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Abstract

A series of models based on artificial neural networks (ANNSs) have been
designed to estimate thermophysical properties of different amino acid-based ionic
liquids (AAILs). Three different databases of AAILs were modeled with these
algorithms with the goal set to estimate density, viscosity, refractive index, ionic
conductivity, and thermal expansion coefficient, by only requiring data regarding
temperature and electronic polarizability of the chemicals. Additionally, a global model
was designed combining all of the databases to determine the robustness of the method.
In general, the results were successful, reaching mean prediction errors below 1% in
many cases, as well as a statistically reliable and accurate global model. Attaining these
successful models is a relevant fact as AAILs are novel biodegradable and
biocompatible compounds which may soon make their way into the health sector
forming part of useful biomedical applications. Therefore, understanding the behavior
and being able to estimate their thermophysical properties becomes crucial.
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1. Introduction

lonic Liquids (ILs) are commonly formed by organic cations and either organic or
inorganic anions, which originates an immense set of potential chemicals, opening the door for
their use in numerous fields and almost countless applications. Some of these fields are
electrochemistry, catalysis, or specific compound extraction if the cations and anions are
properly selected”.

ILs can be synthesized to possess compelling properties such as having low vapor
pressures, not being inflammable, owning high thermal and chemical stabilities, and being
recyclable and reusable. All of these potential traits turn these solvents into clear candidates for
environmental-friendly or “green” chemistry®*.

During the search of new ILs, Fukumoto et al (2005)° synthesized 20 ILs which
contained an amino acid as their anion. These are known as amino acid-based ionic liquids
(AAILs). Amino acids are one of the most abundant biomaterials in nature, reason why the cost
of the synthesis of AAILs is not relatively high. AAILs are alkaline compounds, which makes
them useful to dissolve biomaterials such as cellulose or other carbohydrates. In addition,
AAILs are biodegradable and can potentially possess low toxicities® and, therefore, their
properties may enable them to participate in relevant biomedical or pharmaceutical
applications”®, as well as being able to transport gases® or dissolve biomass® safely.

After these first AAILs, other research groups have created new AAILs which differed
in their cation**™**. The presence of different cations dictates the final thermophysical properties
of AAILs such as density, viscosity, refractive index, ionic conductivity, and thermal expansion
coefficient, which were all measured by these groups™. These physicochemical properties have
been selected because, in most cases, they are required to determine over half of the properties
of fluids. Additionally, having this information is very useful to define the potential applications
of the compounds. The cations that are traditionally employed are imidazolium- or pyridinium-
based, although other alternatives exist such as choline, which is an essential nutrient for the
correct functioning of cells and, obviously, is biodegradable®.

Due to the great window of potential applications these novel AAILSs cover, it would be
very useful to design reliable and robust mathematical models to estimate the thermophysical
properties of these chemical compounds "%, In this sense, mathematical tools such as artificial
neural networks (ANNSs) have proven in the past to be worthy candidates to carry out these kind
of tasks®®. ANNs are algorithmic models that search for non-linear relations between
independent and dependent variables from databases to originate estimative tools that operate
through non-linear interpolation®®*?. Also, it is important to note that as a deep knowledge of
the IL system is not required, the ANN models are more than adequate systems to model
systems that are new and not thoroughly described as is the case of the new AAILs that are
being produced.

In the current research, multiple ANNs have been developed with the objective set to
estimate a series of thermophysical properties (density, viscosity, refractive index, ionic
conductivity, and thermal expansion coefficient) of three different sets of AAILS, each one with
their own specific cation and resulting database containing the values of the thermophysical
properties at various temperatures. Finally, a global ANN-based model was designed combining
all three databases, to also estimate several properties. These models employed as independent
variables temperature and electronic polarizability® values of the AAILSs.
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2. Materials and Methods

The databases employed to design and optimize the ANN models were gathered from
different bibliographical references™ ™. Their description, as well as a thorough explanation of
the different mathematical tools used can be seen in the following subsections.

