the role of the steric repulsion between the incoming ions and the
polymer network of the microgel. For this purpose the ionic den-
sity profiles and the swelling state of the particle are determined
with and without taking the steric forces into account.

The hydrophobic interaction between the polymer chains is
controlled by the Flory-Huggins parameter, χ. It is well-known
that the swelling of PNIPAM microgels depends on temperature,
with a crossover between swollen to de-swollen states close to
T = 307 K. However, the dependence of χ with temperature is
not universal, as it may be different depending on the polymer
nature and the volume fraction. For this reason, instead of using
the temperature we better employ the Flory-Huggins parameter,
χ. In order to plot the swelling curve, χ is varied from 0 (ather-
mal polymer) to 1.5 (strongly hydrophobic polymer), in steps of
∆χ = 0.1.

In all the calculations the monomer diameter σmon is set to be
the unit length. All number densities are scaled by ρi(r)σ3

mon. In
order to integrate the OZ-HNC equations, successive iterations
are applied starting from an initial guess until convergence is fi-
nally achieved. Iteration k is considered to reach convergence
when ∑i< j

∫
(c(k)i j (r)−c(k−1)

i j (r))2dr < 10−9. Usually, as initial guess
we employ the MSA approximation for the direct correlation func-
tion, ci j(r) = −βVi j(r).35 The solution needs to be slowly con-
ducted by mixing old and new iterations.43 This method works
quite well for small values of the microgel bare charge, Zm. How-
ever, for strongly charged microgels the method becomes unsta-
ble and the iterative procedure needs additional resources to be
guided until convergence. In particular, we start from a microgel
of large radius, since in this case the density distribution of bare
charge is low and convergence is easily reached. Then, we use the
functions cm±(r) obtained for this radius Rm as the initial guess to
solve the case of a microgel with slightly smaller size, Rm−∆R.
For small enough ∆R the method is able to cover a large spectrum
of particle sizes, from swollen to shrunken configurations, and al-
lows the determination of the minimum of Ω as a function of Rm.
This is done for several values of χ at once. The calculations were
performed using a grid size of r/σmon = 0.005, and a total num-
ber of points given by 262144. With such a choice we checked
that the direct correlation functions are not affected by the grid

6 | 1–14Journal Name, [year], [vol.],

Page 6 of 14Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



0.0 0.5 1.0 1.5

1.0

1.5

2.0

2.5

3.0

(a)

 

 

R
m
/R

0



Z
m
 270 ( f=0.001)


s
  1 mM

 electrostatic  steric

 electrostatic

0.0 0.5 1.0 1.5

1.0

1.5

2.0

2.5

3.0

(b)

 

 

R
m
/R

0



Z
m
 2700 ( f=0.01)


s
  1 mM

 electrostatic  steric

 electrostatic

0.0 0.5 1.0 1.5

1.0

1.5

2.0

2.5

3.0

(c)

R
m
/R

0

 

 



Z
m
 2700 ( f=0.01)


s
  10 mM

 electrostatic  steric

 electrostatic

Fig. 2 Swelling behavior of the microgel with and without the steric interaction. Each plot shows the curve for different conditions of charge fraction f
and electrolyte concentration ρs. Calculations performed for microgels with ν = 500 and φ0 = 0.64.

size, even at the largest studied salt concentration. The step em-
ployed to cover the microgel radius, from large to small size, is
∆R= 0.2 nm. This value ensures that the solution will successfully
achieve convergence in all situations. More details about the nu-
merical integration of the OZ equations may be found in related
previous work.14

6 Results and discussion

6.1 Effect of the microgel-ion excluded-volume repulsion

The first question to pose is whether the excluded-volume repul-
sion that the cross-linked polymer network exerts on the incom-
ing ions is important or not. In principle, it is expected that this
repulsion will have significant effects on the ionic distribution,
expelling more ions outside the particle as the microgel shrinks.
Analogously, the change on the ionic density profiles should also
have some kind of influence on the swelling state of the particle.

In order to answer this question the swelling behavior of the mi-
crogel has been studied under several conditions of bare charge
and ionic strength (see Fig. 2). For weakly charge microgels,
Fig. 2(a) indicates that the steric effect seems to be negligible.
In this particular case, counterions are weakly attracted by the
microgel, so the energy cost of expelling them outside due to the
steric force is small compared to the other free energy contribu-
tions. However, the role of the steric exclusion becomes more rel-
evant as the microgel bare charge is increased. This fact is clearly
illustrated in Fig. 2(b), where the same comparison is performed
at a microgel bare charge ten times larger. In this case, the steric
exclusion induces an increase of the microgel size. Indeed, when
steric exclusion is taken into account, counterions are forced to
emigrate outside, increasing the electrostatic potential. Since this
situation is energetically unfavorable, the microgel tends to swell
in order to allow the ions to diffuse inside at some extent, and so
reducing both the electrostatic and the steric microgel-ion energy.

