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Heterogeneous dynamics and its length scale in sim-
ple ionic liquid models: A computational study†

Soree Kim,a Sang-Won Park,a and YounJoon Jung∗a

We numerically investigate the dynamic heterogeneity and its length scale found in the coarse-
grained ionic liquid model systems. In our ionic liquid model systems, cations are modeled as
dimers with positive charge, while anions are modeled as monomers with negative charge, re-
spectively. To study the effect of the charge distributions on the cations, two ionic liquid models
with different charge distributions are used and the model with neutral charge is also considered
as a counterpart. To reveal the heterogeneous dynamics in the model systems, we examine spa-
tial distributions of displacement and time distributions of exchange and persistence times. All
the models show significant increase of the dynamic heterogeneity as the temperature is low-
ered. The dynamic heterogeneity is quantified via the well-known four-point susceptibility, χ4(t),
which measures the fluctuation of a time correlation function. The dynamic correlation length is
calculated by fitting the dynamic structure factor, S4(k, t), with Ornstein-Zernike form at the time
scale at which the dynamic heterogeneity reaches the maximum value. Obtained time and length
scales exhibit a power law relation at the low temperatures, similar to various supercooled liquid
models. Especially, the charged model systems show unusual crossover behaviors which are not
observed in the uncharged model system. We ascribe the crossover behavior to the enhanced
cage effect caused by charges on the particles.

1 Introduction
Room-temperature ionic liquids (RTILs) have attracted great at-
tention because of their uncommon physical properties and var-
ious applications including non-toxic solvents, electrolytes, and
supercapacitors.1–5 Widely known features of RTILs are their
thermal stability, high polarity, high viscosity, very low vapor pres-
sure, and low combustibility.3 Usually, RTILs are composed of
bulky, asymmetric cations and small, symmetric anions. Due to
their considerable size difference, RTILs exist in a liquid phase
near the room temperature in spite of the presence of strong
Coulomb interaction. One of the intriguing features of RTILs is
their heterogeneous dynamics. As reported by theoretical6–10 and
experimental studies,11–13 the evidences of the heterogeneous
dynamics such as a non-exponential decay of correlation func-
tions have been found. Computer simulation studies also have
found the glassy dynamics of RTILs which is characterized by the
breakdown of the Stokes-Einstein relation and decoupling of ex-
change and persistence events of defined excitations.6,7

There have been previous computational studies on the de-
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scription of the heterogeneous dynamics in the ionic liquid sys-
tems.14–18 However, the length scale of the dynamic heterogene-
ity has not been investigated thoroughly19 because of the dif-
ficulties on performing massive simulation with complex struc-
tures and long range interactions. To overcome this difficulty and
to enhance computational efficiency, various levels of the coarse-
grained models have been proposed.7–9,20,21 Among these mod-
els, we use simple models of RTILs which are introduced by a
previous study20 and investigated intensively by Park et al..6

In the previous study, Ref 6, we examined the structural and
dynamic properties of RTILs thoroughly. Especially, the relation
between the time scale of the heterogeneous dynamics and the
length scale of the structural relaxation were studied. According
to the simulation results, calculated lifetime of the heterogeneous
dynamics, τdh, could be regarded as a distinctive time scale from
the relaxation time. While the lifetime of the heterogeneous dy-
namics is calculated using the three-time correlation functions,
the length scale was not examined. In the present study, we fur-
ther investigate the heterogeneous dynamics of RTILs initiated in
Ref 6. We show the simulation results that support the existence
of the heterogeneous dynamics in our model systems. Further-
more, we present the simulation results on the length scale of the
heterogeneous dynamics and the scaling relation between the re-
laxation time to show the distinctive nature of RTILs against the
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model without Coulomb interaction.
The heterogeneous dynamics found in RTILs have similar as-

pects found in the supercooled liquids. When the liquids are
cooled down rapidly, they exist in supercooled liquids rather than
forming a crystal structure. The viscosity and the structural relax-
ation time grow dramatically as the temperature of the system is
lowered. The complete understanding of these physical phenom-
ena and their theoretical explanations are still lacking. Among the
distinctive behaviors of the supercooled liquids, the correlations
between the time-dependent local density fluctuations are found
to play an important role in the slowing down of system. This
phenomenon, typically called dynamic heterogeneity, has been
investigated through diverse theoretical6,10,22–37 and experimen-
tal studies.38–43

In previous theoretical and computational studies, the time and
length scales of the dynamic heterogeneity have been obtained
using the four-point density correlation functions,31–35,44–50

which has its origin in the study of spin glasses.51 A four-point
correlation function is defined as

g4(r, t) = ⟨δρ(0,0)δρ(0, t)δρ(r,0)δρ(r, t)⟩

−⟨δρ(0,0)δρ(0, t)⟩⟨δρ(r,0)δρ(r, t)⟩,
(1)

where δρ(r, t) is the deviation of the local density at the position
r and at time t. g4(r, t) measures the correlation of relaxation of
the density fluctuation between the two points separated by r.
The dynamic susceptibility and the dynamic structure factor can
be derived from this function, by integrating and by performing
Fourier transform, respectively. We use the dynamic susceptibil-
ity as an index of the quantification of the dynamic heterogeneity
and define the time value that makes the dynamic susceptibility
maximum as a characteristic time scale of the dynamic hetero-
geneity. The dynamic structure factor is also calculated to ex-
tract the dynamic length scale, ξ4(t), which could be interpreted
as a length scale of dynamically correlated regions. With these
schemes, we find the characteristic time scale and the length scale
of the dynamic heterogeneity in the ionic liquid model systems.