2.1. Databases

All of the data employed was obtained from three different scientific articles™™. The
data from the different papers had in common that it had been attained from the study of
different ILs containing five different amino acids as their anions: Glycine (Gly), Alanine (Ala),
Serine (Ser), Proline (Pro) and Aspartate (Asp). In each individual database, the AAILs
possessed different cations, and the set of thermophysical properties measured was different in
each case.

In the work carried out by Muhammad et al (2011)", they determined density,
viscosity, refractive index, and thermal expansion coefficient, at atmospheric pressure, and
between a temperature of 293.15 and 333.15 K, for 52 different samples which contained 1-
methyl-3-methylimidazolium (Emim) as the cation, and an amino acid as the anion. They
studied four AAILs (the purity estimated by the authors indicated in parentheses): EmimGly
(97.8%), EmimAla (97.5%), EmimSer (97.3%), and EmimPro (96.9%). This database was used
to design the Emim Model.

The second research study analyzed was from Ghanem et al (2015)", where they
measured density, viscosity, and thermal expansion coefficient, at atmospheric pressure, and at
different temperatures between 293.15 and 373.15 K, for 44 samples containing 1-octyl-3-
methylimidazolium (Omim) as the cation, and one of five different amino acids as the anion.
The chemical compounds were (the purity estimated by the authors was above 99% for all the
AAILSs): OmimGly, OmimAla, OmimSer, OmimPro, and OmimAsp. With this data, the Omim
Model was created.

The last paper from which data was extracted was from Tao et al (2013)*, where
information regarding density, viscosity, refractive index, ionic conductivity, and thermal
expansion coefficient can be found. These properties were measured at atmospheric pressure
and between a temperature range of 298.15 and 343.15 K, for 50 different samples which had
choline (Ch) as the cation and an amino acid as the anion. They studied five AAILs (the purity
estimated by the authors was above 99% for all the AAILs): ChGly, ChAla, ChpAla, ChSer, and
ChPro. These results were employed to develop the Ch Model.

Finally, the data from the three studies were brought together to design a fourth model
that estimates density, viscosity, and thermal expansion coefficient (common thermophysical
properties to all the papers employed to gather data), between the temperatures of 303.15 and
353.15 K. This model was designed using 112 samples of different AAILs with a variety of
anions and cations, and will be referred to as the Global Model.

As a preliminary calculation, statistical outliers were searched in order to avoid their
presence during the modeling phase. No outliers were found in this process.
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2.2 Artificial Neural Networks

In order to estimate the thermophysical properties of these three groups of AAILs, a
series of multilayer perceptron (MLP) models have been designed and optimized. MLPs are the
most commonly employed type of supervised ANN due to their relative simplicity and
reliability. The MLPs used are feed-forward ANNs with a back-propagation algorithm, which
handles the supervised learning process®. As they are supervised mathematical tools, they
require the values of the dependent variables (in this case, the thermophysical properties) to be
adequately trained.

MLPs possess, as their name suggests, a layered topology or architecture, and each one
of these layers has its own name and purpose (Figure 1): (i) the input layer is formed by i
nodes, which are solely in charge of presenting the independent variables to the MLP (there will
be as many nodes as independent variables). (i) The hidden layer (or layers) possess j neurons,
which are the calculating units of MLPs and ought to be properly optimized to avoid
phenomena such as under-training or over-fitting. (iii) Finally, the output layer, formed by k
neurons, will possess as many units as dependent variables defined for the system. Every unit
(node or neuron) is connected to all of the units in the neighboring layers, but not with the ones
in the same layer. These connections are controlled by weights, which are optimized during the
training process to achieve accurate estimations®%.
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Figure 1. Schematic flow of the MLP used (w;; and wj, symbolize the weights which represent the
connection between layers i and j, and j and k, respectively; i are the nodes in the input layer; j and k
are the neurons in the hidden and output layers, respectively; the equations are the activation function
(continuous box) and sigmoid transfer function (discontinuous box)).

