PCCP

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/pccp

Two-Dimensional Transition-Metal Oxides Monolayers as Cathode Materials for Li

T	Two-Dimensional Transition-Metal Oxides Monolayers as Cathode Materials for El
2	and Na Ion Batteries
3	Chon Chio Leong, Hui Pan [*] , and Sut Kam Ho
4 5	Institute of Applied Physics and Materials Engineering, Faculty of Science and Technology, University of Macau, Macao SAR, P. R. China
6	Abstract: Two-dimensional monolayers are attractive for applications in metal-ion
7	batteries because of low ion-diffusion barrier and volume expansion. In this work, we
8	carry out first-principles study on electrochemical and structural properties of
9	two-dimensional (2D) oxides monolayers and investigate their applications in
10	metal-ion batteries. 2D transition-metal oxides monolayers (MO_2 ; M = Mn, Co, and
11	Ni) with various ion-intercalation densities are systematically studied. Our
12	calculations show that Li and Na atoms can easily transport on the surfaces of the
13	monolayers with low diffusion barriers because of long binding distance. We find that
14	Li_2MO_2 and Na_2MO_2 are stable because of negative intercalation energies and
15	unsaturated specific energies. We show that MnO_2 has the lowest diffusion barrier,
16	highest specific capacity, and smallest lattice expansion under Li-intercalation, but
17	lowest cell voltage. We also find that CoO_2 has the largest cell voltages in a wide
18	range of ion-intercalation densities and smallest lattice expansion under
19	Na-intercalation, and NiO_2 only gives the highest cell voltage in $\mathrm{Li}_2\mathrm{NiO}_2$ and has
20	largest volume expansion. We further show that Li and Na atoms in $\mathrm{Li}_2\mathrm{MO}_2$ and
21	Na ₂ MO ₂ move from stable-adsorption sites to metastable sites on the surfaces of
22	oxides monolayers to reduce lattice expansion, leading to reduced cell voltages. It is

- 23 expected that metal-ion batteries with particular applications and performances can be
- 24 achieved by designing these oxides monolayers.
- 25 Keywords: Transition-metal oxide monolayers; Li/Na diffusion; cell voltage and
- specific capacity; volume expansion; metal-ion battery; first-principles calculation
- ²⁷ * H. Pan (huipan@umac.mo); Tel: (853)88224427; Fax: (853)28838314

28 l	Introduction

Rechargeable energy storage devices have been in ever-increasing demand as energy 29 sources in huge-amount of portable electronics, commercial electronic vehicles, and 30 31 large-scale electric networks [1-3]. As a robust technology, metal-ion batteries, 32 especially lithium-ion batteries (LIBs), have been attracting extensive interests because they can deliver high energy, power capacities, and have reasonable stability 33 [4-5]. However, it is a great challenge to develop metal-ion batteries to deal with 34 society's fluctuating energy needs, because of the low abundance of electrode 35 materials. At the same time, the overall performance strongly relies on the structures 36 37 and properties of the electrode materials. Substantial efforts have been devoted to 38 develop electrode materials with nanostructures, including nanotubes, nanowires, nanoparticles, nanoporous structures, and their composite, because they may enhance 39 energy and power capacities, improve charging/discharging time, and even reduce the 40 41 cost [6-11]. Recently, two-dimensional (2D) monolayers have attracted increasing attention for their applications into metal-ion batteries as cathodes and anodes due to 42 43 their particular structural, physical, and chemical properties [12-21]. As anode electrode, layered MoS_2 showed the high-rate transportation of sodium ions due to the 44 short diffusion paths and allows easy Na^+ ion insertion/de-insertion [12]. TiS₃ 45 monolayer showed a lower energy barrier for the diffusion of Na atoms [13]. Much 46 lower energy barriers for metal-ion diffusion could be achieved on 2D 47 48 transition-metal carbides/nitrides (so called MXenes) [17, 18]. As one of most important components in metal-ion batteries, the cathode plays a determinate role to 49

50	their capacities and costs [5]. Currently, layered bulk metal oxides have been widely
51	used in commercial LIBs. The Li/Na ions in layered $LiMO_2/NaMO_2$ (M = Ni, Mn, Co,
52	etc.) lie between the sheets of edge-shared MO_6 octahedra [22-34]. However, the
53	preparation of well-ordered structures is difficult and these bulk forms of these
54	layered materials resulted in reduction of capacity. 2D oxide monolayers may provide
55	solutions to solve these issues. The oxides monolayers may have two structures
56	depending on point-group symmetries, including 2H and 1T structures for D_{6h} and D_{3d}
57	point-group symmetries, respectively [35]. Theoretically, Ataca et al. reported that
58	MnO_2 and NiO_2 with 1T structures are stable [36]. Although Ataca et al. reported that
59	CoO_2 monolayer is unstable [36], single-layer CoO_2 could be achieved by
60	Na-intercalation [37]. In this work, we focus on theoretical study of two dimension
61	transition metal oxides MO_2 (M = Mn, Co, and Ni) monolayers as cathode materials
62	for Li and Na batteries based on first-principles calculations. From our calculation
63	results, we show that these monolayers can host high density of Li/Na atoms because
64	of exothermic intercalation and the charging/discharging rate of Na is faster than that
65	of Li. We find that MnO ₂ shows fast charging/discharging rate, high specific capacity,
66	and smaller expansion under Li-intercalation, but low cell voltage and larger lattice
67	expansion under Na-intercalation. We further show that CoO ₂ has large cell voltage,
68	smaller specific capacity and small volume expansion under Na-intercalation.