The contents of this article are organized as follows: In Section
2, we introduce ionic liquid models and describe shortly the sim-
ulation methods. In Section 3, the evidences of heterogeneous
dynamics in the ionic liquid models are shown using displace-
ment distributions and the decoupling of the mean exchange time
and the mean persistence time. Furthermore, the dynamic length
scale obtained by calculating the four-point correlation functions
and related scaling behavior will be illustrated. Finally, the con-
clusions on this work are shown in the Section 4.

2 Models
We use simple coarse-grained models to investigate the hetero-
geneous dynamics of the room-temperature ionic liquid systems.
In order to study the effect of charge distribution on the cation,
the symmetrically charged model (SCM) and the asymmetrically
charged model (ACM) are used. In addition, the uncharged
model (UCM) is also used as a comparison group. Three model
systems have the cation composed of two particles and the anion
of single particle (Fig.1). All the physical parameters are the same

cation anion 

SCM 

ACM 

C1 C2 

-1 

-1 

+1        0 

0.5     0.5 

UCM 0 0  0 

A 

Fig. 1 Schematic representation of the three models. SCM (top) and
ACM (middle) represent symmetrically charged and asymmetrically
charged model of ionic liquid, respectively. While the anions of both
model have the charge of −1.0e, the cations have different charge
distribution: the positive charge is equally distributed for the SCM cation
particles (+0.5e for C1 and C2), the charge is separated for the ACM
cation particles (+1.0e for C1 and zero for C2). UCM (bottom) denotes
the uncharged model as a comparison group without charge on every
particles. Figure adapted from Ref. 6 with permission.

for those models except the charge distribution. SCM has +0.5e
(where e is the elementary charge) on each particle in the cation
and −1.0e on the anion, while ACM has +1.0e on C1 particle,
zero charge on C2 particle, and also −1.0e for the anion. UCM
has zero charge for all particles. We also use the term “cation”
and “anion” for the UCM, for convenience, even if the model does
not have charges on the particles.

The total potential energy is given by the sum of the pairwise
interactions,

Utotal = ∑
i, j
{ULJ(ri j)+UCoulomb(ri j)} (2)

where,

ULJ(ri j) = 4εi j

[(
σi j

ri j

)12
−
(

σi j

ri j

)6
+

1
4

]
H(rcut − ri j), (3)

and

UCoulomb(ri j) =
1

4πε0

qiq je2

ri j
. (4)

H(rcut − ri j) is the Heaviside step function, where the cutoff dis-
tance is set to be rcut = 21/6σi j. Note that ULJ(ri j) is purely
repulsive and it is called the Weeks-Chandler-Andersen (WCA)
potential.52 In all of the three models, εi j = ε = 2 kJ/mol and
σi j =σ = 0.5 nm for all i, j pairs. The length of rigid bond between
two particles (C1 and C2) in the cation is set to be 0.8σ . The mass
of the particles in the cation is m = 100 amu and the mass of the
anion is 200 amu, so the total mass of the cation and that of the
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Fig. 2 Displacement distributions of (a) the cation and (d) the anion in SCM. As the temperature decreases, the displacement becomes
heterogeneous. Time dependence of the displacement distributions of (b) the cation and (e) the anion in SCM at T = 1.12. Both at short and long time
cases, the distribution shows a single peak (dashed line shows Gaussian distribution). The distribution is heterogeneous at the time near the
relaxation time τα . The self-van Hove functions of (c) the cation and (f) the anion are getting close to the Gaussian distribution (dashed line). However,
there are still mismatches for the fast particles even in the long time limit.

anion are the same. We use the length, energy, and mass scaled by
the units of σ , ε, and m. The other units are converted by the fol-
lowing relations: unit time, t0 = (mσ2/ε)1/2 = 5 ps, unit tempera-
ture, T0 = ε/kB = 240.5 K, unit charge, q0 = (4πε0σε)1/2 = 0.08484
e, and unit pressure, P0 = 262.2 atm. We use 2048 pairs of RTIL
molecules in a cubic simulation box of L = 17.88, where L is the
length of each side. All the system have the reduced number den-
sity ρ∗ = ρσ3 = 0.716.

We perform molecular dynamics (MD) simulation using GRO-
MACS 4.5 MD package program53 under NV T ensemble condi-
tion with Nosé-Hoover thermostat. Periodic boundary condition
is applied to each direction and the finite size effect is carefully
checked by comparing physical quantities calculated from sys-
tems with different size of 512, 1024, 2048 and 4096 RTIL pairs.
For all the systems, ten independent trajectories are used and the
length of production run is about 40 times of the α-relaxation
time of each system. The details of the molecular dynamics sim-
ulation conditions are given in Ref. 6.

3 Results and discussion

3.1 Heterogeneous dynamics

Our ionic liquid model systems are expected to have the het-
erogeneous dynamics because of the size difference between the
cation and the anion. To investigate the heterogeneous dynam-
ics in detail, we first calculate the displacement of each par-
ticle. Fig.2(a) shows the probability of the logarithm of dis-
placements, P[log10(δ r); t], of the cation in SCM. The time t is
set to be the α-relaxation time, t = τα , at each temperature,
where the α-relaxation time is defined by the time at which
the normalized overlap function, Q(t)/N, falls into 1/e (See
Fig.5). The definition of the overlap function will be intro-
duced in Section 3.2. P[log10(δ r); t] is related to the self-van
Hove function, Gs(δ r; t), through the equation, P[log10(δ r); t] =
4πlog(10)δ r3Gs(δ r; t). Since Gs(δ r; t) follows a Gaussian function
when the particle experienced the Fickian diffusion, P[log10(δ r); t]
would show a single peak. Therefore, the broadening or split of
the distribution is a clear evidence for non-Fickian motion and
heterogeneous dynamics.