In general, to design and use an ANN, direct and backpropagation processes are done.
The first one is used to estimate the dependent variable values, and the latter is used to optimize
every weight (vide infra).
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Figure 1 shows the direct stage. Here, two consecutive mathematical calculation
procedures take place within the hidden and output neurons defined. The first one is carried out
by an activation function, which processes the data that enters a neuron. Finally, the second
stage, is carried out in a transfer function. One of the most common transfer functions is the
sigmoid function that limits the range between 0 and 1 of the resulting values given by a neuron,
and was used in this research.

Given the mathematical relation between some of the dependent and independent
variables found in the literature *°, in the present scenario, the amount of input nodes for the
MLPs that modeled individual databases (Emim Model, Omim Model, and Ch Model) was
two, one for the temperature and the other for the polarizability of the anion (amino acids). On
the other hand, the Global Model possessed three independent variables which were the
temperature and the polarizabilities of both anion and cation. The use of two polarizabilities
gives the model the capability of estimating not only the properties of ILs which share one
cation, but also of completely different ILs (different anion and cation). Additionally, the output
neurons were set according to the amount of thermophysical properties estimated in each MLP
(four for the Emim Model, three for the Omim Model, five for the Ch Model, and three for the
Global Model).

The electronic polarizability has been calculated for every anion and cation present in
the samples employed to design the models, as it is unique for each chemical compound. The
calculation was carried out using the software package Marvin Suite version 5.11.5 and
chemicalize.org, both developed by ChemAxom®%. In addition, the software employed to
develop the MLPs and carry out the experimental design to optimize its parameters was Matlab
version 7.0.1.24704 (R14)%".

2.3 Multilayer Perceptron Optimization

So as to obtain accurate, applicable, and reliable mathematical tools based on MLPs,
they must be properly optimized. To carry out this phase, the databases were divided randomly
into two parts. A major one known as the training dataset (80% of the data), which is used by
the MLP to intrinsically modify the values of the weights in order to achieve more accurate
responses. The second dataset, which is known as the verification dataset, is a smaller yet
representative proportion of the database (remaining 20%) and is used by the MLP to ensure
that it can generalize well or, in other words, not be over-fit towards the training dataset. While
the error for the training dataset can practically reach zero with unlimited training cycles or
epochs, the error for the verification dataset will end up increasing as these samples are not
involved in the weight modification procedure. When this verification error begins to rise, the
model can be seen as optimized, and in this case, six consecutive epochs with verification error
increases, defined the end of the training process?’. It must be noted that this verification dataset
must be contained within the limits of the training dataset as ANNs are accurate when
interpolating, and lose reliability when forced to estimate results beyond the limits established
by the training dataset®.

The way the model determines if a determined weight is better than the previous one is
by calculating the error between the real and the estimated results. In the present case, it
operates with the mean prediction error (MPE; equation 1), and the modification of the weights
attempts to minimize it to reach a better statistical performance.
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N —
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In this equation, N stands for the number of samples in the verification dataset, ry is the
real value of a determined sample, and yy is the estimated value for that same sample.

In addition to the weights (the main optimization process), there are other parameters in
a MLP that have to be carefully selected or optimized. They are the training and transfer
functions, the hidden neuron number (HNN) (heuristically optimized), the amount of hidden
layers (set as one for every model to avoid an excessive weight-to-sample ratio)®, the
Marquardt adjustment parameter (Lc), the decrease factor for Lc (Lcd), and the increase factor
for Lc (Lci) #’. The Lc parameter acts as the learning coefficient in the classic back-propagation
algorithms *. Its value is respectively increased or decreased by Lci and Lcd parameters until
these changes result in a reduced performance value *’. When this happens, the parameters have
acquired their optimal value. These last three MLP parameters were optimized through a
thorough experimental design based on “Box-Wilson Central Composite Design 23 + star
points™) 2*#2"3! The training functions are in charge of the optimization of the ANN weights in
the best way possible. In this paper, the functions chosen for this task were TrainLM and
TrainBR because it has been proven that they do not provide overfit models when properly
trained .

