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Abstract 
The macroscopic physical properties of a liquid crystalline material depend on both the 

properties of the individual crystallites and the details of their spatial arrangement. We 
propose a diffusion MRI method to estimate the director orientations of a lyotropic liquid 
crystal as a spatially resolved field of Saupe order tensors. The method relies on varying the 
shape of the diffusion-encoding tensor to disentangle the effects of voxel-scale director 
orientational order and the local diffusion anisotropy of the solvent. Proof-of-concept 
experiments are performed on water in lamellar and reverse hexagonal liquid crystalline 
systems with intricate patterns of director orientations.  
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Introduction 
Anisotropic assemblies of amphiphilic molecules in aqueous media occur in a wide range 

of materials: from lyotropic liquid crystals1-3 to brain tissue.4 Locally, the amphiphiles have a 
preferred orientation with respect to a unit vector known as the director,5 and a liquid 
crystalline domain can be defined as a region of space in which the director has a constant 
orientation. Material properties, such as optical birefringence, electrical conductivity, and 
molecular diffusivity, are determined by the local properties within a single domain as well as 
the spatial pattern of director orientations, the latter being possible to influence by 
temperature cycling, shear, magnetic fields, or the presence of solid surfaces.6-27 For technical 
applications of liquid crystals in drug delivery28,29 or templating of inorganic materials,30,31 it 
is desirable to control the domain sizes and orientations. 

The orientational order of an ensemble of unit vectors is often expressed as the Saupe 
order tensor S with elements Sij defined by5,32-34 

S
ij

=
1

2
3l

i
l

j
− k

ij
, (1) 

where i,j ∈ {x,y,z}, 〈·〉 denotes an ensemble average, kij is the Kronecker delta, and li are the 
directional cosines of the vectors in the lab frame xyz. The order tensor contains five 
independent elements and is often parameterized with the principal order parameter SZZ, the 
asymmetry parameter η, and three Euler angles describing the orientation of the principal 
axis system XYZ with respect to the lab frame. In the Landau-de Gennes theory of nematic 
liquid crystals,5,34 and its extension to lyotropic nematic liquid crystals,35,36 the free energy 
density at the position r is determined by the local order tensor S(r). Hence, the results of 
mean-field calculations of the structure of liquid crystals are often visualized as spatially 
resolved fields of order tensors.37-39 An experimental method capable of mapping such tensor 
fields would enable critical testing of the results of theoretical calculations and allow for 
detailed characterization of liquid crystals for technical applications. 

The structure of a lyotropic liquid crystal is imprinted in the orientational order and 
translational diffusion of the water located in the nanometer-scale gaps between the 
amphiphile aggregates. The orientational order of the water can be detected with 2H nuclear 
magnetic resonance (NMR) spectroscopy as a quadrupolar splitting of the 2H2O resonance 
line,40-42 while the structural anisotropy of the liquid crystal gives rise to a directional 
dependence of the water self-diffusion coefficient as observed with diffusion NMR13,43-48 and 
magnetic resonance imaging (MRI).24,27,49,50 Despite the fact that these NMR and MRI 
methods have been extensively used for investigating macroscopic domain alignment in 
liquid crystals,8,9,14,15,18,19,21,23,24,26,27,40,44,49-55 there are so far no reported studies where the full 
order tensor has been mapped with spatial resolution. In principle, such tensor maps could be 
obtained by acquiring spatially resolved 2H spectra24,27,55-57 for multiple orientations of the 
main magnetic field.58 Unfortunately, such an experimental approach would require 
combinations of NMR hardware that are exceedingly rare. 

Here, we introduce a diffusion MRI method for mapping director order tensors in 
lyotropic liquid crystals. The new method builds on conventional diffusion tensor imaging 
(DTI),59 which yields the average diffusion tensor 〈D〉 for each spatially resolved volume 
element, “voxel”, of the image, and our recent method for quantifying the microscopic 
diffusion tensor D within a single liquid crystalline domain of a polydomain sample.60 The 
latter method relies on an acquisition protocol wherein not only the magnitude and direction 
of the diffusion-encoding is varied, as in conventional DTI, but also the shape of the 
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axisymmetric diffusion-encoding tensor b.60-64 In the theory section, we present a detailed 
derivation of the relation between the tensors 〈D〉, D, and S, parts of which have previously 
appeared in the literature,27,50,65-69 and describe how order tensor fields can be calculated from 
independently measured maps of 〈D〉 and D. We demonstrate the new method by proof-of-
principle experiments on lamellar and reverse hexagonal lyotropic liquid crystals with a 
range of director orientation distributions. The experiments are carried out with a slightly 
modified version of the diffusion MRI pulse sequence introduced by Lasič et al.50 and 
subsequently used for human in vivo studies in a series of recent publications.62,64,69 We also 
elaborate on the procedure for generating axisymmetric diffusion-encoding with smoothly 
modulated waveforms for the time-dependent magnetic field gradients.70 