In Fig.2(a), the distribution of the cation in SCM is getting
broader as the temperature is lowered. Compared to the anion
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(a) (b)

Fig. 3 Spatial distributions of the persistence times of the cation (Green) and the anion (Red) at the high temperature (T=6.24) (a) and the low
temperature (T=1.12) (b). The size of the sphere is proportional to the log of persistence time of each particle. The comparison of two snapshots
clearly shows that persistence time is heterogeneous in time and also in space at the low temperature.

case, the cation clearly shows more heterogeneous dynamics at
lower termperatures. (See the supporting information for the
data of the ACM, UCM cases.) The results is consistent with the
previous study that demonstrates the cation moves faster than
the anion.6 For the ACM case, the distribution of the anion is
more heterogeneous than the cation. This opposite result comes
from the different charge distribution of the cation. Compared
to the SCM, the cations in the ACM make irregular structures
around the anions because of their asymmetric charge distribu-
tion. As a result, it is expected that relatively small anion could
have fast movement. In the UCM system, alternating structure
of the cations and the anions are not observed, since there is no
charge on the cations.6 The cage effect would be suppressed and
the distributions of two particles show the similar results. The dif-
ference of two distributions are not profound but the anions have
higher ratio of fast particles because of lower steric hindrance.

Fig.2(b) and Fig.2(c) show the time dependence of the proba-
bility distributions and the corresponding self-van Hove functions
of the cations in SCM. A single peak at short time evolves into
a broad distribution at t ∼ 1τα and becomes a single peak again
in the long time limit. From this results, we can infer that the
dynamics are most heterogeneous at time around from t ∼ 1τα
to t ∼ 5τα . In the ACM and UCM, similar tendency is found
for the calculated distributions. At long time limit, the self-van
Hove function is approaching the Gaussian distribution shown as
a dashed line in Fig.2(c), Gs(δ r; t) = (4πDt)−3/2exp(−δ r2/(4Dt)),
where D is the diffusion coefficient. However, even at t = 50τα ,
there exists a mismatch at small and large r, which means that

the dynamic heterogeneity still remains at this long time case.

To characterize the dynamic heterogeneity in a different way,
we calculate the excitation of each particle.7,37 The excitation is
defined as an event that single particle i moves more than dis-
tance d. For example, when particle i moved more than d at time
t1, |ri(t1)−ri(0)|> d, than the first excitation takes place at t = t1.
Further, when particle moved more than d from the ri(t1) after t2,
|ri(t1 + t2)− ri(t1)|> d, than the second excitation is at t = t1 + t2.
For the third excitation at t = t1 + t2 + t3, same rule is applied,
|ri(t1 + t2 + t3)− ri(t1 + t2)|> d, and so on. Using the series of the
excitations, we can define two time scales, the persistence time
and the exchange time. The persistence time is the time value
that the first excitation occurs, so it is the set of all t1 for every
particle and trajectories. Another time scale, the exchange time,
is defined by the waiting time between two excitations. It is the
set of all t2, t3, .... It has been known that the decoupling of the
two time scales occurs when the system is dynamically heteroge-
neous.7,23,37 Jung et al. first calculated the relationship of the
two time scales in the kinetically constrained model (KCM) and
showed that the dynamic heterogeneity provokes the decoupling
of the two time scales.23 Although the definition of the excitation
is different from the case of the KCM, the physical meanings are
similar in the ionic liquids systems and it can be applied for study-
ing the heterogeneous dynamics in those systems. This analysis
scheme has been applied to study the heterogeneous nature of
the supercooled liquids, the ionic liquids, and the ring polymer
melts.7,23,37,54

Before analyzing the decoupling of the two time scales, we vi-
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Fig. 4 Probability distributions of the exchange time (dashed line) and the persistence time (solid line) for (a) the cation and (b) the anion in SCM. As
the temperature is lowered, the distributions are decoupled. (c) The ratio of the mean persistence time and the mean exchange time increases
abruptly at the low temperatures. (SCM) (d) The mean persistence time and the mean exchange time show power law relationship. (SCM) The data of
ACM and UCM cases are presented in the supporting information.

sualize the heterogeneous dynamics using the persistence time of
each particle. Fig.3 shows the spatial distributions of the persis-
tence times. The radius of each particle represents the size of
the persistence time in logarithm scale. For the cufoff distance d,
we used d = 1 which is comparable to the size of the particles.
At the high temperature, Fig.3(a), the persistence time distribu-
tion is relatively homogeneous than that at the low temperature,
Fig.3(b). Note that not only the size of sphere is heterogeneous
at the low temperature but the spatial distribution also shows the
heterogeneity. This means that there is a correlation between the
slow particles and this could be the evidence of growing dynamic
length scale.

Now, we investigate the decoupling of the two time scales
and relate this phenomenon with the breakdown of the Stokes-
Einstein relation. When the probability distribution of the ex-
change time is exponential, the distribution of the two time scales
is identical because the persistence time is related with the ex-
change time through the integral.23 At high temperatures, there
is a weak correlation between the excitation events, which indi-
cates that excitation events follow the Possion process. At low
temperature, however, the correlations between the excitation
is pronounced and the excitation events would experience non-
Possion process that results in decoupling of the persistence time
and the exchange time distributions, Fig.4(a) and Fig.4(b). We
can interpret this phenomenon that the correlation between exci-
tations increases because of the clustering of the slow particles.