The relevance of the steric effect is not always the same for the
whole curve. For χ < 1/2 the particle is expanded so the inter-
nal polymer volume fraction is low, leading to a very small steric
repulsion. As the particle shrinks (χ > 1/2), the steric exclusion
plays a more significant role, and may lead to an increase of the
particle size up to 10%. Close to the shrunken states the steric ef-
fect becomes very strong. However, in this region the microgel is
highly hydrophobic so the free energy is dominated by the solvent

contribution, being the presence of ions of minor relevance. The
role that steric exclusion plays is also diminished by increasing the
salt concentration. Indeed, if the salt concentration is large (see
Fig. 2(c)) the electrostatic forces are screened and the presence of
the microgel represents an smaller perturbation of the ionic bulk
densities.

Although the microgel size is not very much affected by the
steric exclusion, the ionic concentrations are indeed strongly
modified. In order to illustrate this, Fig. 3 shows an exam-
ple of the ionic density profile with and without the steric ef-
fect for three different swelling states: swollen, intermediate and
shrunken. As it may be observed in Fig. 3(a), in the swollen con-
figuration (χ = 0) the effect of including the steric exclusion is
small and only introduces a small jump in the radial distribution
functions of both ions, in such a way that the concentration inside
the microgel is slightly smaller than the one predicted without
steric forces. When a partial microgel shrinking is induced by in-
creasing the Flory-Huggings parameter to χ = 1/2 (Fig. 3(b)), the
differences between both predictions become more significant. Fi-
nally, close to the shrunken state (Fig. 3(c)) the effects of the
steric exclusion are huge. In this case, the steric repulsive barrier
is about several kBT , causing a strong exclusion of ions. This can
be clearly appreciated in the local concentration of counterions,
which shows an accumulation peak at r = Rm that grows at the
expense of a reduction inside the microgel. Such kind of high
concentration peaks located at the external shell of the microgel
have been reported in previous simulation studies and are a di-
rect consequence of the steric repulsion.25 The ion-ion excluded-
volume repulsion also slightly contributes to enhance the coun-
terion exclusion from the interior of the microgel. However, this
effect becomes significant only when the internal packing frac-
tion of counterions is very large (close to the maximum packing)
which can occur only for microgels holding a much higher density
charge. Surprisingly, the enormous effects in the ionic distribu-
tion close to the shrunken state does not play a dominant role on
the equilibrium swelling state. This occurs because, as it has been
mentioned before, in this region of high χ the particle size is led
by the polymer-polymer hydrophobic interactions which enters
through the solvent term of the free energy.

In is important to emphasize that close to the microgel sur-
face there exist local effects because of the sudden jump of the
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Fig. 3 Radial distribution functions of counterions (+) a coions (-) around the microgel for three different swelling states, from (a) swollen to (c)
shrunken. Solid and dashed lines are the predictions obtained with and without the steric exclusion, respectively. In all cases f = 0.01 (Zm =−2700),
ρs = 1 mM, ν = 500 and φ0 = 0.64. Black and red dotted horizontal lines represent the ionic concentration predicted by eqns (36) and (37), providing a
Donnan electrostatic potential with and without inclusion of the the excluded-volume effects, respectively.

bare charge density. Indeed, the perturbation caused by the mi-
crogel interface leads to local variations of the local density of
counter- and coions, with a range given approximately by the De-
bye length, κ−1. However, for not too low salt concentrations
(ρs & 0.1 mM), the ionic density profiles become flat inside the
microgel particle. This feature is directly connected with the fact
that a Donnan potential (ψD) is being established inside the parti-
cle far from the interface, and that electroneutrality is fulfilled in
this region. Such Donnan potential can not be determined from
the original Donnan theory since it was developed only for point-
like ions in the absence of excluded-volume interactions. As it was
reported by Ahualli et al.,23 the steric contribution must be nec-
essarily taken into account, and the Donnan potential should be
also corrected by finite size effects in addition to the electrostatic
ones. They propose a simple theory to predict ionic concentra-
tion inside the gel phase by imposing the equality of the chemical
potential inside (gel phase) and outside (bulk phase)23

