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Abstract 

 A series of models based on artificial neural networks (ANNs) have been 

designed to estimate thermophysical properties of different amino acid-based ionic 

liquids (AAILs). Three different databases of AAILs were modeled with these 

algorithms with the goal set to estimate density, viscosity, refractive index, ionic 

conductivity, and thermal expansion coefficient, by only requiring data regarding 

temperature and electronic polarizability of the chemicals. Additionally, a global model 

was designed combining all of the databases to determine the robustness of the method. 

In general, the results were successful, reaching mean prediction errors below 1% in 

many cases, as well as a statistically reliable and accurate global model. Attaining these 

successful models is a relevant fact as AAILs are novel biodegradable and 

biocompatible compounds which may soon make their way into the health sector 

forming part of useful biomedical applications. Therefore, understanding the behavior 

and being able to estimate their thermophysical properties becomes crucial. 
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1. Introduction 

 Ionic Liquids (ILs) are commonly formed by organic cations and either organic or 

inorganic anions, which originates an immense set of potential chemicals, opening the door for 

their use in numerous fields and almost countless applications. Some of these fields are 

electrochemistry, catalysis, or specific compound extraction if the cations and anions are 

properly selected
1
. 

 ILs can be synthesized to possess compelling properties such as having low vapor 

pressures, not being inflammable, owning high thermal and chemical stabilities, and being 

recyclable and reusable. All of these potential traits turn these solvents into clear candidates for 

environmental-friendly or “green” chemistry
2-4

. 

 During the search of new ILs, Fukumoto et al (2005)
5
 synthesized 20 ILs which 

contained an amino acid as their anion. These are known as amino acid-based ionic liquids 

(AAILs). Amino acids are one of the most abundant biomaterials in nature, reason why the cost 

of the synthesis of AAILs is not relatively high. AAILs are alkaline compounds, which makes 

them useful to dissolve biomaterials such as cellulose or other carbohydrates. In addition, 

AAILs are biodegradable and can potentially possess low toxicities
6
 and, therefore, their 

properties may enable them to participate in relevant biomedical or pharmaceutical 

applications
7-8

, as well as being able to transport gases
9
 or dissolve biomass

10
 safely. 

 After these first AAILs, other research groups have created new AAILs which differed 

in their cation
11-15

. The presence of different cations dictates the final thermophysical properties 

of AAILs such as density, viscosity, refractive index, ionic conductivity, and thermal expansion 

coefficient, which were all measured by these groups
15

. These physicochemical properties have 

been selected because, in most cases, they are required to determine over half of the properties 

of fluids. Additionally, having this information is very useful to define the potential applications 

of the compounds. The cations that are traditionally employed are imidazolium- or pyridinium-

based, although other alternatives exist such as choline, which is an essential nutrient for the 

correct functioning of cells and, obviously, is biodegradable
16

. 

 Due to the great window of potential applications these novel AAILs cover, it would be 

very useful to design reliable and robust mathematical models to estimate the thermophysical 

properties of these chemical compounds 
17,18

. In this sense, mathematical tools such as artificial 

neural networks (ANNs) have proven in the past to be worthy candidates to carry out these kind 

of tasks
19-24

. ANNs are algorithmic models that search for non-linear relations between 

independent and dependent variables from databases to originate estimative tools that operate 

through non-linear interpolation
20-21

. Also, it is important to note that as a deep knowledge of 

the IL system is not required, the ANN models are more than adequate systems to model 

systems that are new and not thoroughly described as is the case of the new AAILs that are 

being produced. 

 In the current research, multiple ANNs have been developed with the objective set to 

estimate a series of thermophysical properties (density, viscosity, refractive index, ionic 

conductivity, and thermal expansion coefficient) of three different sets of AAILs, each one with 

their own specific cation and resulting database containing the values of the thermophysical 

properties at various temperatures. Finally, a global ANN-based model was designed combining 

all three databases, to also estimate several properties. These models employed as independent 

variables temperature and electronic polarizability
20

 values of the AAILs. 
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2. Materials and Methods 

 The databases employed to design and optimize the ANN models were gathered from 

different bibliographical references
11-13

. Their description, as well as a thorough explanation of 

the different mathematical tools used can be seen in the following subsections. 