The mean values of the two time scales also show the decou-
pling. The mean persistence time and the mean exchange time,
which are defined by the ensemble average of the persistence
times, τp = ⟨tp⟩, and the exchange times, τe = ⟨te⟩, are related
to the transport coefficients, the relaxation time and the diffu-
sion coefficient, respectively.7 It has been known that the mean
persistence time would be proportional to the relaxation time, τ,
when d is comparable with 2π/q where q is the first peak posi-
tion of the structure factor. Furthermore, the exchange event is
governed by the diffusion of particle so that 1/τe would have re-
lation between diffusion constant, D, through power law relation.
Since the ionic liquid system is a kind of fragile liquids,6,7 it has

been shown that there is a sublinear relation between 1/τe and
D, irrespective of d.7 This is due to the correlation between the
excitation events.23 The power law relations between τp and τα ,
and the relations between τe and 1/D are shown in supporting
information. Length scale d dependence is also investigated in
FIG.S7. Fig.4(c) shows the ratio of τp and τe, which shows sim-
ilar divergent behavior of Dτ at low temperatures.6 In addition,
there are power law relations, τe ∼ τν

p , between the two physical
time scales as it can be seen in Fig.4(d). The value of the power
law exponents are 0.81 (SCM-cation), 0.85 (SCM-anion), 0.78
(ACM-cation), 0.77 (ACM-anion), 0.89 (UCM-cation) and 0.83
(UCM-anion). The exponent of the SCM cation is analogous to
that of the coarse-grained ionic liquids system which is 0.80 for
the cations.7 Comparing the values of the exponents, we can in-
fer that the fragility of the system increases in the order of UCM,
SCM and ACM. More detailed informations can be found in the
supporting information.

In this section, we confirmed that the heterogeneous dynam-
ics found in the supercooled liquids system are also found in our
ionic liquids model systems. From the displacement distribution,
we find the clue that the mobility of the particles are heteroge-
neously distributed. However, the correlations between slow or
fast particles can not be obtained from this analysis. In order to
observe this correlated behavior, a four-point correlation function
is introduced to calculate the dynamic length scale in the next
section. It is noteworthy that the distribution of the charge on the
cations not only changes the local structure but also affects the
fragility of the whole system. From the scaling analysis, we find
that the difference between the cation and the anion is smaller
compared to the differences between the model systems. Thus,
we concentrate on the differences between the models rather than
the type of ions.

3.2 The dynamic susceptibility and the dynamic structure
factor

In the previous studies of glassy dynamics, there have been sev-
eral different schemes to define the length scale of the dynamic
heterogeneity.32,33,45,48,55–57 Among them, the dynamic length
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Fig. 5 Normalized overlap function, Q(t)/N, of the cations in each system calculated using Eq.6 at various temperatures (a)SCM, (b)ACM and
(c)UCM: from left to right, T= 6.24, 4.16, 3.33, 2.49, 2.08, 1.87, 1.66, 1.54, 1.46, 1.33, 1.25, 1.16 and 1.12 (SCM), T= 6.24, 4.16, 3.33, 2.83, 2.49,
2.25, 2.08, 1.98, 1.87, 1.79 and 1.75 (ACM), T= 1.56, 1.14, 0.94, 0.77, 0.67, 0.58, 0.50, 0.44, 0.40, 0.37, 0.35, 0.33 0.31 and 0.29 (UCM). The
α-relaxation time, τα , is defined at which Q(τα )/N = 1/e. The β -relaxation time, τβ , is the characteristic time scale for the cage effect (See Fig.12).
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Fig. 6 Dynamic susceptibility, χ4(t), of the cations in each system calculated using Eq.5 at various temperatures (a)SCM, (b)ACM and (c)UCM. The
temperatures are the same with Fig.5. Log-log plots are also shown (inset). The time value that makes χ4(t) maximum is defined as the characteristic
time scale of the dynamic heterogeneity, t∗4 (black dots).

scale defined from the four-point correlation function has been
widely adopted for many systems. The four-point correlation
function given in Eq.1 measures the correlation of the relaxation
of the density fluctuation. Since the dynamic susceptibility is ob-
tained by integrating g4(r, t) over the space, the dynamic suscepti-
bility can be regarded as a volume of the correlated motion. Fur-
thermore, the dynamic susceptibility can be written in the form
of the fluctuation of the dynamic quantity as will be shown below.
We employ this framework that has been previously established
and applied to analyze the supercooled liquids systems.32–34

The dynamic susceptibility, χ4(t), is defined as,

χ4(t) =
1
N
[⟨Q(t)2⟩−⟨Q(t)⟩2], (5)

Q(t) =
N

∑
i=1

w(|ri(0)− ri(t)|), (6)

where w(|ri(0)− ri(t)|) is a overlap function which is 0 when

|ri(0)− ri(t)| > a and 1 when |ri(0)− ri(t)| ≤ a. Q(t) counts the
number of self overlapping particles using the configurations sep-
arated by a time interval t. Thus, Q(t)/N could be regarded as
an index how much the system has been relaxed. Fig.5 shows
that Q(t)/N decays from 1 to 0 as the time is passed, showing
similar functional behavior with the self-intermediate scattering
function. In Fig.5, we find that Q(t)/N in charged systems shows
more stretched form compared to that in the UCM. The differ-
ence between the model systems comes from the different local
environment that the particles experience. Detailed discussion
will be given in Section 3.3. Eq.5 tells that χ4(t) can be inter-
preted as a quantification of a fluctuation of Q(t). In this study,
we choose overlap cutoff a = 0.3 as used in other studies.33,34

The α-relaxation time, τα , can be defined as the time at which
Q(τα )/N = 1/e. This definition gives analogous value of τα with
the result of the conventional use of self-intermediate scattering
function. Additionally, for the cations, χ4(t) calculated using the
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Fig. 7 The dynamic susceptibility calculated using Eq.7 for (a) the
cation and (b) the anion in SCM. Wavevector k is set by k = 2π/λmax,
where λmax = 0.92 is the shortest peak position of the radial distribution
function between the cation and the anion. The temperatures are the
same with Fig.5. Log-log plot is illustrated in the inset and the maximum
points are shown with black dots.

coordinates of the center of mass and the particle itself did not
show distinctive difference for the scaling law. We will use the
simulation data obtained by calculations with center of mass for
each cation.