69

70 Computational Method

71	The electrochemical properties of 2D transition-metal oxides monolayers are
72	investigated to find their applications as cathode materials in metal-ion batteries based
73	on the density functional theory (DFT) [38] and the Perdew-Burke-Eznerhof
74	generalized gradient approximation (PBE-GGA) [39]. We use the Vienna ab initio
75	simulation package (VASP) [40] incorporated with projector augmented wave (PAW)
76	scheme [41, 42] in the calculations. A 15×15×3 grid for k-point sampling based on the
77	Monkhorst and Pack scheme [43] is used for geometry optimization of unit cells. An
78	energy cut-off of 500 eV is consistently used in our calculations. We employ a
79	vacuum region of 20 Å to isolate the monolayer from its images in neighbouring cells
80	in the vertical direction. Spin-polarized calculations are performed in our calculations.
81	Good convergence is obtained with these parameters and the total energy is converged

84 Results and Discussion

The 1T 2D transition-metal oxides monolayers (MO₂, M = Mn, Co, and Ni) are constructed as reported in literature [36], where the monolayer is a three-atom-thick layer in a sequence of O-M-O and has D_{3d} point-group symmetry (Figures 1a&b). So, its electrochemical properties are studied for comparison. The monolayers are first fully optimized to obtain their lattice parameters. The relaxed geometries show that the lattice constants of considered 2D oxides monolayers are 2.887, 2.819, and 2.823 Å (Table I). We see that our results on lattice constants are larger than those in

92 literature [36], because GGA+U was used in their work.

Supercell with $3 \times 3 \times 1$ unit cells for oxide monolayer is constructed to find the stable ion-adsorption site (Figure 1). There are three possible positions at one side of the monolayer, including direct top of O atom (TO), top of metal atom (TM), and hexagonal center (HC, opposite top of O atom) (Figure 1). The supercells with one Li/Na ion at all the possible sites are relaxed to find the site of stable adsorption. As an indication of the stable adsorption, the adsorption energy (E_{ad}) is calculated as below:

100
$$E_{ad} = E(ML + ion) - E(ML) - \mu_{ion}$$
(1)

101 where E(ML+ion) and E(ML) are the total energies of the monolayer supercell with and without one Li/Na atom, and μ_{ion} is the energy of Li/Na calculated from the 102 103 bulk. Our calculations show that the adsorption energies are negative at all of three 104 possible sites on each monolayer supercell, indicating that Li/Na-intercalation is 105 exothermic. We notice that the ion adsorption energy on TO are almost equal to that 106 on TM or HC (Figure 2), except Na on NiO₂ monolayer supercell (Figure 2c). After 107 carefully examining the relaxed structures, we find that Li/Na atom that is initially on 108 the direct top of O atom shifts to other sites, TM or HC, indicating that TO be 109 unstable to host Li/Na atom. Although Na keeps on the top of O atom after relaxation, 110 the adsorption energy (negative) is larger than those on other sites (TM and HC) (Figure 2c), also showing that TO is not favourite to Li/Na atom. We also notice that 111 112 hexagonal centre (HC) is much stable to hold Li/Na atom because of the strong

113	adsorption energies (Figure 2). The adsorption energies are -2.54, -3.60 and -2.71 eV
114	for Li on HC of MnO_2 , CoO_2 , and NiO_2 , respectively, and -2.38, -3.40 and -2.56 eV
115	for Na on HC of MnO_2 , CoO_2 , and NiO_2 , respectively (Figure 2). We see that the
116	Li/Na adsorption on CoO_2 monolayer is stronger than those on other oxides
117	monolayers. From the relaxed systems, we find that the Li-O distances are 1.98, 1.95
118	and 1.97Å for Li on MnO ₂ . CoO ₂ , and NiO ₂ , respectively, and the Na-O distances are
119	2.33, 2.30 and 2.31Å on MnO ₂ . CoO ₂ , and NiO ₂ , respectively. We see that the Li-O
120	distance in Li-adsorbed MnO_2 supercell is the longest in all three oxides systems and
121	may suggest easy Li diffusion and fast charging/discharging on MnO_2 (Table II). The
122	Na-O distance is larger than Li-O distance on each system, indicating that
123	Na-diffusion is easier than Li-diffusion.