 

2.1. Databases 

 All of the data employed was obtained from three different scientific articles
11-13

. The 

data from the different papers had in common that it had been attained from the study of 

different ILs containing five different amino acids as their anions: Glycine (Gly), Alanine (Ala), 

Serine (Ser), Proline (Pro) and Aspartate (Asp). In each individual database, the AAILs 

possessed different cations, and the set of thermophysical properties measured was different in 

each case. 

 In the work carried out by Muhammad et al (2011)
11

, they determined density, 

viscosity, refractive index, and thermal expansion coefficient, at atmospheric pressure, and 

between a temperature of 293.15 and 333.15 K, for 52 different samples which contained 1-

methyl-3-methylimidazolium (Emim) as the cation, and an amino acid as the anion. They 

studied four AAILs (the purity estimated by the authors indicated in parentheses): EmimGly 

(97.8%), EmimAla (97.5%), EmimSer (97.3%), and EmimPro (96.9%). This database was used 

to design the Emim Model. 

 The second research study analyzed was from Ghanem et al (2015)
13

, where they 

measured density, viscosity, and thermal expansion coefficient, at atmospheric pressure, and at 

different temperatures between 293.15 and 373.15 K, for 44 samples containing 1-octyl-3-

methylimidazolium (Omim) as the cation, and one of five different amino acids as the anion. 

The chemical compounds were (the purity estimated by the authors was above 99% for all the 

AAILs): OmimGly, OmimAla, OmimSer, OmimPro, and OmimAsp. With this data, the Omim 

Model was created. 

 The last paper from which data was extracted was from Tao et al (2013)
12

, where 

information regarding density, viscosity, refractive index, ionic conductivity, and thermal 

expansion coefficient can be found. These properties were measured at atmospheric pressure 

and between a temperature range of 298.15 and 343.15 K, for 50 different samples which had 

choline (Ch) as the cation and an amino acid as the anion. They studied five AAILs (the purity 

estimated by the authors was above 99% for all the AAILs): ChGly, ChAla, ChβAla, ChSer, and 

ChPro. These results were employed to develop the Ch Model. 

 Finally, the data from the three studies were brought together to design a fourth model 

that estimates density, viscosity, and thermal expansion coefficient (common thermophysical 

properties to all the papers employed to gather data), between the temperatures of 303.15 and 

353.15 K. This model was designed using 112 samples of different AAILs with a variety of 

anions and cations, and will be referred to as the Global Model. 

As a preliminary calculation, statistical outliers were searched in order to avoid their 

presence during the modeling phase.  No outliers were found in this process. 
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2.2 Artificial Neural Networks 

 In order to estimate the thermophysical properties of these three groups of AAILs, a 

series of multilayer perceptron (MLP) models have been designed and optimized. MLPs are the 

most commonly employed type of supervised ANN due to their relative simplicity and 

reliability. The MLPs used are feed-forward ANNs with a back-propagation algorithm, which 

handles the supervised learning process
25

. As they are supervised mathematical tools, they 

require the values of the dependent variables (in this case, the thermophysical properties) to be 

adequately trained. 

 MLPs possess, as their name suggests, a layered topology or architecture, and each one 

of these layers has its own name and purpose (Figure 1): (i) the input layer is formed by i 

nodes, which are solely in charge of presenting the independent variables to the MLP (there will 

be as many nodes as independent variables). (ii) The hidden layer (or layers) possess j neurons, 

which are the calculating units of MLPs and ought to be properly optimized to avoid 

phenomena such as under-training or over-fitting. (iii) Finally, the output layer, formed by k 

neurons, will possess as many units as dependent variables defined for the system. Every unit 

(node or neuron) is connected to all of the units in the neighboring layers, but not with the ones 

in the same layer. These connections are controlled by weights, which are optimized during the 

training process to achieve accurate estimations
20,25

. 

 
Figure 1. Schematic flow of the MLP used (wij and wjk symbolize the weights which represent the 

connection between layers i and j, and j and k, respectively; i are the nodes in the input layer; j and k 

are the neurons in the hidden and output layers, respectively; the equations are the activation function 

(continuous box) and sigmoid transfer function (discontinuous box)). 

 In general, to design and use an ANN, direct and backpropagation processes are done. 