2.4 Validation of the Models

To ensure that the MLP-based models developed can adequately operate inside the
range of the database employed to optimize it, two different validation processes have been
carried out for every model.

2.4.1 Internal Validation

The basis behind this validation relies on the fact that a series random samples are
removed from the databases prior to any type of calculation, and uniquely used to test the final
model and determine its statistical performance. The database is initially divided randomly into
training, verification, and test datasets, each containing 70%, 20%, and 10% of the data points,
respectively. This 10% determines the applicability and performance of the optimized model
through its MPE *.,

2.4.2. K-Fold Cross-Validation

In this case, the database is initially divided randomly into K datasets (K=6 in this case)
in order to design K models, each one with a different verification dataset. In this case, each
model is tested with its verification dataset, which, in the end, leads to the estimation of every
single sample in the database. The final statistical performance of a MLP is the average of the
MPEs of the K tests 2%,
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3. Results and Discussion

The results of every designed MLP (optimized parameters and statistical performance)
will be shown and discussed in this section. In addition to the MPE, the correlation coefficient
(R?) was also calculated, but was not included as it was greater than 0.9 for every test.

3.1. Emim Model

This model has been created using data from four different AAILs (EmimGly,
EmimAla, EmimSer, and EmimPro) which had 1-ethyl-3-methylimidazolium as its cation.
Information from the temperature and polarizability of the amino acid-based anion was used as
inputted data to estimate density, viscosity, refractive index, and thermal expansion coefficient.
The final optimized parameters and selected functions can be seen in Table 1, while the
statistical performance in terms of MPE can be found in Table 2.

Table 1. Optimized parameters and functions for the Emim Model.

Transfer function Sigmoid
Learning function TrainBR
Input node number 2

Hidden neuron number |5

Output neuron number | 4

Lc 0.005
Lcd 0.1
Lci 10

The statistical results seem to indicate that the MLP is well suited to estimate these
thermophysical properties only requiring temperature and polarizability values as the MPEs are
in general terms low. To further attest this statement, two validation tests were carried out (vide
supra) on this optimized version of the Emim Model, and the final results are shown in Table
2.

Table 2. Statistical performance of the Emim Model using its initial version (verification) and two
validation methods (internal validation and k-fold cross validation).

Verification Internal K-fold cross validation
validation
MPE (%) Average MPE (%)
Density 0.09 0.06 0.08
Viscosity 4.83 5.74 4.92
Refractive index 0.02 0.03 0.03
Thermal expansion coefficient | 0.10 0.06 0.10

The performance of both validation procedures are statistically comparable to the initial
model, which proves its generalizing capability and applicability within the range covered by
the database employed. The MPEs for density, refractive index, and thermal expansion
coefficient are very low (in most cases below 0.1%), and only the viscosity is a bit higher,
around 5%. This could be due to the fact that the viscosity depends on the water content much
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more than the other properties, and its experimental measurement generally has a much larger
intrinsic error *,

3.2. Omim Model

This second MLP was developed employing data from five different AAILs (OmimGly,
OmimAla, OmimSer, OmimPro, and OmimAsp) which possessed 1-octyl-3-methylimidazolium
as its cation. Density, viscosity, and thermal expansion coefficient were estimated only using
temperature and polarizability of the anion as independent variables. The final optimized
parameters and selected functions are shown in Table 3, while the statistical performance in
terms of MPE can be seen in Table 4.

Table 3. Optimized parameters and functions for the Omim Model.

Transfer function Sigmoid
Learning function TrainLM
Input node number 2

Hidden neuron number | 8

Output neuron number | 3

Lc 0.001
Lcd 0.1
Lci 10

Just like in the previous case, the results appear to be solid. Nevertheless, the Omim
Model was further validated with the same statistical tests, and the final results can be found in
Table 4.

Table 4. Statistical performance of the Omim Model using its initial version (verification) and two
validation methods (internal validation and k-fold cross validation).