Fig.6 shows the dynamic susceptibility calculated using the
Eq.5 at various temperatures. At a fixed temperature, χ4(t) in-
creases as the time passes. χ4(t) has a maximum peak at a certain
time scale, namely t∗4 (T ), which is comparable to the relaxation
time, τα (T ). We find that t∗4 is proportional and almost equal to
τα for all the three model systems (See the supporting informa-
tion). This time scale, t∗4 , which shows the maximum value of the
dynamic susceptibility, χ∗

4 = χ4(t∗4 ), is defined as a characteristic
time scale of the dynamic heterogeneity. As the time increases
further, χ4(t) decreases to zero. The functional form of χ4(t) con-
firms that the dynamic heterogeneity is transient in time. As the y-
axis in the inset of Fig.6 is on log scale, χ∗

4 would show power law
relation with t∗4 . Note that the maximum values, χ∗

4 , are marked
with black dots. We find the power law relations between t∗4 and
χ∗

4 for all systems. Moreover, the crossover behaviors at short time
regime are found for SCM and ACM. The existence of crossover
behavior is a unique phenomenon in our model compared to the
models of supercooled liquids. This phenomenon is based on the
enhanced separation of sub-diffusive regime and diffusive regime
for charged model. The details about the crossover behavior will
be discussed in the next section.

An alternative definition of the dynamic susceptibility can be
used,45

χ̃4(k, t) =
1
N
[⟨Q̃(k, t)2⟩−⟨Q̃(k, t)⟩2], (7)

Q̃(k, t) =
N

∑
l=1

eik·(rl(t)−rl(0)), (8)

where k = |k|. Here, k is a wavevector that regulates the length
scale of local area and has the similar role of a in the over-
lap function. Using the Eq.7 and Eq.8, χ̃4(k, t) can be ex-
pressed in the form, (1/N)∑N

j=1 ∑N
l=1⟨δ Q̃ j(k, t)δ Q̃l(−k, t)⟩, where

δ Q̃ j(k, t) = eik·(r j(t)−r j(0))−⟨eik·(r j(t)−r j(0))⟩. In this form, the self

part of χ̃4(k, t) can be easily obtained applying j = l condition,
χ̃self

4 (k, t) = 1 − Fs(k, t)2, where Fs(k, t) = ⟨eik·(r j(t)−r j(0))⟩ is the
self-intermediate scattering function. Fig.7 shows the χ̃4(k, t)−
χ̃self

4 (k, t) for the cation and the anion in SCM at various tempera-
tures. The magnitude of the wavevector is set by k = 2π/λmax,
where λmax is the shortest peak position of radial distribution
function between the cation and the anion. The overall functional
form of χ̃4(k, t)− χ̃self

4 (k, t) is similar with χ4(t), while the peak at
short time scale is more pronounced. The crossover behavior for
the maximum point of χ̃4(k, t) also can be found in the inset of
Fig.7.

In order to obtain the length scale of the dynamic heterogene-
ity, we calculate the dynamic structure factor with the follwing
equations,

S4(q, t) =
1
N
[ρ(q, t)ρ(−q, t)], (9)

ρ(q, t) =
N

∑
i=1

exp[iq · ri(0)]w(|ri(0)− ri(t)|), (10)

where q = |q|. The dynamic correlation length, ξ4(t), is obtained
by fitting the small wavevector regime into the Ornstein-Zernike
(OZ) equation,

S4(q, t) =
S4(q = 0, t)

1+(qξ4(t))2 , (11)

where, S4(0, t) and ξ4(t) are fitting parameters. S4(q, t) is fitted
in the regime of q ≤ 1.5 which is corresponding to the condition,
4.19 ≤ r ≤ 17.88. Obtained correlation length is shown in Fig.8
at various temperature and time. Similar to the dynamic hetero-
geneity, the correlation length is also transient in time. At first, the
correlation length is growing until it reaches the maximum, and
then it decreases. The functional form of the correlation length
resembles that of χ4(t), however, the time values that the peaks
occur are not identical. Analogous to the previous studies on the
supercooled liquids, the time for which ξ4(t) is maximum is larger
than t∗4 .35,48 From this result, we find that the characteristic time
scale of the correlation length is longer than the time scale of the
dynamic heterogeneity.

In order to determine the dynamic correlation length of the sys-
tem at a fixed temperature, we use ξ ∗

4 = ξ4(t = t∗4 ). ξ ∗
4 represents

the dynamic correlation length when the dynamic heterogeneity
is maximum. All the dynamic structure factors collapse into sin-
gle functional form of f (x) = 1/(1+ x2), when the x-axis is qξ ∗

4
and y-axis is S4(q, t∗4 )/S4(0, t∗4 ). (See FIG.S11 in the supporting in-
formation) The definition of the dynamic correlation length can
be varied using different empirical functions. We compare vari-
ous correlation length obtained by fitting S4(q, t4) into functions:
(1)S4(q, t∗4 ) = S4(0, t∗4 )/(1 + (qξ (1)

4 )2); (2)S4(q, t∗4 ) = (S4(0, t∗4 ) −
C)/(1+(qξ (2)

4 )2)+C; (3)S4(q, t∗4 ) = (S4(0, t∗4 )−C)/(1+(qξ (3)
4 )ζ )+

C; (4)S4(q, t∗4 ) = (S4(0, t∗4 )−C)/(1+(qξ (4)
4 )2 +(qξ (4)

4 )4)+C. Here,
the C and ζ are fitting parameters and C is included to improve
the fitting against the baseline problem.35 The fitted function to
the data is shown in Fig.9(a) for the cation in SCM at T=1.16.