The first one is used to estimate the dependent variable values, and the latter is used to optimize 

every weight (vide infra).  
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 Figure 1 shows the direct stage. Here, two consecutive mathematical calculation 

procedures take place within the hidden and output neurons defined. The first one is carried out 

by an activation function, which processes the data that enters a neuron. Finally, the second 

stage, is carried out in a transfer function. One of the most common transfer functions is the 

sigmoid function that limits the range between 0 and 1 of the resulting values given by a neuron, 

and was used in this research. 

 Given the mathematical relation between some of the dependent and independent 

variables found in the literature 
20

, in the present scenario, the amount of input nodes for the 

MLPs that modeled individual databases (Emim Model, Omim Model, and Ch Model) was 

two, one for the temperature and the other for the polarizability of the anion (amino acids). On 

the other hand, the Global Model possessed three independent variables which were the 

temperature and the polarizabilities of both anion and cation. The use of two polarizabilities 

gives the model the capability of estimating not only the properties of ILs which share one 

cation, but also of completely different ILs (different anion and cation). Additionally, the output 

neurons were set according to the amount of thermophysical properties estimated in each MLP 

(four for the Emim Model, three for the Omim Model, five for the Ch Model, and three for the 

Global Model).  

 The electronic polarizability has been calculated for every anion and cation present in 

the samples employed to design the models, as it is unique for each chemical compound. The 

calculation was carried out using the software package Marvin Suite version 5.11.5 and 

chemicalize.org, both developed by ChemAxom
20,26

. In addition, the software employed to 

develop the MLPs and carry out the experimental design to optimize its parameters was Matlab 

version 7.0.1.24704 (R14)
27

. 

 

2.3 Multilayer Perceptron Optimization 

 So as to obtain accurate, applicable, and reliable mathematical tools based on MLPs, 

they must be properly optimized. To carry out this phase, the databases were divided randomly 

into two parts. A major one known as the training dataset (80% of the data), which is used by 

the MLP to intrinsically modify the values of the weights in order to achieve more accurate 

responses. The second dataset, which is known as the verification dataset, is a smaller yet 

representative proportion of the database (remaining 20%) and is used by the MLP to ensure 

that it can generalize well or, in other words, not be over-fit towards the training dataset. While 

the error for the training dataset can practically reach zero with unlimited training cycles or 

epochs, the error for the verification dataset will end up increasing as these samples are not 

involved in the weight modification procedure. When this verification error begins to rise, the 

model can be seen as optimized, and in this case, six consecutive epochs with verification error 

increases, defined the end of the training process
27

. It must be noted that this verification dataset 

must be contained within the limits of the training dataset as ANNs are accurate when 

interpolating, and lose reliability when forced to estimate results beyond the limits established 

by the training dataset
28

. 

 The way the model determines if a determined weight is better than the previous one is 

by calculating the error between the real and the estimated results. In the present case, it 

operates with the mean prediction error (MPE; equation 1), and the modification of the weights 

attempts to minimize it to reach a better statistical performance. 
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MPE   (1) 

 In this equation, N stands for the number of samples in the verification dataset, rk is the 

real value of a determined sample, and yk is the estimated value for that same sample. 

 In addition to the weights (the main optimization process), there are other parameters in 

a MLP that have to be carefully selected or optimized. They are the training and transfer 

functions, the hidden neuron number (HNN) (heuristically optimized), the amount of hidden 

layers (set as one for every model to avoid an excessive weight-to-sample ratio)
29

, the 

Marquardt adjustment parameter (Lc), the decrease factor for Lc (Lcd), and the increase factor 

for Lc (Lci) 
27

. The Lc parameter acts as the learning coefficient in the classic back-propagation 

algorithms 
30

. Its value is respectively increased or decreased by Lci and Lcd parameters until 

these changes result in a reduced performance value 
27

. When this happens, the parameters have 

acquired their optimal value. These last three MLP parameters were optimized through a 

thorough experimental design based on “Box-Wilson Central Composite Design 2
3 

+ star 

points”) 
20,25,27,31

. The training functions are in charge of the optimization of the ANN weights in 

the best way possible. In this paper, the functions chosen for this task were TrainLM and 

TrainBR because it has been proven that they do not provide overfit models when properly 

trained
 32

. 