Verification Internal K-fold cross validation
validation
MPE (%) Average MPE (%)
Density 0.05 0.14 0.13
Viscosity 4.96 5.69 5.33
Thermal Expansion coefficient | 0.59 0.38 0.52

The results for the Omim Model can be interpreted exactly the same way as the first
model. The statistical performances seen in the two validation tests are comparable with the
initial optimized model, which most likely indicates that the model is trustworthy and can be
used for other data contained in the range of the analyzed database. The MPEs for the
estimation of density and thermal expansion are low (always below 0.6%), while, for viscosity
are a bit higher (around 5%), once again, possibly due to water content and experimental error
when measuring *.

3.3. Ch Model

The third model was created with data gathered from five different AAILs (ChGly,
ChAla, ChpAla, ChSer, and ChPro) which had choline as its cation. Five different
thermophysical properties (density, viscosity, refractive index, ionic conductivity, and thermal

8
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expansion coefficient) were all estimated solely inputting temperature and polarizability of the
anion into the MLP. The resulting optimized parameters and selected functions can be found in
Table 5, whereas the statistical performance in terms of MPE can be seen in Table 6.

Table 5. Optimized parameters and functions for the Ch Model.

Transfer function Sigmoid
Learning function TrainBR
Input node number 2

Hidden neuron number | 6

Output neuron number | 5

Lc 0.001
Lcd 0.9
Lci 2

In this case, two of the five estimations are a bit higher than the previous two models,
but still are part of a compelling tool that can estimate five properties at a time. Although the Ch
Model may seem robust, its performance has been validated with the same two approaches, and
the statistical results can be found in Table6.

Table 6. Statistical performance of the Ch Model using its initial version (verification) and two
validation methods (internal validation and k-fold cross validation).

Verification Internal K-fold cross validation
validation
MPE (%) Average MPE (%)
Density 0.08 0.10 0.12
Viscosity 8.37 9.75 14.04
Refractive index 0.04 0.06 0.05
lonic conductivity 9.36 12.05 13.52
Thermal expansion coefficient | 0.16 0.09 0.18

The results for the Ch Model must be analyzed with caution. Although there are three
estimations that are very accurate (density, refractive index, and thermal expansion coefficient
offered estimations with MPEs below 0.2%), the other two are slightly high. Especially when
analyzing the results from the K-fold cross validation, the estimations of for viscosity and ionic
conductivity raise to around 14%, and, therefore, this MLP should be employed carefully.
Perhaps attempting to estimate five properties at once hindered the MLP, and maybe an
interesting approach would be to limit the estimations to only the three accurate properties,
which would imply an extremely precise and reliable mathematical tool capable of generalizing
well.

3.4. Global Model

Finally, a last model that combines all of the databases has been designed. It contains
data from 12 distinct AAILs (EmimGly, EmimAla, EmimSer, EmimPro, OmimGly, OmimAla,
OmimSer, OmimPro, ChGly, ChAla, ChSer, and ChPro) that include some from each of the
prior databases (with the three different cations). In this case, three independent variables were
necessary to define the system, and they were temperature, anion polarizability, and cation
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polarizability. The final optimized parameters and selected functions are shown in Table 7,
while the statistical performance in terms of MPE can be seen in Table 8.

Table 7. Optimized parameters and functions for the Global Model.

Transfer function Sigmoid
Learning function TrainBR
Input node number 3

Hidden neuron number | 15

Output neuron number | 3

Lc 0.005
Lcd 0.1
Lci 10

The results attained indicate that the model may be a useful tool to estimate these three
thermophysical properties of a broad set of samples of AAILs from different origins. The
Global Model was also meticulously validated using the two tests defined previously, and the
results are located in Table 8.

Table 8. Statistical performance of the Global Model using its initial version (verification) and two
validation methods (internal validation and k-fold cross validation).