Fig.9(b) shows the temperature dependence of these length
scales for the cation in SCM. Among these correlation lengths,
ξ (1)

4 grows faster than the other lengths and shows clear crossover

behavior. Moreover, the scaling behavior of ξ (1)
4 and t∗4 reveals
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Fig. 8 Time dependence of the dynamic correlation length, ξ4(t), of the cation at various temperatures (a)SCM, (b)ACM and (c)UCM: from left to
right, T= 6.24, 2.49, 1.87, 1.54, 1.33, and 1.16 (SCM), T= 3.33, 2.49, 2.08, 1.87, 1.79, and 1.75 (ACM), T= 1.56, 0.94, 0.67, 0.50, 0.40, 0.37, and 0.35
(UCM). The error bars are shown only for the lowest temperature.
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Fig. 9 Comparison of dynamic length scales obtained from different
fitting schemes. (a)Various fitting schemes on the data of the cation in
SCM, at T = 1.16. (b)Temperature dependence of the dynamic
correlation lengths.

most reasonable power law exponent. In this sense, we use ξ (1)
4

as a dynamic correlation length ,ξ ∗
4 , in the rest part of this article.

3.3 Scaling laws
We now investigate the power law relations between the dynamic
physical quantities we calculated. In various model systems of the
supercooled liquids, the scaling law has been found for the dy-
namic length and time scales.36,58–61 It is noted that these kinds
of relations are originally found in the critical behavior of phase
transitions. In our ionic liquid model system, a similar power
law relation is discovered. First, we show the relation between
t∗4 and χ∗

4 in Fig.10. For all three systems, the power law rela-
tion, χ∗

4 ∼ t∗4
θ is found. Another power relation for t∗4 and ξ ∗

4
is also found, t∗4 ∼ ξ ∗

4
γ , as shown in Fig.11. The power law ex-

ponents are listed in Table 1. As previously observed, there is
clear crossover behavior. Interestingly, this crossover behavior is
prominent in SCM and ACM which include the charge on the par-
ticles. Kim et al. also found the crossover behavior for a glass-
forming binary soft-sphere mixture, and addressed that this is due
to different physical behaviors at different time scales, which are

β -relaxation time, τβ , and α-relaxation time, τα .31 In the arti-
cle, τβ is defined by the minimum value of d(ln⟨δr2(t)⟩)/d(lnt),
where δr = r(t)− r(0). This means that τβ is the time value of
the plateau of mean-squared displacement at each temperature.
The mean-squared displacement and its derivative of the cation
in SCM is shown in Fig.12. As the temperature is lowered, τβ
increases until it reaches maximum value of t = 2. Note that our
definition of τα and τβ allows τβ to be longer than τα at the high
temperatures.τα and τβ are also marked in Q(t)/N, Fig.5. Note
that τα is a time scale of the structural relaxation, while τβ is a
time scale of plateau of Q(t)/N.

In this sense, τβ can be interpreted as a characteristic time scale
that particles stay in the cage. When the temperature is high,
β -relaxation regime is not clearly observed in the time correla-
tion function Q(t)/N. However, at the low temperature, slowing
down of local dynamics due to the cage effect makes β -relaxation
regime distinctive. The onset temperature of this phenomenon
is related to the onset of the crossover behavior. When ξ4(t) is
calculated at t = τβ , the cations and the anions of SCM and ACM
have the power law exponent γ ∼ 2 (Fig.11). However, when
t = t∗4 ∼ τα , the exponent is much larger at low temperatures.
Such phenomenon is not found in the UCM system since the cage
effect of uncharged system is weak compared to the charged sys-
tems. The evidence of enhanced cage effect in SCM and ACM can
be found in the behavior of Q(t)/N, Fig.5. For SCM and ACM,
Q(t)/N show highly stretched form and the plateau is clearly ob-
served at short time. However, the plateau in Q(t)/N of UCM
is not profound compared to SCM and ACM cases. From this
observation, we argue that the existence of the charges on the
particles strengthens the cage effect around certain particle. Fur-
thermore, this enhanced cage effect causes the crossover behavior
in the power law relation. This crossover behavior observed more
profoundly in SCM and ACM can be thought as a distinguishing
property of ionic liquids in our model systems.

When we compare the values of the exponent γ, we find
γC

SCM ∼ 4.8, γC
ACM ∼ 4.1, and γC

UCM ∼ 2.5. The exponents of the
anions are similar to those of the cations. The exponent value of
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Fig. 10 Power law relation between t∗4 and χ∗
4 is shown for (a)SCM, (b)ACM and (c)UCM. Circle denotes data using χ∗

4 and square is for χ̃∗
4 . Solid

lines show power law fitting, χ∗
4 ∼ t∗4

θ . Power law exponents, θ , are listed in Table 1. The crossover behavior is profound in SCM and ACM. The power
law exponents using χ∗

4 and χ̃∗
4 are similar at the low temperature regime for all three models.
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Fig. 11 Power law relation between t∗4 and ξ ∗
4 is shown for (a)SCM, (b)ACM and (c)UCM. Circle denotes the data when t = τα and square is for t = τβ .

Solid lines show power law fitting, t∗4 ∼ ξ ∗
4

γ . Power law exponents, γ, are listed in Table 1. The data at short length scale in condition of t = τα (circle)
correspond to the data in condition of t = τβ (square) in SCM and ACM. The crossover behavior is not observed in UCM.