125 The longer binding distances indicate that these 2D metal oxide monolayers are 126 suitable for metal-ion batteries. Ion diffusion is one of key issues for their applications in batteries, which is responsible to the charging/discharging process. Therefore, it is 127 128 necessary to calculate ion-diffusion barriers on these monolayers. In our calculations, 129 the ion-diffusion barrier is calculated by moving one Li/Na atom from one stable 130 adsorption site to another via a metastable adsorption site, which shows the lowest 131 energy barrier [13, 15, 44]. Because the most stable and metastable adsorption sites on 132 each monolayer are the hexagonal center (HC) and top of metal atom (TM), respectively, the easiest paths should be HC - TM - HC (red dots 0 - 3 - 6 in Figure 133

134	3). As Li atom moving from the most stable adsorption site (0) to metastable site (3),
135	we see that energy barriers increasingly reach to the maximums at $2/3$ on the path
136	from 0 to 3 (as indicated in Figure 3) and then decrease (Figure 4a). We find that the
137	Li-diffusion barrier on CoO_2 and NiO_2 supercells are almost equal to each other. The
138	Li-diffusion barrier on MnO_2 monolayer is the lowest (0.16 eV) (Figure 4a), resulting
139	in fast Li-charging/discharging process in MnO2. The Na-diffusion barriers on three
140	oxide monolayers are ~ 0.12 eV with a difference of 0.008 eV from each other (Figure
141	4b), which are lower than Li-diffusion barrier, indicating the charging/discharging of
142	Na ions is faster than that of Li ions. From the calculated binding distance and
143	adsorption energy (Table II) and diffusion energies (Figure 4a and 4b), we see that the
144	diffusion energy decreased as the binding energy decreases and binding distance
145	increases. When the binding energy is small and binding distance is larger, the Li/Na
146	ions can pass through the materials fast, and easy, resulting in low diffusion barrier.
147	Therefore, by considering diffusion barrier, binding distance, and adsorption energy,
148	we see that Lithium/Sodium atoms are easy to transport on MnO_2 monolayer,
149	resulting in fast charging/discharging during Li/Na-intercalation/decalation processes.
150	We found that our calculated Li-diffusion barrier on MnO_2 monolayer (0.156 eV) is
151	consistent with a recent publication (0.148 eV) [45].

152

To investigate the Li/Na-ion storage capacities in these 2D oxides monolayers, we study their electrochemical properties under various intercalation densities. A number of electrochemical properties can be derived directly from the difference in total energies before and after lithium intercalation – a procedure offering improved accuracy through the cancellation of errors. The intercalation energy (E_{int}), as an indication for the stable storage of Li, is calculated from

159
$$E_{int} = (E_{tot}(ML + nIon) - E_{tot}(ML) - n\mu_{Ion})/n$$
(2)

where $E_{tot}(ML+nIon)$ and $E_{tot}(ML)$ are the total energies of the monolayers with and 160 161 without Li/Na atoms, respectively. n is the number of Li/Na atoms or the Li/Na density. When n = 1 in equation (2), the intercalation energy is the same as the 162 163 adsorption energy (equation (1)). The change of ion-intercalation density is realized 164 by increasing the number of Li/Na atoms in the supercells or reducing the sizes of 165 monolayer cells. Cells with $3 \times 3 \times 1$ units, $2 \times 2 \times 1$ units, and $1 \times 1 \times 1$ unit are used to 166 study low, medium, and high ion-intercalation densities, respectively. The $3 \times 3 \times 1$ and 167 $2 \times 2 \times 1$ supercells were constructed based on the lattice parameter of oxide unit cell 168 and kept fixed under Li-intercalation at low and medium densities. The $1 \times 1 \times 1$ cells with high Li density were fully relaxed to investigate volume expansion. For 169 170 convenience, the Li and Na intercalated oxides monolayers are named as Li_xMO_2 and Na_xMO₂, respectively, where $x = \frac{n}{the number of units in the cell}$. Our calculations show 171 172 that the Li-intercalation energy on each 2D oxide monolayer is negative, which 173 increases as the increment of Li-density initially and converges to a constant (Figure 5a). The negative energy $(E_{int} < 0)$ corresponds to exothermic chemical intercalation, 174 leading to stable dissociation of Li bulk and separation of Li atoms. The 175