Theoretical considerations 

The theory section includes derivations of the expressions for estimating the tensors 〈D〉, 
D, and S from experimental data, as well as a summary of the principles of axisymmetric 
diffusion-encoding as recently introduced by Eriksson et al.60 Readers mainly interested in 
the experimental demonstration of the new approach may wish to go directly to the Results 
and Discussion section, and simply note that the key equations for data evaluation can be 
found in Eqs. (12), (19), and (29). 

Diffusion and order tensors 
In its principal axis system (PAS), a microscopic diffusion tensor D can be written as 

D
PAS =

DXX 0 0

0 DYY 0

0 0 DZZ
















  (2) 

with the eigenvalues ordered as (DZZ – Diso) ≥ (DXX – Diso) ≥ (DYY – Diso), where Diso is the 
isotropic average of the eigenvalues: 

Diso =
1

3
DXX + DYY + DZZ( ) . (3) 

Defining the diffusion tensor anisotropy D∆ and asymmetry Dη as44,60,67 

D∆ =
1

3Diso

DZZ −
DYY + DXX

2









  and

Dη =
DYY − DXX

2DisoD∆

,

  (4) 

Eq. (2) can be rewritten as 

D
PAS = Diso

1 0 0
0 1 0
0 0 1
















+ D∆

−1 0 0
0 −1 0
0 0 2
















+ Dη

−1 0 0
0 1 0
0 0 0

















































, (5) 

which is reduced to 
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D
PAS = Diso I+ 2D∆

−1 2 0 0

0 −1 2 0

0 0 1



































  (6) 

if the diffusion tensor is axisymmetric (Dη = 0). In Eq. (6), I is the identity matrix. While Diso 
corresponds to the “size” of the tensor, the value of D∆ reports on its “shape”, covering the 
range from –1/2 (planar) to 0 (spherical) and +1 (linear).60 

If the eigenframe XYZ of the axisymmetric tensor DPAS is initially aligned with the lab 
frame xyz, rotation through the polar and azimuthal angles θ and φ yields a lab-frame tensor 
D given by 

D = Diso I+ 2D∆ ⋅
1

2

3cos2 φ sin2 θ −1 3sinφ cosφ sin2 θ 3cosφ sinθ cosθ

3sinφ cosφ sin2 θ 3sin2 φ sin2 θ −1 3sinφ sinθ cosθ

3cosφ sinθ cosθ 3sinφ sinθ cosθ 3cos2 θ −1





































. (7) 

Replacing the trigonometric expressions in Eq. (7) with the directional cosines 

lx = cosφ sinθ
ly = sinφ sinθ

lz = cosθ

  (8) 

gives 

D = Diso I+ 2D∆ ⋅
1

2

3lx

2 −1 3lxly 3lxlz

3lxly 3ly

2 −1 3lylz

3lxlz 3lylz 3lz

2 −1





































. (9) 

The terms with directional cosines can be recognized from the definition of the Saupe order 
tensor S in Eq. (1), which in matrix form can be written as 

S =
1

2

3lx

2 −1 3lxly 3lxlz

3lxly 3ly

2 −1 3lylz

3lxlz 3lylz 3lz

2 −1





















. (10) 