Table 1 Various scaling exponents and corresponding equations

SCM ACM
UCM

high T low T high T low T

θ cation 0.51 0.24 0.61 0.33 0.48
χ∗

4 ∼ t∗4
θ

anion 0.50 0.25 0.71 0.33 0.48

γ cation 2.1 4.8 2.0 4.1 2.5
t∗4 ∼ ξ ∗

4
γ

anion 1.9 4.5 1.6 3.8 2.7

UCM is similar to the Lennard-Johns mixture studied by Lačević
et al.32 It is notable that the lifetime of the dynamic heterogene-
ity calculated from Ref 6 has the same exponent, ζdh, in all the
models in terms of τ, τdh ∼ τζdh .6 Fig.13 clearly shows that the t∗4
of SCM and ACM increases much faster than the t∗4 of UCM when
ξ ∗

4 is increased. As we can interpret ξ ∗
4 as a size of the dynamic

cluster, the same size of the dynamic cluster is preserved longer
in time for charged systems. This is because the local structure of
charged system is highly ordered compared to the structure of un-
charged system. Meanwhile, the difference between two charged

system, SCM and ACM, is not profound. In spite of the different
charge distributions of the cation, the crossover behavior is very
similar for two systems and the exponents of the power law be-
tween the correlation length and the characteristic time scale of
the dynamic heterogeneity have similar values.

Finally, we demonstrate the three fitting schemes to find the
relation between t∗4 and ξ ∗

4 . These fitting schemes have dif-
ferent theoretical bases. First, mode-coupling theory predicts
there is a power law relation between two quantities as we al-
ready observed,61–63 t∗4 ∼ ξ ∗

4
γ . Second, the Random-First-Order
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Fig. 12 Time scales τα and τβ are indicated with square and circle,
respectively. The cation in SCM at various temperature (same with
Fig.6(a)) is used. (a)Mean-squared displacement ⟨δr2(t)⟩ is shown. In
the view of mean-squared displacement, τβ is characteristic time scale
for the plateau, while τα is the time scale of inset of diffusive regime.
(b)Derivative of mean-squared displacement is shown. τβ is defined as
the time value that makes d(ln⟨δr2(t)⟩)/d(lnt) minimum.

Transition (RFOT) theory suggests the exponential relation,64,65

t∗4 ∼ exp(ξ ∗
4

z). Lastly, the view of the facilitation picture suggests
the following relation,66 t∗4 ∼ exp(A(log(ξ ∗

4 /B))2). Fig.13 shows
the functions fitted on the data of the cation of SCM using dif-
ferent schemes. The lower fitting range is set to be 0.6 for all
functional forms. It seems that the power law relation is most
appropriate to describe the data at long length scale. The other
two functions show similar exponential behavior. At short length
scales, it seems that the exponential function well matches to the
data. However, the data at short length scales are governed by a
different physical environment and it may be a coincidence that
the functions agree with the data. Note that different behavior of
short length regime is due to the cage effect of ionic liquid model.
It is notable that Flenner et al. reported that there is a universal
behavior of supercooled liquids which is an exponential relation
between t∗4 and ξ ∗

4 .46

4 Conclusions
In the previous works, heterogeneous dynamics has been found
in RTILs using the theoretical schemes which are applied to su-
percooled liquids. In this study, we find the evidences of hetero-
geneous dynamics in the simple ionic liquids models. As the tem-
perature decreases, displacement distribution of the cation and
the anion is getting broaden as shown in Fig.2(a) and Fig.2(d). It
seems that the broadening of the distribution reaches its max-
imum when the time is comparable to the relaxation time of
each model system. Furthermore, the decoupling of the mean
exchange time and the mean persistence time is observed. At low
temperatures, the mean persistence time is growing much faster
than the mean exchange time as expected from the previous stud-
ies.7,23 From the result, we can infer that the defined excitation
events are correlated each other at sufficiently low temperatures,
which is caused by the correlated local motion of the particles.

We adopt the four-point correlation function analysis to study
how the local densities are correlated in our ionic liquids model
systems. To quantify the heterogeneous dynamics, the dynamic
susceptibility is calculated based on two different time-correlation
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Fig. 13 Comparison of relations between t∗4 and ξ ∗
4 for SCM, ACM and

UCM. The power law exponent, γ, of the cation and the anion in SCM
and ACM is much larger than the exponent of cation and anion in UCM.
Three different functional form is used to fit the data of the cation in
SCM: (1) t∗4 ∼ ξ ∗

4
γ , (2) t∗4 ∼ exp(ξ ∗

4
z), (3) t∗4 ∼ exp(A(log(ξ ∗

4 /B))2).

functions which are Q(t)/N and Fs(k, t). The time dependence and
the temperature dependence of calculated dynamic susceptibility,
χ4(t) and χ̃4(t), are investigated. Our results illustrate that the dy-
namic heterogeneity found in RTILs is transient in time analogous
to the situation in the supercooled liquids.

We also successfully extract the dynamic correlation length, ξ ∗
4 ,

by fitting the dynamic structure factor, S4(t), into the Ornstein-
Zernike equation. Calculated quantities such as the character-
istic time scale of the dynamic heterogeneity, t∗4 , the maximum
value of the dynamic susceptibility, χ∗

4 , and the dynamic correla-
tion length, ξ ∗

4 , are connected via the power law relations at low
temperatures. Interestingly, the crossover behavior around t∗4 ∼ 1
and ξ ∗

4 ∼ 1 is prominent in the charged model, SCM and ACM.
We count this phenomenon on the enhanced cage effect due to
the existence of charge. The crossover behavior and the peak of
the dynamic susceptibility in the short time region t ∼ τβ are not
noticeable in the UCM and in the previous studies on the glassy
systems. Note that, in the Ref 6, the power law relations be-
tween the lifetime of the dynamic heterogeneity, τdh, and τ was
investigated. The power law exponents, ζdh, were found to be
the same in all the models studied in this work. In this study, on
the other hand, the power law exponents related with the length
scale of the dynamic heterogeneity, θ and γ, show different values
depending on the models.