176	Li-intercalation energy on 2D ${\rm CoO}_2$ monolayer is lower than that on ${\rm NiO}_2$ within a
177	Li-density (x) from 0 to 1 (Figure 5a). At the highest Li-density, the E_{int} on CoO ₂ is
178	larger than that on NiO ₂ by 0.27 eV and less than that on MnO ₂ by 0.74 eV. The E_{int}
179	on MnO_2 is higher than that on NiO_2 in the whole range of considered Li-density (x =
180	0~2). Therefore, Li atoms are easy to be dissociated and stably separated on CoO_2
181	monolayer under low and medium Li-densities. The calculated formation energy of
182	the Li bulk is around -1.9 eV and the Li-adsorption energy on CoO_2 is -3.6 to 2.0 eV
183	as x changes from 0.11 to 1. We can see the adsorption of Li on CoO_2 is much
184	stronger than that to form bulk. Therefore, Li atoms can easily be dissociated on CoO_2 .
185	We also find that the intercalation energy of Li_2NiO_2 is lower than that of LiNiO_2
186	(Figure 5). We see that the lattice parameters are expanded under ion-intercalation at
187	high Li-density. The lattice constant (a) of the Li_2NiO_2 (3.072 Å) is larger than that of
188	LiNiO ₂ (2.969 Å) and the lattice constant (a) of $\rm Li_xMnO_2$ expands from 2.176 to
189	2.322 Å as x changes from 1 to 2 when Li atoms at HC positions, and the thicknesses
190	also increase (Tables III & IV), leading to the lower intercalation energy. We see that
191	the intercalation energy strongly depends on the lattice parameters, but the variation at
192	high ion-density is smaller. Similar to Li-intercalation, the Na-intercalations on 2D
193	oxides monolayers are also exothermic in the whole considered range of Na-density
194	because of negative intercalation energies, resulting in stable dissociation of Na bulk
195	and separation of Na atoms (Figure 5b). Similarly, the Na-intercalation energy on
196	each oxide monolayer increases initially and reaches to a constant as Na-density (x)
197	increases from 0 to 2 (Figure 5b). We see that the Na-intercalation energy on CoO_2

198 monolayer is lower than that on NiO₂, and the Na-intercalation energy on NiO₂ monolayer is lower than that on MnO₂. At highest Na-density (x = 2), the E_{int} on CoO₂ 199 200 is less than that on NiO₂ by 0.15 eV, and that on MnO₂ by 0.25 eV. Same as the Li-intercalation, the intercalation energy of Na₂MnO₂ is lower than that of NaMnO₂, 201 202 which is contributed to the expanded lattice parameters of Na_xMnO_2 (Tables III and 203 IV). If considering intercalation energies only, CoO_2 monolayer is the best candidate 204 as electrode materials in metal-ion batteries. To confirm the stability of 205 ion-intercalated oxides monolayers, the specific energies (E_s) are calculated as below:

206
$$E_s = -(E_{tot}(ML + nIon) - E_{tot}(ML))/m \qquad (3)$$

where *m* is the total number of transitional metal and oxygen atoms in the cell. We find that the specific energy increases with the intercalation density (*x*) (Figure 6). As the intercalation energy is negative in the whole range of the considered intercalation density, we confirm that the Li/Na density may be as high as 2 on a single monolayer. We find that the lattice expansion under high Na-interaction is stronger than that under Li-interaction (Table IV), which may result in the lower specific energies of Na_xMO₂ at x=1.

214

For practical applications in metal-ion batteries, cell voltage and specific capacity need to be evaluated. The cell voltage (*V*) and specific capacity (*J*) are calculated from $V = \left|\frac{E(Ion_x MO_2) - E(MO_2) - x\mu_{Ion}}{x}\right|$, and $J = \frac{Q \times F}{3.6 * M}$, where $E(Ion_x MO_2)$ and $E(MO_2)$ are 218 the total energies of 2D oxide monolayer with and without Li/Na-intercalation, Q is 219 the number charge released, F is Faraday constant, and M is the atomic mass (g/mol). 220 The cell voltage is actually equal to the absolute value of intercalations energy 221 (equation (2)). We see that the cell voltage decreases as the increment of ion-intercalation density (Figure 7). At the highest density, the Li-cell voltages are 222 223 about 1.18, 1.92 and 2.20 V for MnO₂, CoO₂, and NiO₂, respectively (Figure 7a) and 224 the Na-cell voltages are 0.54, 0.78 and 0.63 V (Figure 7b and Table V). We see that 225 the cell voltages of Li_2NiO_2 and Na_2MnO_2 are higher than those of $LiNiO_2$ and NaMnO₂ due to larger lattice expansion. The specific capacity of MnO₂ (617 mAhg⁻¹) 226 227 is the highest at the same Li/Na density because of smaller atomic mass (Table I). If considering voltage cell, CoO₂ monolayer is better than MnO₂ and NiO₂ as cathode 228 229 for Li-ion and Na-ion batteries because its voltage is higher than others in a wide 230 range of ion density (Figure 7). However, MnO_2 monolayer is the best choice when 231 considering specific capacity.