The principal order parameter SZZ is defined as the eigenvalue of S with the largest 
magnitude.33 The values of SZZ cover the range from –1/2 to +1. Perfect alignment in a single 
direction corresponds to SZZ = 1, while random orientations in a plane perpendicular to the 
director gives SZZ = –1/2. The value SZZ = 0 indicates completely random orientations in 3D 
space, but could also result from other, more exotic, orientation distributions, e.g., three 
orthogonal directions with equal probability or random orientations on a cone with aperture 
109.4º. 
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Assuming that there is no molecular exchange between the domains on the 10-100 ms 
time-scale defined by the diffusion NMR experiment, then 〈D〉 is simply the population-
weighted average of the domain tensors D.65 For an ensemble of tensors with the same size 
Diso and shape D∆, but different orientations (θ,φ), application of ensemble averaging to both 
sides of Eq. (9) yields 

D = D
iso

I+ 2D∆S( ) , (11) 

where 〈D〉 is the ensemble-average or “voxel-average” diffusion tensor as measured with 
standard DTI.59 Quantitative estimates of Diso and D∆ can be obtained with the method of 
axisymmetric diffusion-encoding introduced by Eriksson et al.60 and described below. Once 
〈D〉, Diso and D∆ have been determined, S can be calculated through element-by-element 
inversion of Eq. (11): 

Sij =
1

2D∆

⋅
Dij

Diso

− kij









. (12) 

From Eq. (11) follows that the anisotropy λ∆ of the average tensor 〈D〉 is given by67 

λ∆ = SZZ D∆. (13) 

Maximal macroscopic anisotropy (λ∆ = 1) requires that both the microscopic anisotropy D∆ 
and the principal order parameter SZZ equal 1. Conversely, a planar macroscopic tensor 
(λ∆ = –1/2) could result from either perfect alignment of planar microscopic tensors (SZZ = 1, 
D∆ = –1/2) or negative uniaxial alignment of linear microscopic tensors (SZZ = –1/2, D∆ = 1). 

Diffusion tensors are often visualized as ellipsoid59 or superquadric71 tensor glyphs, where 
the lengths and directions of the three semi-axes are given by the corresponding tensor 
eigenvalues and eigenvectors. According to the definition in Eq. (1), the tensor S is traceless 
and has both positive and negative eigenvalues, which cannot directly be represented as the 
conventional tensor glyphs. Various approaches for manipulating the order tensor to facilitate 
visualization can be found in the literature.37-39 Here, we define a shifted and rescaled order 
tensor S′ through 

′S =
1

3
I+ 2S( ) . (14) 

The eigenvalues of the symmetric and unit-trace tensor S′ are all positive, covering the range 
from 0 to 1, and the eigenvectors coincide with the ones for 〈D〉. Consequently, the S′ and 〈D〉 
tensor fields can be visualized using the same kind of glyphs or color-code. 

NMR diffusion-encoding 

The NMR signal is encoded with information about translational motion by applying a 
time-dependent magnetic field gradient G(t) in the time interval 0 ≤ t ≤ τ. The diffusion-
encoding tensor b is given by72,73 

b = q t( )qT t( )dt
0

τ

∫ , (15) 

where 
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q t( ) = γ G ′t( )d ′t
0

t

∫   (16) 

is the time-dependent dephasing vector and γ is the magnetogyric ratio of the studied nucleus. 
The gradient waveform G(t) obeys the “echo condition” q(τ) = 0. 

For a sample or volume element comprising an ensemble of microscopic diffusion tensors 
D, the NMR signal I(b) can be written as72,73 

I b( ) = I0 exp −b :D( )   (17) 

where I0 is the signal when b = 0 and b:D is a generalized scalar product defined as 

b :D = bijDij

j

∑
i

∑ . (18) 

In the limit b → 0, Eq. (19) can be approximated as64 

I b( ) = I0 exp −b : D( ) , (19) 

where 〈D〉 is the ensemble-average diffusion tensor. Eq. (19) corresponds to the conventional 
equation for evaluating DTI data.72,73 

Parameterization of the b-tensor 

In analogy with the description of the diffusion tensor above, the b-tensor can in its 
principal axis system be expressed as 

bPAS =

bXX 0 0

0 bYY 0

0 0 bZZ
















, (20) 

where the eigenvalues are ordered according to the convention (bZZ – b/3) ≥ (bXX –
 b/3) ≥ (bYY – b/3), and b is the trace of the b-tensor: 

b = bXX + bYY + bZZ
. (21) 

The b-tensor anisotropy b∆ and asymmetry bη are given by60 

b∆ =
1

b
bZZ −

bYY + bXX

2









  and

bη =
3

2
⋅
bYY − bXX

bb∆

.
  (22) 