 

2.4 Validation of the Models 

 To ensure that the MLP-based models developed can adequately operate inside the 

range of the database employed to optimize it, two different validation processes have been 

carried out for every model. 

 

2.4.1 Internal Validation 

 The basis behind this validation relies on the fact that a series random samples are 

removed from the databases prior to any type of calculation, and uniquely used to test the final 

model and determine its statistical performance. The database is initially divided randomly into 

training, verification, and test datasets, each containing 70%, 20%, and 10% of the data points, 

respectively. This 10% determines the applicability and performance of the optimized model 

through its MPE 
31

. 

 

2.4.2. K-Fold Cross-Validation 

 In this case, the database is initially divided randomly into K datasets (K=6 in this case) 

in order to design K models, each one with a different verification dataset. In this case, each 

model is tested with its verification dataset, which, in the end, leads to the estimation of every 

single sample in the database. The final statistical performance of a MLP is the average of the 

MPEs of the K tests 
20,31

. 
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3. Results and Discussion 

 The results of every designed MLP (optimized parameters and statistical performance) 

will be shown and discussed in this section. In addition to the MPE, the correlation coefficient 

(R
2
) was also calculated, but was not included as it was greater than 0.9 for every test. 

 

3.1. Emim Model 

 This model has been created using data from four different AAILs (EmimGly, 

EmimAla, EmimSer, and EmimPro) which had 1-ethyl-3-methylimidazolium as its cation. 

Information from the temperature and polarizability of the amino acid-based anion was used as 

inputted data to estimate density, viscosity, refractive index, and thermal expansion coefficient. 

The final optimized parameters and selected functions can be seen in Table 1, while the 

statistical performance in terms of MPE can be found in Table 2. 

Table 1. Optimized parameters and functions for the Emim Model. 

Transfer function Sigmoid 

Learning function TrainBR 

Input node number 2 

Hidden neuron number 5 

Output neuron number 4 

Lc 0.005 

Lcd 0.1 

Lci 10 

 The statistical results seem to indicate that the MLP is well suited to estimate these 

thermophysical properties only requiring temperature and polarizability values as the MPEs are 

in general terms low. To further attest this statement, two validation tests were carried out (vide 

supra) on this optimized version of the Emim Model, and the final results are shown in Table 

2. 

Table 2. Statistical performance of the Emim Model using its initial version (verification) and two 

validation methods (internal validation and k-fold cross validation). 

 Verification Internal 

validation 

K-fold cross validation 

MPE (%) Average MPE (%) 

Density 0.09 0.06 0.08 

Viscosity 4.83 5.74 4.92 

Refractive index 0.02 0.03 0.03 

Thermal expansion coefficient 0.10 0.06 0.10 

 The performance of both validation procedures are statistically comparable to the initial 

model, which proves its generalizing capability and applicability within the range covered by 

the database employed. The MPEs for density, refractive index, and thermal expansion 

coefficient are very low (in most cases below 0.1%), and only the viscosity is a bit higher, 

around 5%. This could be due to the fact that the viscosity depends on the water content much 
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more than the other properties, and its experimental measurement generally has a much larger 

intrinsic error 
33

. 

 

3.2. Omim Model 

 This second MLP was developed employing data from five different AAILs (OmimGly, 

OmimAla, OmimSer, OmimPro, and OmimAsp) which possessed 1-octyl-3-methylimidazolium 

as its cation. Density, viscosity, and thermal expansion coefficient were estimated only using 

temperature and polarizability of the anion as independent variables. The final optimized 

parameters and selected functions are shown in Table 3, while the statistical performance in 

terms of MPE can be seen in Table 4. 

Table 3. Optimized parameters and functions for the Omim Model. 

Transfer function Sigmoid 

Learning function TrainLM 

Input node number 2 

Hidden neuron number 8 

Output neuron number 3 

Lc 0.001 

Lcd 0.1 

Lci 10 

 Just like in the previous case, the results appear to be solid. Nevertheless, the Omim 

Model was further validated with the same statistical tests, and the final results can be found in 

Table 4. 

Table 4. Statistical performance of the Omim Model using its initial version (verification) and two 

validation methods (internal validation and k-fold cross validation). 