As we vary the charge distributions on the cation particle, the
effect of different charge distributions on the glassy dynamics is
observed. When the result of UCM is compared with the charged
model systems, all three models show the heterogeneous dynam-
ics at sufficiently low temperatures. Even if the particles do not
have the charge, the mixture of different shape of particle shows
the glassy behavior like other supercooled liquids models. The
existence of charge on the particles mainly affects two aspects of
the system. First, the onset temperature of heterogeneous dynam-
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ics increases. Because the structures of the charged systems are
more stable than the structure of UCM at the same temperature,
the dynamics is much slower and the temperature which shows
heterogeneous dynamics is much higher. Second, the cage effect
is enhanced. From the simulation results of dynamic susceptibil-
ity and the power law analysis, we confirm that the alternating
local structure of the cations and the anions results strong cage
effect. As a result, we find crossover behavior for the power law
relation between the time scale and the length scale of the dy-
namic heterogeneity. Furthermore, the comparison between SCM
and ACM reveals that the asymmetric charge distribution makes
the system more fragile. However, two models basically show
similar behaviors except the onset temperature of the dynamic
heterogeneity.

The simple models we used are designed to reveal heteroge-
neous dynamics which can be observed in RTILs. Because of their
simplicity, a clear comparison of different models is possible and
relatively long and large simulation is available compared to the
all-atom models of RTILs. While the models can provide the in-
sight on the role of the charge distributions on the cations, they
are highly coarse-grained models so that the effect of the molecu-
lar details are ignored. In order to extend the models to more re-
alistic systems, detailed molecular structure can be considered. In
the future study, less coarse-grained model such as 4-atom cation
model7 may be used for investigation of the dynamic heterogene-
ity in RTILs.
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33 N. Lačević, F. W. Starr, T. Schrøder, V. Novikov and S. Glotzer,

Phys. Rev. E, 2002, 66, 030101.
34 S. C. Glotzer, V. N. Novikov and T. B. Schrøder, J. Chem. Phys.,

2000, 112, 509–512.
35 C. Toninelli, M. Wyart, L. Berthier, G. Biroli and J.-P.

Bouchaud, Phys. Rev. E, 2005, 71, 041505.
36 R. S. Stein and H. C. Andersen, Phys. Rev. Lett., 2008, 101,

267802.
37 L. O. Hedges, L. Maibaum, D. Chandler and J. P. Garrahan, J.

Chem. Phys., 2007, 127, 211101.

Journal Name, [year], [vol.],1–12 | 11

Page 11 of 12 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



38 L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, D. El Masri,
D. L’Hôte, F. Ladieu and M. Pierno, Science, 2005, 310, 1797–
1800.

39 C.-Y. Wang and M. Ediger, J. Phys. Chem. B, 1999, 103, 4177–
4184.

40 M. T. Cicerone and M. Ediger, J. Chem. Phys., 1995, 103,
5684–5692.

41 K. Schmidt-Rohr and H. Spiess, Phys. Rev. Lett., 1991, 66,
3020.

42 A. Heuer, M. Wilhelm, H. Zimmermann and H. W. Spiess,
Phys. Rev. Lett., 1995, 75, 2851.

43 M. D. Ediger, Annu. Rev. Phys. Chem., 2000, 51, 99–128.
44 C. Dasgupta, A. Indrani, S. Ramaswamy and M. Phani, Euro-

phys. Lett., 1991, 15, 307–312.
45 D. Chandler, J. P. Garrahan, R. L. Jack, L. Maibaum and A. C.

Pan, Phys. Rev. E, 2006, 74, 051501.
46 E. Flenner, H. Staley and G. Szamel, Phys. Rev. Lett., 2014,

112, 097801.
47 E. Flenner and G. Szamel, J. Chem. Phys., 2013, 138, 12A523.
48 E. Flenner, M. Zhang and G. Szamel, Phys. Rev. E, 2011, 83,

051501.
49 E. Flenner and G. Szamel, Phys. Rev. Lett., 2010, 105, 217801.
50 E. Flenner and G. Szamel, Phys. Rev. E, 2009, 79, 051502.
51 A. P. Young, Spin glasses and random fields, World Scientific,

1997.
52 J. D. Weeks, D. Chandler and H. C. Andersen, J. Chem. Phys.,

1971, 54, 5237–5247.
53 S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apos-

tolov, M. R. Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel
et al., Bioinformatics, 2013, btt055.

54 E. Lee, S. Kim and Y. Jung, Macromol. rapid commun., 2015,
36, 1115.

55 C. Donati, S. C. Glotzer, P. H. Poole, W. Kob and S. J. Plimpton,
Phys. Rev. E, 1999, 60, 3107.

56 C. Donati, S. Franz, S. C. Glotzer and G. Parisi, J. Non-Cryst.
Solids, 2002, 307, 215–224.

57 K. Kim and S. Saito, J. Chem. Phys., 2013, 138, 12A506.
58 S. Whitelam, L. Berthier and J. P. Garrahan, Phys. Rev. E,

2005, 71, 026128.
59 L. Berthier and J. P. Garrahan, J. Phys. Chem. B, 2005, 109,

3578–3585.
60 S. Whitelam, L. Berthier and J. P. Garrahan, Phys. Rev. Lett.,

2004, 92, 185705.
61 G. Biroli, J.-P. Bouchaud, K. Miyazaki and D. R. Reichman,

Phys. Rev. Lett., 2006, 97, 195701.
62 G. Biroli and J.-P. Bouchaud, Europhys. Lett., 2004, 67, 21.
63 G. Szamel, Phys. Rev. Lett., 2008, 101, 205701.
64 T. Kirkpatrick, D. Thirumalai and P. G. Wolynes, Phys. Rev. A,

1989, 40, 1045.
65 V. Lubchenko and P. G. Wolynes, Annu. Rev. Phys. Chem.,

2007, 58, 235–266.
66 A. S. Keys, L. O. Hedges, J. P. Garrahan, S. C. Glotzer and

D. Chandler, Phys. Rev. X, 2011, 1, 021013.

12 | 1–12Journal Name, [year], [vol.],

Page 12 of 12Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t