Beside the electrochemical properties, the volume expansion during ion-intercalation is also a very important issue to practical application. At high ion-intercalation density, the ion-ion interaction may result in ion-migration on these monolayers. To check out the stable adsorption, two possible adsorption sites, HC and TM, are considered in these unit cells (Li₂MO₂ and Na₂MO₂), which are fully optimized to obtain lattice parameters and find the stable adsorption states. Our calculations show that the

Physical Chemistry Chemical Physics

239	energies of unit cells with ions on HC positions are lower than those on TM sites
240	(Table III), indicating that ions (Li and Na) still prefer on HC sites. We find that the
241	lattice constants of the unit cells with Li atoms at HC positions are expanded by 0.35 $\%$
242	in Li_2MnO_2 , 7.34 % in Li_2CoO_2 , and 8.82 % in Li_2NiO_2 , respectively (Table III). At
243	the same time, the thicknesses (O-O distance in vertical direction) are expanded by
244	22.2 % in Li ₂ MnO ₂ , 36.6 % in Li ₂ CoO ₂ , and 28.9 % in Li ₂ NiO ₂ , respectively (Table
245	III). Interestingly, we find that the lattice constant of MnO_2 with Li atoms at TM
246	positions shrinks by 2.91 %, and the expansions of the lattice constants of CoO_2
247	(2.20 %) and NiO ₂ (3.86 %) with Li atoms at TM positions are smaller than those at
248	HC positions, but the expansions of their thicknesses (25.2 $\%$ in MnO2, 41.0 $\%$ in
249	CoO_2 , and 39.2 % in NiO ₂ ,) are increased (Table III). We see that Li-intercalation
250	leads to very small lateral expansion in MnO ₂ with Li atoms at HC positions, but large
251	shrinkage if Li atoms take TM positions. Considering both the adsorption energy and
252	lattice change, we predict that Li atoms will occupy HC positions on $\ensuremath{\text{MnO}}_2$
253	monolayer during Li-intercalation. Comparing the lattice constants of CoO_2 and NiO_2
254	with different Li-adsorption positions, we see that their expansions with Li atoms at
255	TM are much smaller than those at HC positions. Although the stable Li-adsorption
256	sites on CoO_2 and NiO_2 monolayers are at HC, Li atoms may immigrate to TM
257	positions to avoid larger lattice expansions. It is, therefore, Li atoms will occupy TM
258	positions on CoO_2 and NiO_2 monolayers at high intercalation-density. Accordingly,
259	the estimated cell voltages of CoO_2 and NiO_2 monolayers with highest
260	intercalation-density reduce to 1.56 and 1.73 V, respectively (Table V).

261

262	Similarly, Na atoms still prefer to HC positions on these oxides monolayers (Table III).
263	For Na atoms at HC positions, the lattice constants of MnO_2 , CoO_2 , and NiO_2 are
264	expanded by 11.4, 7.1, and 13.0 %, respectively (Table III), and their thicknesses are
265	expanded by (16.6 % in MnO_2 , 2.5 % in CoO_2 , and 10.4 % in NiO_2). For Na atoms at
266	TM positions, the lattice constants of MnO_2 , CoO_2 , and NiO_2 are expanded by 7.5, 5.1,
267	and 7.9 %, respectively (Table II), and their thicknesses are expanded by (15.9 % in
268	MnO ₂ , 5.0 % in CoO ₂ , and 14.0 % in NiO ₂). Different from Li-intercalation, we see
269	that Na-intercalation results in less volume expansion of CoO ₂ monolayer than other
270	oxides. Although Na atoms prefer to HC sites on these monolayers, they may migrate
271	to TM sites to reduce larger lattice expansions at high intercalation-density. The
272	calculated Na-intercalation energies ($E_{int} = -V$) of these oxides monolayers with Na
273	atoms at TM sites are higher than those at HC sites, leading to lower cell voltages
274	(Table V).

275

Based on our calculations and analysis on the electrochemical and structural properties of the 2D oxides monolayers under metal-ion intercalations, we see that each 2D oxide monolayer has its own advantages for application in batteries. For example, MnO₂ monolayer shows fastest ion-diffusion, highest specific capacity, and smallest expansion in Li-intercalation. CoO₂ monolayer gives highest Li-cell and Na-cell voltages in a wide range of metal-ion density, and smallest lattice expansion

Physical Chemistry Chemical Physics

under high Na-intercalation density. Our results are consistent with experimental results on layered oxides [34], where CoO_2 has a high cell potential and MnO_2 is more stable than CoO_2 and NiO_2 . According to specific requirements, we can choose the particular oxide monolayer as electrode materials in metal-ion batteries.