ρ
ins
i = ρ

b
i exp(−βZieψD−β µ

exc
i ) (35)

where ρ ins
i and ρb

i are the concentration of the ionic species i =±
inside the gel and in the bulk, ψD ≡ ψ ins−ψb is the difference
of the electrostatic potential between both phases, and µexc

i is
the excess chemical potential driven by the steric exclusion in
the gel phase. By imposing electroneutrality inside the microgel,
Z+ρ ins

+ +Z+ρ ins
+ +Zmonρmon = 0, using that Zmon =−1 and consid-

ering the particular case of a monovalent salt, Z+ =+1, Z− =−1,
ρb
+ = ρb

− = ρs, the resulting Donnan potential is

βeψD =−β µ
exc
+ − ln

ρmon

2ρs
+

√(
ρmon

2ρs

)2
+ e−β (µexc

+ +µexc
− )

 . (36)

Now we need an expression for the excluded-volume chem-
ical potentials µexc

i . Here, we suppose that this steric repul-
sion is caused exclusively by the polymer packing fraction inside
the microgel. This assumption neglects the excluded-volume ef-
fects arising from the counterions condensed inside, so it may be
considered a good approximation as far as the microgel charge
and the salt concentration are not too high. As it has been al-
ready mentioned in Section 2, the internal morphology of the

microgel is well-captured through the microgel-ion pair potential
given by eqn (5). Therefore, in order to be consistent with this
model, the excluded-volume chemical potential must be given by
β µexc

i =− ln(1−φ)(1+Ri/Rmon)
3. Hence, the ionic densities deep

inside the microgel particle are

ρ
ins
i = ρ

b
i exp

(
−βZieψD + ln(1−φ)(1+Ri/Rmon)

3
)
. (37)

The theoretical predictions privided by eqns (36) and (37) have
been compared to the radial distribution functions of counter- and
coions inside the microgel obtained in the region where the den-
sity profiles are flat (see black horizontal dotted lines in Fig. 3).
As observed, the agreement is excellent for all cases, from swollen
to shrunken states. Hence, eqn (37) can be considered a good ap-
proximation to predict the ionic concentration deep inside the mi-
crogel in the presence of steric interactions. If the steric repulsion
is neglected, the agreement is also good (red horizontal dotted
lines), but in this case the Donnan potential is the one deduced
from purely electrostatic interactions (µexc

i =0). Furthermore, the
fact that electroneutrality is fulfilled in the internal region means
that the effective charge that the microgel develops must neces-
sarily arise from the region close to the particle surface.
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Fig. 4 Swelling behavior for different values of the chain length between
cross-linker nodes. Calculations performed for microgels with φ0 = 0.64,
f = 0.01 and ρs = 1 mM.
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6.2 Effect of the chain flexibility
Henceforth, the steric exclusion will be always considered. We
now investigate the role of the chain flexibility by changing the
average chain length between two cross-linker monomers, ν . In-
creasing the chain length is equivalent to decrease the cross-linker
concentration inside the microgel particle, so the polymer net-
work becomes more flexible. Fig. 4 shows the swelling behavior
for different values of ν , from 100 to 500.
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Fig. 5 (a) Swelling behavior of the microgel for different bare charges,
from Zm = 0 to −13500. (b) Effective charge of the microgel for different
bare charges. Calculations were performed for microgels with ν = 500
and φ0 = 0.64 at a salt concentration of ρs = 10 mM.

Clearly, the chain length does not have any relevant effect for
shrunken states, where the polymer configuration is controlled
by the solvent-induced polymer-polymer hydrophobic attraction.
However, the swollen states are indeed strongly affected since
the increase of ν allows the microgel to reach more expanded
conformations with a lower free energy cost. These findings
for the temperature-dependent of the scaled microgel size are in
very good qualitative agreement with experimental data for cross-
linker densities between 0.6 and 5.3 %.47

6.3 Effect of the microgel bare charge
The microgel bare charge, Zm, has been varied from 0 to −13500,
which corresponds to a fraction of charged monomers ranging
from f = 0 to 0.05. Fig. 5(a) shows the swelling behavior for a

fixed salt concentration given by ρs = 10 mM. As observed, for
small bare charges the particle swelling is practically insensitive
to Zm, being dominated by the elastic and solvent-induced free
energy contributions. However, this is not the case for large val-
ues of Zm. Increasing Zm has essentially two effects: enlarging the
particle size in the swollen state and shifting the volume transi-
tion to larger values of χ. In other words, the microgel needs a
stronger polymer-polymer hydrophobic attraction to compensate
the electrostatic repulsion and induce the collapse. For χ-values
above the volume transition the swelling state in controlled by
these hydrophobic forces and the results all converge to a com-
mon curve.