 Verification Internal 

validation 

K-fold cross validation 

MPE (%) Average MPE (%) 

Density 0.05 0.14 0.13 

Viscosity 4.96 5.69 5.33 

Thermal Expansion coefficient 0.59 0.38 0.52 

The results for the Omim Model can be interpreted exactly the same way as the first 

model. The statistical performances seen in the two validation tests are comparable with the 

initial optimized model, which most likely indicates that the model is trustworthy and can be 

used for other data contained in the range of the analyzed database. The MPEs for the 

estimation of density and thermal expansion are low (always below 0.6%), while, for viscosity 

are a bit higher (around 5%), once again, possibly due to water content and experimental error 

when measuring 
33

. 

 

3.3. Ch Model 

 The third model was created with data gathered from five different AAILs (ChGly, 

ChAla, ChβAla, ChSer, and ChPro) which had choline as its cation. Five different 

thermophysical properties (density, viscosity, refractive index, ionic conductivity, and thermal 
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expansion coefficient) were all estimated solely inputting temperature and polarizability of the 

anion into the MLP. The resulting optimized parameters and selected functions can be found in 

Table 5, whereas the statistical performance in terms of MPE can be seen in Table 6. 

Table 5. Optimized parameters and functions for the Ch Model. 

Transfer function Sigmoid 

Learning function TrainBR 

Input node number 2 

Hidden neuron number 6 

Output neuron number 5 

Lc 0.001 

Lcd 0.9 

Lci 2 

 In this case, two of the five estimations are a bit higher than the previous two models, 

but still are part of a compelling tool that can estimate five properties at a time. Although the Ch 

Model may seem robust, its performance has been validated with the same two approaches, and 

the statistical results can be found in Table6. 

Table 6. Statistical performance of the Ch Model using its initial version (verification) and two 

validation methods (internal validation and k-fold cross validation). 

 Verification Internal 

validation 

K-fold cross validation 

MPE (%) Average MPE (%) 

Density 0.08 0.10 0.12 

Viscosity 8.37 9.75 14.04 

Refractive index 0.04 0.06 0.05 

Ionic conductivity 9.36 12.05 13.52 

Thermal expansion coefficient 0.16 0.09 0.18 

The results for the Ch Model must be analyzed with caution. Although there are three 

estimations that are very accurate (density, refractive index, and thermal expansion coefficient 

offered estimations with MPEs below 0.2%), the other two are slightly high. Especially when 

analyzing the results from the K-fold cross validation, the estimations of for viscosity and ionic 

conductivity raise to around 14%, and, therefore, this MLP should be employed carefully. 

Perhaps attempting to estimate five properties at once hindered the MLP, and maybe an 

interesting approach would be to limit the estimations to only the three accurate properties, 

which would imply an extremely precise and reliable mathematical tool capable of generalizing 

well. 

 

3.4. Global Model 

Finally, a last model that combines all of the databases has been designed. It contains 

data from 12 distinct AAILs (EmimGly, EmimAla, EmimSer, EmimPro, OmimGly, OmimAla, 

OmimSer, OmimPro, ChGly, ChAla, ChSer, and ChPro) that include some from each of the 

prior databases (with the three different cations). In this case, three independent variables were 

necessary to define the system, and they were temperature, anion polarizability, and cation 
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polarizability. The final optimized parameters and selected functions are shown in Table 7, 

while the statistical performance in terms of MPE can be seen in Table 8. 

Table 7. Optimized parameters and functions for the Global Model. 

Transfer function Sigmoid 

Learning function TrainBR 

Input node number 3 

Hidden neuron number 15 

Output neuron number 3 

Lc 0.005 

Lcd 0.1 

Lci 10 

 

 The results attained indicate that the model may be a useful tool to estimate these three 

thermophysical properties of a broad set of samples of AAILs from different origins. The 

Global Model was also meticulously validated using the two tests defined previously, and the 

results are located in Table 8. 

 

Table 8. Statistical performance of the Global Model using its initial version (verification) and two 

validation methods (internal validation and k-fold cross validation). 