286

287 Conclusion

DFT-based first-principles calculations are carried out to investigate the 288 289 electrochemical and structural properties of 2D transition-metal oxides monolayers 290 and their application Li-ion and Na-ion batteries. We find that metal ions (Li and Na) 291 prefer to occupy the hexagonal centers on 2D oxides monolayers. The diffusion 292 barriers can be as low as 0.15 eV for Li and ~ 0.12 eV for Na on MnO₂ monolayer, 293 indicating fast charging/discharging processes. We show that Li₂MO₂ and Na₂MO₂ are 294 stable, leading to high ion-storage capacities. Our calculations also show that CoO_2 295 has the highest cell voltage in a wide range of metal-ion density and MnO₂ has the 296 highest specific density. We also find that metal ions may migrate from stable 297 adsorption sites to metastable sites to reduce lattice expansion, leading to reduced cell 298 voltage. We further show that MnO_2 has less volume expansion (< 0.35 %) under high 299 Li-intercalation density, indicating stability in the Lithium-ion-intercalation/decalation 300 processes. Our results predict that oxide monolayer can be designed to satisfy the 301 particular requirements for practical applications in metal-ion batteries.

302 Acknowledgments

303	Hui Pan thanks the support of the Science and Technology Development Fund from
304	Macau SAR (FDCT-068/2014/A2, FDCT-132/2014/A3, and FDCT-110/2014/SB) and
305	Multi-Year Research Grant (MYRG2014-00159-FST and MYRG2015-00017-FST)
306	from Research & Development Office at University of Macau. The DFT calculations
307	were performed at High Performance Computing Cluster (HPCC) of Information and
308	Communication Technology Office (ICTO) at University of Macau.
308 309	Communication Technology Office (ICTO) at University of Macau.
	Communication Technology Office (ICTO) at University of Macau. Sut Kam Ho thanks support from the Science and Technology Development Fund of
309	

313 MYRG2015-00042-FST.

- 315 [1] Q. Tang and Z. Zhou, Prog. Mater. Sci., 2013, 58, 1244–1315.
- 316 [2] P. Roy and S. K. Srivastava, J. Mater. Chem. A, 2015, **3**, 2454–2484.
- 317 [3] X. Li and C. Wang, J. Mater. Chem. A, 2013, 1, 165–182.
- 318 [4] M. D. Bhatt and C. O'Dwyer, *Phys. Chem. Chem. Phys.*, 2015, 17, 4799–4844.
- 319 [5] http://www.epa.gov/oms/climate/documents/bat-pa-c-v2- beta.xlsx
- 320 [6] H. Pan, J. Phys. Chem. C, 2014, **118**, 9318–9323.
- 321 [7] H. Hu, L. Yu, X. Gao, Z. Lin and X. W. (David) Lou, *Energy Environ. Sci.*, 2015,
 322 8, 1480–1483.
- [8] T. Lan, J. Dou, F. Xie, P. Xiong and M. Wei, *J. Mater. Chem. A*, 2015, 3, 10038–
 10044.
- 325 [9] A. O. Pereira and C. R. Miranda, J. Phys. Chem. C, 2015, 119, 4302–4311.
- 326 [10] L. Zhang, H. B. Wu and X. W. D. Lou, *Adv. Energy Mater.*, 2013, 4, 1300958.
- 327 [11] Z. Sun, F. Lv, L. Cao, L. Liu, Y. Zhang and Z. Lu, *Angew. Chem.*, 2015, 127,
 328 8055–8059.
- 329 [12] D. Su, S. Dou and G. Wang, *Adv. Energy Mater.*, 2014, 5, 1401205.
- [13] J. Wu, D. Wang, H. Liu, W.-M. Lau and L.-M. Liu, *RSC Adv.*, 2015, 5, 21455–
 21463.

- [14] X.-Y. Yu, H. Hu, Y. Wang, H. Chen and X. W. D. Lou, *Angew. Chem.*, 2015, 127,
 7503–7506.
- 334 [15] Z.-K. Tang, Y.-N. Zhang, D.-Y. Zhang, W.-M. Lau and L.-M. Liu, Scientific
- 335 *Reports*, 2014, **4**, 7007.
- 336 [16] Y. Liu, M. Zhu and D. Chen, J. Mater. Chem. A, 2015, **3**, 11857–11862.
- 337 [17] H. Pan, J. Mater. Chem. A, 2015, **3**, 21486–21493.
- 338 [18] Q. Tang, Z. Zhou and P. Shen, J. American Chem. Soc., 2012, **134**, 16909–16916.
- 339 [19] Y. Jing, Z. Zhou, C. R. Cabrera and Z. Chen, J. Mater. Chem. A, 2014, 2, 12104.
- 340 [20] Y. Xie, M. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi, X. Yu, K.-W.
- Nam, X.-Q. Yang, A. I. Kolesnikov and P. R. C. Kent, J. American Chem. Soc, 2014,
- **136**, 6385–6394.
- 343 [21] J. Su, Y. Pei, Z. Yang and X. Wang, *RSC Adv.*, 2014, 4, 43183–43188.
- 344 [22] A. Kraytsberg and Y. Ein-Eli, *Adv. Energy Mater.*, 2012, **2**, 922–939.
- [23] D. Kim, J. R. Croy and M. M. Thackeray, *Electrochem. Commun.*, 2013, 36, 103–106.
- [24] W. K. Pang, S. Kalluri, V. K. Peterson, S. X. Dou and Z. Guo, *Phys. Chem. Chem. Phys.*, 2014, 16, 25377–25385.
- 349 [25] D. A. Tompsett and M. S. Islam, *Chem. Mater.*, 2013, **25**, 2515–2526.