The ionic permeation inside the microgel is also affected by
the value of the bare charge. This can be clearly appreciated in
Fig. 5(b), where the normalized effective charge, Ze f f /Zm calcu-
lated according to eqn (11) is plotted as a function of χ for dif-
ferent values of Zm. In all cases, Ze f f grows with χ. This effect
occurs for two reasons: First, increasing χ leads to an increase
of the microgel volume fraction, which contributes to enhance
the repulsive steric forces between counterions and the microgel.
This counterion exclusion causes the increase of Ze f f . Second,
a decrease of the microgel size forces the counterions to con-
densate inside a smaller volume. The counterion-counterion re-
pulsion also contributes to the counterion exclusion and so, to
the increase of the effective charge. It should be noted that the
enhanced electrostatic repulsion between counterions arising in
shrunken states is able to induce the increase of Ze f f even in the
absence of the steric exclusion effect (not shown). However, this
increase is much less important than the one observed when con-
sidering the steric exclusion of the ions.15

Although Ze f f always grows with χ, the amount of increase is
strongly dependent on the microgel bare charge, especially for
de-swollen states. For small Zm, the microgel-counterion electro-
static attraction is weak compared to the steric repulsive barrier
at high values of χ. This effect hinders the counterion permeation
and yields a high effective charge, very close to the bare charge.
However, for large values of Zm, counterions become so strongly
electrostatically attracted to the interior of the microgel that they
are able to surpass the repulsive steric barrier and diffuse inside,
inducing a significant reduction of Ze f f /Zm. For swollen config-
urations (χ < 1/2) counterions have plenty of space inside the
microgel at the time that their permeation becomes mostly gov-
erned by electrostatics, so Ze f f /Zm tends to be independent on
the bare charge. All these effects reveal an interesting interplay
between electrostatic and excluded-volume effects.

6.4 Effect of the salt concentration

The electrolyte concentration also plays an important role, as it is
responsible for the screening of the electrostatic forces. Fig. 6(a)
plots the particle radius as a function of χ for increasing salt con-
centrations at a very low microgel bare charge ( f = 0.001). For
such a weakly charged microgel, the response of the swelling ra-
tio is almost insensitive to ρs since the free energy is dominated
by the elastic and solvent terms. When the particle charge in-
creases (see Fig. 6(b)), the eletrostatic term achieves a more rel-
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Fig. 6 Plots (a) and (b) show the normalized microgel radius versus χ for different salt concentrations for f = 0.001 and f = 0.01, respectively. Plots (c)
and (d) show again the microgel size, but as a function of the salt concentration. Calculations were performed for microgels with ν = 500 and φ0 = 0.64.

evant role and then, the swelling response becomes affected by
the salt concentration. Basically, the effect of adding salt is to
reduce the particle size in the swollen state and to shift the tran-
sition to lower χ values (temperatures). Both phenomena are
consistent with previous simulation, theoretical, and experimen-
tal studies.44,48 The explanation of this relies in the combination
of several effects. On one hand increasing the electrolyte con-
centration leads to the screening of the electrostatic forces, so we
need smaller hydrophobic attraction to overcome the electrostatic
repulsion and promote the particle shrink. On the other hand,
at high salt concentrations the ions outside the microgel parti-
cle generate an strong osmotic pressure on the microgel surface,
which also favors the particle shrinking. Again, for large values
of χ, the swelling state becomes mostly controlled by the solvent-
induced term, and all curves collapse in a common behavior.

Figs 6(c) and (d) show the same sort of results, but plotted
against ρs, for small and large bare charges. Again, it is clear
that for weakly charged microgels, the swelling behavior is not af-
fected by ρs. Indeed, only for a high enough concentration (above
ρs = 10 mM) there is an appreciable reduction of the particle size
at low χ. For strongly charged microgels the effect of the elec-
trolyte concentration becomes more relevant and dominates over
the solvent contribution. In this case, the particle de-swelling is
observed even at ρs = 0.1 mM. For both bare charges, the effect
of the salt concentration is meaningless for shrunken microgels
(χ > 1), where the particle size is almost entirely dominated by
the hydrophobic interaction. Qualitatively similar plots may be

found in the predictions of Colla et al.,24 obtained by solving the
Poisson-Boltzmann equation.