Verification Internal K-fold cross validation
validation
MPE (%) Average MPE (%)
Density 0.16 0.19 0.10
Viscosity 7.29 8.69 8.11
Thermal expansion coefficient | 0.22 0.61 0.28

The results of the validation tests of the Global Model are consistent with the previous
ones, proving its applicability and generalizing ability. It must be noted, once again, that the
estimation of the viscosity is less accurate than the other two properties with an MPE of around
8% *. The estimations for density and thermal expansion coefficient are very low, never
exceeding 0.7%. The successful results of this MLP model are more than relevant, as it has
correctly modeled data from a wide assortment of AAILs that were synthesized by different
research groups at different periods of time. This provides robustness to these results, as the
MLP model was able to incorporate data from different studies into an accurate and reliable
non-linear model based on ANNSs.

3.5. Model Comparison

Four different models were designed and optimized during this research. The main
difference in the models were that the AAILs possessed different cations.

The first MLP model (Emim Model) was developed with data from AAILs that
contained 1-ethyl-3-methylimidazolium as its cation, which is one of the most common cations
when synthesizing ILs. The second model (Omim Model) used AAILs with 1-octyl-3-

10
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methylimidazolium as its cation. These two MLPs were very accurate and reliable according to
the validation tests, and the least accurate estimations found were for viscosity at around 5%
MPE. The estimations for the other thermophysical properties provided almost negligible error
values. Nevertheless, these two cations, and imidazolium in general, present a considerable
toxicity *, reason why, a third model (Ch Model) with data from AAILs containing a
biodegradable cation such as choline was also designed.

Choline is an essential micronutrient required by cells to operate correctly, and,
therefore, it is biodegradable and biocompatible. Nevertheless, the MLP for this database
provides higher estimation errors for two properties (viscosity and ionic conductivity) while still
providing very accurate results for the other three (density, refractive index, and thermal
expansion coefficient). This was the only model that attempted to estimate up to five
thermophysical properties at the same time, so perhaps this fact hurt the learning capability of
the model, or it simply required more information to provide more accurate results.

Finally, a Global Model was developed to estimate density, viscosity, and thermal
expansion coefficient of all the AAILs studied in the prior models. These results were
significantly promising, as they were accurate, reliable, and robust according to the validation
tests. Given the different nature of the data employed, it turns this model into an attractive tool
that is not limited to data from single research groups, which could lead to over-fit results. It
must be noted, that the error in the estimation of viscosity was higher than the other two
estimations.

Mathematically speaking, in three of the four MLPs designed, the training function
TrainBR was employed, while TrainLM was used in the other one (Omim Model). Regarding
their network parameters, the values of Lc, Lcd and Lci optimized are ranged between 0.001
and 0.005, 0.1 and 0.9, and 2 and 10, respectively. The parameter values of the Global and
Emim Models are the same and they are very similar to those of the Omim Model.
Nevertheless, as the topology in all the ANN models tested is different, it is very complicated to
establish a relationship between the optimal parameters and the architecture in each case.

The authors have not found in the literature any research articles that show ANNs
estimating thermophysical properties of AAILSs, and, therefore, the designed models open an
appealing path to continue analyzing these promising compounds. The specific models that have
been designed and optimized during the present research may not be appropriate to estimate
properties of every AAIL at any temperature, as MLPs are tools that rely on interpolation to
perform their non-linear calculations. Nevertheless, these algorithms can be re-optimized and
updated with data from new samples to reach tools with a wider operational window than the
original ones.

4. Conclusions

Four different models based on MLPs have been developed to estimate a series of
thermophysical properties of different AAILs. Three distinct databases were employed, each of
which contained information regarding AAILs with different cations (yet common to all
samples from a single database).

11
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Three of the properties (density, refractive index, and thermal expansion coefficient)
were estimated with MPEs below 1% in every case. Nevertheless, the estimations were less
accurate when analyzing the viscosity and ionic conductivity results.

Every model was thoroughly validated, which implies the reliability of the statistical
performance offered in this research. Given the non-linear mathematical relations found during
this research, it can be concluded that ANNs can be employed to create robust and reliable
models for the estimation of the properties of a wide range of AAILs.
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