- 350 [26] C. Cao, L. Xi, K. L. Leung, M. Wang, Y. Liu, R. Ma, S. Yang, Z. Lu and C. Y.
- 351 Chung, *RSC Adv.*, 2015, **5**, 30507–30513.
- 352 [27] L. Xi, C. Cao, R. Ma, Y. Wang, S. Yang, J. Deng, M. Gao, F. Lian, Z. Lu and C. Y.
- 353 Chung, Phys. Chem. Chem. Phys., 2013, 15, 16579.
- 354 [28] K. Iwaya, T. Ogawa, T. Minato, K. Miyoshi, J. Takeuchi, A. Kuwabara, H.
- Moriwake, Y. Kim and T. Hitosugi, *Phys. Rev. Lett.*, 2013, 111.
- 356 [29] M. S. Islam and C. A. J. Fisher, *Chem. Soc. Rev.*, 2014, **43**, 185–204.
- 357 [30] A. M. Abakumov, A. A. Tsirlin, I. Bakaimi, G. Van Tendeloo and A. Lappas,
- 358 *Chem. Mater.*, 2014, **26**, 3306–3315.
- 359 [31] M. Shirpour, J. Cabana and M. Doeff, *Energy Environ. Sci.*, 2013, **6**, 2538.
- [32] K. Mukai, Y. Kishida, H. Nozaki and K. Dohmae, *Chem. Mater.*, 2013, 25, 2828–
 2837.
- [33] H. Ben Yahia, M. Shikano and H. Kobayashi, *Chem. Mater.*, 2013, 25, 3687–
 363 3701.
- 364 [34] M. S. Whittingham, Chem. Rev. 2004, 104, 4271-4301.
- [35] N. V. Podberezskaya, S. A. Magaril, N. V. Pervukhina and S. V. Borisov, *J. Struc. Chem.*, 2011, 42, 654–681.
- 367 [36] C. Ataca, H. Şahin and S. Ciraci, J. Phys. Chem. C, 2012, 116, 8983–8999.

- 368 [37] K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R. A. Dilanian and T.
- 369 Sasaki, Nature, 2003, **422**, 53-55.
- 370 [38] P. Hohenberg and W. Kohn, *Phys. Rev.*, 1964, **136**, B864–B871.
- 371 [39] P. E. Blöchl, *Phys. Rev. B*, 1994, **50**, 17953–17979.
- 372 [40] G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169–11186.
- 373 [41] J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865–3868.
- 374 [42] G. Kresse and D. Joubert, *Phys. Rev. B*, 1999, **59**, 1758–1775.
- 375 [43] W. Lin, H. Spalt and B. W. Batterman, *Phys. Rev. B*, 1976, **13**, 5158–5169.
- 376 [44] D. Wang, L. M. Liu, S. J. Zhao, B. H. Li, H. Liu and X. F. Lang, Phys. Chem.
- 377 Chem. Phys., 2013, 15, 9075-9083
- 378 [45] S. Deng, L. Wang, Y. Li, J. Phys Chems C, 2015, 119, 28783-28788
- 379 [46] G. Ramos-Sanchez, A. Callejas-Tovar, L.G. Scanlon and P. B. Balbuena, *Phys.*
- 380 Chem. Chem. Phys., 2014, 16, 743

- Table I. Calcualted lattice constant of the unit cells of CoO₂, MnO₂ and NiO₂ and their
- thicknesses (O-O distance in vertial direction, D), M-O bond length (D_{M-O}), and
- 384 specific capacity at highest ino-inercalation density.

	<i>a</i> (Å)	D (Å)	D_{M-O} (Å)	Specific Capacity (mAhg ⁻¹)
MnO ₂	2.887	1.900	1.920	617
CoO ₂	2.819	1.898	1.876	560
NiO ₂	2.823	1.867	1.883	591

Table II. Calculated adsorption energy, Li-O and Na-O distances, and diffusion barrier

in these oxides $3 \times 3 \times 1$ supercells.