In addition to the swelling state, our DFT also provides the
equilibrium density profiles of counterions and coions inside and
around the microgel particle. In Fig. 7 we plot these profiles for
increasing values of the salt concentration, and for four differ-
ent situations of bare charge and swelling states. We can extract
some conclusions from these results. Firstly, the repulsive steric
effect is present in all curves, leading to a certain reduction of
the counterion and coion permeation. Evidently, this reduction is
enhanced in the shrunken state, where the steric barrier is larger.
For the case of counterions, the steric barrier is responsible for
the appearance of an accumulation peak outside the microgel sur-
face (r ' R+

m) followed by a local minimum at the internal part of
the surface r ' R−m . The height of the peak and the depth of the
minimum become more pronounced when we move to shrunken
states, since the steric jump becomes more important in this limit.

Secondly, increasing the electrolyte concentration flattens the
ionic densities both outside and inside the microgel. Although
for larger bare charges we need a larger amount of salt in order
to homogenize the density profiles, in general these flat density
profiles are obtained for a wide range of salt concentrations in
the internal region of the microgel, far enough from the interface.
As already mentioned before, these uniform profiles indicate that
electroneutrality is satisfied in this region.

Thirdly, it is interesting to emphasize the results plotted in
Fig. 7(d), corresponding to the local density of ions for large Zm
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Fig. 7 Normalized density profiles of counterions (solid lines) and coions (dashed lines) at different salt concentrations for (a) f = 0.001, χ = 0.5, (b)
f = 0.001, χ = 1, (c) f = 0.01, χ = 0.5 and (d) f = 0.01, χ = 1. Calculations were performed for microgels with ν = 500 and φ0 = 0.64.

and χ = 1 (shrunken state). In this regime, the particle size is
almost independent on ρs (see Fig. 6), so the steric repulsion is
more or less the same in all cases. As a result of this, the coun-
terion density profiles are very similar for all salt concentrations.
This is not the case when we decrease the microgel bare charge
(Fig. 7(b)), as the counterion condensation inside the microgel
grows with ρs. This phenomenon occurs because the steric repul-
sion plays here a more important role compared to the electro-
static attraction, and so it leads to a more pronounced minimum
in the counterion density close to the microgel surface, which pre-
vents at some extent the homogenization of the counterion den-
sity profile in the internal region.

As a global estimate of the charge screening provoked by the
ionic double layer, we can examine the effective charge. The ef-
fect of the salt concentration on Ze f f is shown in Figure 8. This
parameter is much more sensitive to ρs than the particle size.
Indeed, Ze f f may change even in situations where the particle
radius is constant. The reason for such behavior relies on the
fact that Ze f f is controlled by the electrostatic interactions be-
tween ions and the microgel, whereas Rm is also strongly influ-
enced by the solvent-induced and elastic terms of the free energy.
These last contributions mask the electrostatic effects, especially
for small values of the microgel bare charge.

It is clear from both plots that increasing ρs gives rise to a sig-
nificant decay of the effective charge for swollen states (χ < 1/2).
Therefore, in general swollen microgels at moderate and high
electrolyte concentrations are expected to hold very small effec-

tive charges compared to the bare ones. For small Zm (Fig. 8(a))
counterions are weakly attracted by electrostatics, but strongly
repelled by steric exclusion in the shrunken state. In this regime,
the steric forces are able to expel a large amount of counterions
outside, leading to large effective charges, close to Zm. For higher
charged microgels (Fig. 8(b)), counterions are strongly attracted
to the interior of the microgel by electrostatic forces, so they are
able to surpass the steric exclusion leading to a a reduction of
Ze f f . The decrease of Ze f f with ρs is more relevant in swollen
configurations due to the screening of the electrostatic interac-
tions. Surprisingly, for shrunken states the effect of adding salt is
not significant, as all curves obtained for different salt concentra-
tions merge for χ > 1. The explanation of this phenomenon re-
lies again in the fact that the counterion concentration inside the
microgel is almost independent on the salinity under these con-
ditions of bare charge and particle swelling (see again Fig. 7(d)).
In other words, for such strongly charged microgels counterions
are forced to migrate inside in order to achieve electroneutrality.
Hence, the steric barrier represents a small perturbation, only af-
fecting the ionic concentration close to the interface. A similar
conclusion has been reported by Colla et al.24 but using exclu-
sively electrostatic interactions.