 Verification Internal 

validation 

K-fold cross validation 

MPE (%) Average MPE (%) 

Density 0.16 0.19 0.10 

Viscosity 7.29 8.69 8.11 

Thermal expansion coefficient 0.22 0.61 0.28 

The results of the validation tests of the Global Model are consistent with the previous 

ones, proving its applicability and generalizing ability. It must be noted, once again, that the 

estimation of the viscosity is less accurate than the other two properties with an MPE of around 

8% 
33

. The estimations for density and thermal expansion coefficient are very low, never 

exceeding 0.7%. The successful results of this MLP model are more than relevant, as it has 

correctly modeled data from a wide assortment of AAILs that were synthesized by different 

research groups at different periods of time. This provides robustness to these results, as the 

MLP model was able to incorporate data from different studies into an accurate and reliable 

non-linear model based on ANNs. 

 

3.5. Model Comparison 

 Four different models were designed and optimized during this research. The main 

difference in the models were that the AAILs possessed different cations. 

 The first MLP model (Emim Model) was developed with data from AAILs that 

contained 1-ethyl-3-methylimidazolium as its cation, which is one of the most common cations 

when synthesizing ILs. The second model (Omim Model) used AAILs with 1-octyl-3-
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methylimidazolium as its cation. These two MLPs were very accurate and reliable according to 

the validation tests, and the least accurate estimations found were for viscosity at around 5% 

MPE. The estimations for the other thermophysical properties provided almost negligible error 

values. Nevertheless, these two cations, and imidazolium in general, present a considerable 

toxicity 
34

, reason why, a third model (Ch Model) with data from AAILs containing a 

biodegradable cation such as choline was also designed. 

 Choline is an essential micronutrient required by cells to operate correctly, and, 

therefore, it is biodegradable and biocompatible. Nevertheless, the MLP for this database 

provides higher estimation errors for two properties (viscosity and ionic conductivity) while still 

providing very accurate results for the other three (density, refractive index, and thermal 

expansion coefficient). This was the only model that attempted to estimate up to five 

thermophysical properties at the same time, so perhaps this fact hurt the learning capability of 

the model, or it simply required more information to provide more accurate results. 

 Finally, a Global Model was developed to estimate density, viscosity, and thermal 

expansion coefficient of all the AAILs studied in the prior models. These results were 

significantly promising, as they were accurate, reliable, and robust according to the validation 

tests. Given the different nature of the data employed, it turns this model into an attractive tool 

that is not limited to data from single research groups, which could lead to over-fit results. It 

must be noted, that the error in the estimation of viscosity was higher than the other two 

estimations. 

Mathematically speaking, in three of the four MLPs designed, the training function 

TrainBR was employed, while TrainLM was used in the other one (Omim Model). Regarding 

their network parameters, the values of Lc, Lcd and Lci optimized are ranged between 0.001 

and 0.005, 0.1 and 0.9, and 2 and 10, respectively. The parameter values of the Global and 

Emim Models are the same and they are very similar to those of the Omim Model. 

Nevertheless, as the topology in all the ANN models tested is different, it is very complicated to 

establish a relationship between the optimal parameters and the architecture in each case.  

 The authors have not found in the literature any research articles that show ANNs 

estimating thermophysical properties of AAILs, and, therefore, the designed models open an 

appealing path to continue analyzing these promising compounds. The specific models that have 

been designed and optimized during the present research may not be appropriate to estimate 

properties of every AAIL at any temperature, as MLPs are tools that rely on interpolation to 

perform their non-linear calculations. Nevertheless, these algorithms can be re-optimized and 

updated with data from new samples to reach tools with a wider operational window than the 

original ones. 

 

4. Conclusions 

 Four different models based on MLPs have been developed to estimate a series of 

thermophysical properties of different AAILs. Three distinct databases were employed, each of 

which contained information regarding AAILs with different cations (yet common to all 

samples from a single database). 
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 Three of the properties (density, refractive index, and thermal expansion coefficient) 

were estimated with MPEs below 1% in every case. Nevertheless, the estimations were less 

accurate when analyzing the viscosity and ionic conductivity results. 

 Every model was thoroughly validated, which implies the reliability of the statistical 

performance offered in this research. Given the non-linear mathematical relations found during 

this research, it can be concluded that ANNs can be employed to create robust and reliable 

models for the estimation of the properties of a wide range of AAILs. 
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