	$E_{ad_Li}(eV)$	Li – O distance (Å)	Li diffusion barrier (eV)	$E_{ad_Na}(eV)$	Na – O distance (Å)	Na diffusion barrier (eV)
MnO_2	-2.54	1.978	0.156	-2.38	2.325	0.121
CoO ₂	-3.60	1.949	0.180	-3.40	2.295	0.122
NiO ₂	-2.71	1.969	0.186	-2.56	2.310	0.129

387 Table III. Calculated lattice constant (a), layer thickness (O-O distance in vertical

direction, D), and M-O (D_{M-O}), Li-O (D_{Li-O}) and Na-O (D_{Na-O}) distances in systems

389 with highest ion-intercalation density, and the energy difference of systems with

390 Li/Na at two different adsorption sites (HC and TM). HC: hexagonal center; TM: Top

391 of metal.

	<i>a</i> (Å)		D (Å)		D_{M-O} (Å)		$D_{Li-O} or D_{Na-O} (\text{\AA})$		E_{HC} - E_{TM}
	НС	ТМ	HC	TM	НС	TM	НС	ТМ	(eV/unit)
Li ₂ MnO ₂	2.897	2.803	2.322	2.378	2.037	2.011	1.920	1.980	-0.327
Na ₂ MnO ₂	3.215	3.102	2.215	2.202	2.160	2.100	2.280	2.426	-0.284
Li ₂ CoO ₂	3.026	2.881	2.593	2.676	2.163	2.136	1.853	1.887	-0.721
Na ₂ CoO ₂	3.019	2.964	1.946	1.993	1.996	1.981	2.305	2.389	-0.288
Li ₂ NiO ₂	3.072	2.932	2.407	2.599	2.142	2.132	1.870	1.898	-0.943
Na ₂ NiO ₂	3.191	3.045	2.062	2.129	2.112	2.055	2.214	2.382	-0.471

- 393 Table IV. The lattice constant (a), layer thickness (O-O distance in vertical direction,
- D, M-O distance (D_{M-O}) and intercalation energy of oxide monolayer unit cells with

	a (Å)	D (Å)	D _{M-O} (Å)	$E_{int} (eV)$
LiMnO ₂	2.880	2.176	1.898	-1.114
NaMnO ₂	2.935	1.998	1.921	-0.327
LiCoO ₂	2.886	2.123	2.069	-2.039
NaCoO ₂	2.924	1.900	1.894	-0.940
LiNiO ₂	2.969	2.109	1.909	-1.899
NaNiO ₂	2.983	1.933	1.927	-0.721

395 one Li/Na at HC adsorption sites.

- Table V. Calculated cell voltages (V) of these oxides monolayers with metal ions at
- different adsorption sites (HC and TM) in unit cells.

	Cell Voltage (V)		
	HC	TM	
LiMnO ₂	1.114	0.911	
Li_2MnO_2	0.978	0.814	
NaMnO ₂	0.327	0.226	
Na ₂ MnO ₂	0.479	0.337	
LiCoO ₂	2.039	1.817	
Li ₂ CoO ₂	1.923	1.563	
NaCoO ₂	0.940	0.818	
Na ₂ CoO ₂	0.880	0.736	
LiNiO ₂	1.899	1.552	
Li ₂ NiO ₂	2.199	1.728	
NaNiO ₂	0.721	0.488	
Na ₂ NiO ₂	1.020	0.784	

- 399 Figure caption:
- 400 Figure 1, Schematic structure of MO₂ (M= Co, Mn, and Ni): (a) top and (b) side views.
- 401 The yellow circles indicate possible adsorption sites for Li and Na in supercell.
- 402 Figure 2, Calculated adsorption energies for metal ions (Li and Na) at different
- 403 positions on the monolayers: (a) MnO_2 , (b) CoO_2 , and (c) NiO_2 .
- 404 Figure 3, The metal ion diffusion path between two stable adsorption sites via a
- 405 metastable site. The yellow circles and numbers show intermediate steps.
- 406 Figure 4, Calculated (a) Li and (b) Na diffusion barriers on the surfaces of: MnO₂,
- 407 CoO_2 , and NiO_2 .
- Figure 5, Calculated intercalation energies for (a) Li_xMO_2 and (b) Na_xMO_2 (M=Co,
- 409 Mn, and Ni) as a function of ion density (x).
- 410 Figure 6, Calculated specific energies for (a) Li_xMO_2 and (b) Na_xMO_2 (M= Co, Mn,
- 411 and Ni) as a function of ion density (x).
- 412 Figure 7, Calculated cell voltage for (a) Li_xMO₂ and b) Na_xMO₂ (M= Co, Mn, and Ni)
- 413 as a function of ion density (x).

Figure 2

Figure 4

427