7 Conclusions

The uniform swelling of microgels and the local distribution of
1:1 salt ions around the microgels have been studied by means of
a new DFT framework. The theory accounts not only for the elec-
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Fig. 8 Effective charge of the microgel as a function of χ at different salt concentrations, for (a) f = 0.001 and (b) f = 0.01. Calculations were
performed for microgels with ν = 500 and φ0 = 0.64.

trostatic interaction but also for the excluded-volume repulsive
force that emerge when the ions diffuse inside the polymer net-
work of the microgel. The free energy function is built in order to
include the ion-ion correlations beyond the mean-field approach
at the level of the HNC approximation.

The results show that the excluded-volume effect on the par-
ticle swelling is in general not very significant compared to
the other free energy contributions such as the solvent-induced
and the elastic terms, but becomes more important for strongly
charged microgels and low electrolyte concentrations. The ionic
density profiles, however, are deeply affected by the steric exclu-
sion, especially for shrunken states. In particular, the steric re-
pulsion enhances the accumulation of counterions at the external
surface of the microgel and the subsequent reduction of its con-
centration inside the microgel particle when compared to the pre-
dictions obtained with exclusively electrostatic interactions. This
phenomenon can also be appreciated in the value of the micro-
gel effective charge, Ze f f , which shows a very important enhance-
ment as the microgel configuration goes from swollen to shrunken
states.

We have found that the particle swelling is enhanced when
increasing the microgel bare charge and/or decreasing the salt
concentration, since both of them contribute to emphasize the
electrostatic repulsion between the charged monomers inside the
microgel. Moreover, the volume transition shifts to larger tem-
peratures because additional hydrophobic polymer-polymer at-
tractions are necessary to provoke the microgel shrinking. Anal-
ogously, increasing the chain flexibility (by enlarging the aver-
age chain length between cross-linker segments) also leads to
more expanded configurations. For highly hydrophobic micro-
gels (χ & 1) the microgel swelling is dominated by the solvent-
polymer interaction so the particle size remains rather insensitive
to all these parameters.

For a wide range of electrolyte concentrations, the ionic den-
sity profiles become uniform inside the microgel and only change
near the particle interface due to the local effects caused by the
polymer mass variation in there. Such a behavior clearly indi-
cates that the internal part of the microgel is electroneutral, which

means that the effective charge of the microgel arises in the re-
gion near the particle interface. Moreover, we have checked that
the concentration of ions in the inner part of the microgel may be
accounted for by means of a Donnan potential, but taking explic-
itly into account the excess chemical potential arising from the
excluded-volume interaction. In other words, the ionic perme-
ation is the result of a balance between electrostatic and steric
effects. As a consequence of this, Ze f f becomes almost insensitive
to the salt concentration for shrunken microgels with large bare
charge. In summary, the steric interaction should be always con-
sidered in realistic models to correctly predict the permeation of
ions and charged or neutral solutes.

Our future research will focus on extending the present model
to study the role of ion-specific hydrophobic/hydrophilic effects
on microgel swelling, collapse transition,41,49 and ionic perme-
ation. In this respect, experimental, simulation and theoretical
results with hydrophobic chaotropic ions have shown that the ef-
fective charge of the microgel is strongly sensitive to ion-specific
absorption, leading to charge inversion and overcharging.16,45,46

Another interesting direction of investigation would be the inclu-
sion of a fourth component such as a multipolar biomolecule, e.g.,
a globular protein, to study protein sorption equilibrium in hydro-
gels50 or even the kinetics of protein sorption.51. It would be also
interesting to extend our model to study the non-homogeneous
swelling of microgels caused by the non-uniform ionic density
profiles. This could be done by means of a local free energy for the
microgel that includes a position-dependent mass and charge dis-
tribution of the polymer network, just like the work by Rumyant-
sevet al.20 Finally, it is also worth to mention that the HNC-DFT
connection established here is not only valid in the infinite di-
lute limit of microgels, but also in the so-called jellium approx-
imation, where the macroion pair correlations are smeared out
into a uniform background by setting hmm(r) = 0.52 This identifi-
cation opens up the possibility to investigate macroion properties
in concentrated solutions with a degree of accuracy similar to one
obtained from the traditional Wigner-Seitz (WS) cell approach.53

Under a qualitative point of view, for dense microgel suspensions
the electric double layers strongly overlap, and the ionic concen-
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trations are forced to be compressed in a smaller volume around
the microgel in order to preserve electroneutrality. This effect
would lead to a more abrupt change of the electrostatic potential
at the microgel surface and so, to larger effectve charges.
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