With the parameterization in Eqs. (21) and (22), Eq. (20) can be recast into 

b
PAS =

b

3

1 0 0
0 1 0
0 0 1
















+ b∆

−1 0 0
0 −1 0
0 0 2
















+ bη

−1 0 0
0 1 0
0 0 0

















































. (23) 
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Axisymmetric diffusion-encoding corresponds to bη = 0, and a simplified expression for the 
b-tensor can be written as 

bPAS =
b

3
I+ 2b∆

−1 2 0 0

0 −1 2 0

0 0 1



































. (24) 

For an axisymmetric b-tensor initially aligned with the lab frame, rotation through the polar 
and azimuthal angles Θ and Φ gives the lab-frame b-tensor: 

b =
b

3
I+ b∆

3cos2 Φsin2 Θ−1 3sinΦcosΦsin2 Θ 3cosΦsinΘcosΘ

3sinΦcosΦsin2 Θ 3sin2 Φsin2 Θ −1 3sinΦsinΘcosΘ

3cosΦsinΘcosΘ 3sinΦsinΘcosΘ 3cos2 Θ −1



































. (25) 

Powder-averaged signal 

Inserting the expressions for the axisymmetric tensors b and D in Eqs. (7) and (25), 
respectively, into Eq. (18) yields 

b :D = bDiso 1+ 2b∆D∆P2 cosβ( ) , (26) 

where 

cosβ = cosΘcosθ + sinΘsinθ cos Φ −φ( ) , (27) 

and P2(x) = (3x
2 – 1)/2 is the 2nd Legendre polynomial. For samples comprising randomly 

oriented microscopic domains, or when powder-averaged signal acquisition is applied,50 the 
probability distribution P(β) of the angle β is given by 

P β( ) =
1

2
sinβ   (28) 

in the interval 0 ≤ β ≤ 180°. Using Eqs. (26) and (28) when evaluating the ensemble average 
in Eq. (17) yields60 

I b, b∆( ) = I0 exp −bDiso( ) ⋅
π
2

exp bDisob∆D∆( )erf 3bDisob∆D∆( )
3bDisob∆D∆

. (29) 

where erf(x) is the error function. Eq. (29) can be used to extract values of Diso and D∆ by 
analyzing the powder-averaged signal I(b,b∆) acquired as a function of b and b∆.60 

Gradient waveforms for axisymmetric diffusion-encoding 

An axially symmetric b-tensor can be obtained by selecting a q-vector trajectory 
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q t( ) =

qX t( )
qY t( )
qZ t( )



















= q t( )

cos ψ t( ) sin ζ( )
sin ψ t( ) sin ζ( )

cos ζ( )





















, (30) 

where the q-vector magnitude q(t) and azimuthal angle ψ(t) satisfy the relation70,74 

ψ t( ) =
2π
b

q t( )2
dt

0

t

∫ , (31) 

and the polar angle ζ is constant. In Eq. (31), b is the trace of the b-tensor, which can be 
calculated with Eqs. (15) and (20), or, alternatively, directly from q(t) using75 

b = q t( )2
dt

0

τ

∫ . (32) 

The angle ζ determines the b-tensor anisotropy b∆ according to60 

b∆ = P
2

cosζ( ) , (33) 

where P2(x) is the 2nd Legendre polynomial as defined below Eq. (27). The gradient G(t) is 
given by the derivative 

G t( ) =
1

γ
⋅

d

dt
q t( ) . (34) 

Explicit gradient waveforms obeying the constraints above can be constructed by selecting 
an axial waveform GA(t) from a standard pulsed gradient spin echo experiment with, e.g., 
rectangular, ramped, sinusoidal, Gaussian, or exponential gradient pulse shapes.76,77 The 
chosen waveform then gives q(t) from 

q t( ) = γ GA ′t( )d ′t
0

t

∫   (35) 

and b and ψ(t) with Eqs. (32) and (31), respectively. Inserting q(t) and ψ(t) into Eqs. (30) and 
(34) yields 

G t( ) =

GX t( )
GY t( )
GZ t( )



















=

Re GR t( ) sin ζ( )
Im GR t( ) sin ζ( )

GA t( )cos ζ( )





















, (36) 

where GR(t) is the complex radial gradient waveform: 

GR t( ) = GA t( ) +
2πq t( )3

γb
i












exp iψ t( ) . (37) 
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As shown in Fig. 1(a), axisymmetric diffusion-encoding can be implemented in a 
diffusion MRI pulse sequence by replacing the conventional rectangular or ramped gradient 
pulses with the waveform G(t).50,62,64,69 The procedure for transforming an axial waveform 
GA(t) and a value of ζ to G(t) is summarized in Fig. 1(b). First, GA(t) is converted to q(t), b, 
and ψ(t) using Eqs. (35), (32), and (31), respectively. Subsequently, these functions and 
values give the radial waveform GR(t) via Eq. (37). Finally, G(t) is obtained by combining 
GA(t) and GR(t) with amplitude scaling given by the angle ζ as described in Eq. (36). Under 
the condition that the XYZ PAS of the gradients is initially aligned with the xyz lab frame, 
rotation of G(t) through the angles (Θ,Φ) yields b-tensor elements according to Eq. (25) with 
b and b∆ being given by GA(t) and ζ via Eqs. (35), (32), and (33). 

Experimental 

Sample preparation 

The nonionic surfactant penta(ethylene glycol) monotetradecyl ether (C14E5) forms a 
lamellar phase (Lα) in water over a wide range of concentrations and temperatures.25 The 
planar geometry of the water compartments in the Lα phase gives rise to a correspondingly 
planar shape of the microscopic diffusion tensor and a value of D∆ approaching –1/2.60 The 
phase diagram of sodium 1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate (AOT)/2,2,4-
trimethylpentane (isooctane)/water is dominated by a reverse hexagonal phase (HII) at 25 ºC.2 
The nearly linear shape of the water compartments in the HII phase is mirrored in the linear 
shape of the microscopic diffusion tensors and values of D∆ near +1.60,63 

The liquid crystals were made with water containing 90 wt% 1H2O (Milli-Q quality) and 
10 wt% 2H2O (99.8 mol% 2H, Armar Chemicals, Switzerland) in order to allow for NMR 
observation of both 1H and 2H nuclei. All other chemicals were of analytical grade and 
purchased from Sigma-Aldrich, Sweden. The samples were prepared by weighing 
appropriate amounts of the ingredients into 10 ml vials, which were sealed by screw caps and 
centrifuged until the mixtures turned homogeneous. Subsequently, 0.5 ml was transferred to 5 
mm disposable NMR tubes, which were flame sealed and subjected to further centrifugation 
to remove air bubbles. One C14E5 sample (61.2 wt% surfactant) underwent temperature 
cycling within the field of the NMR magnet as described by Bernin et al.27 in order to 
produce an Lα phase with lamellar directors aligned with the surface normals of the tube 
walls, while another C14E5 sample (59.7 wt% surfactant) was not exposed to any further 
treatment after centrifugation of the NMR tube. These two samples will be referred to as 
“oriented Lα“ and “random Lα“, respectively. NMR experiments on the C14E5 samples were 

performed at 50±1 ºC. The AOT/isooctane/water samples were melted to reverse micellar 
phases at 50 ºC, and subsequently cooled down at different rates to produce varying degrees 
of domain alignment.1,78 One sample (38 wt% AOT, 14 wt% isooctane) was slowly cooled to 
20 ºC over 12 h, giving domains preferentially aligned perpendicular to the surface normals 
of the tube walls. The sample was further equilibrated at 20 ºC for 12 months before the 
NMR experiments. A second sample (44 wt% AOT, 17 wt% isooctane) was cooled to 15 ºC 
in less than 1 min, giving nearly randomly oriented domains, and was immediately 
investigated with NMR. These samples will be referred to as “oriented HII“ and “random HII“, 
respectively. The HII samples were studied with NMR at 20±1 ºC. 
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NMR experiments 

NMR experiments were carried out on a Bruker Avance II 500 spectrometer (Bruker, 
Karlsruhe, Germany) operating at 500.13 MHz 1H resonance frequency. The 11.7 T magnet 
was equipped with a MIC-5 probe capable of delivering 3 T/m magnetic field gradients in 
three orthogonal directions. The sample temperature was controlled with a stream of air using 
a BVT 2000 unit. Diffusion MRI experiments were performed with Topspin 2.1 using the 
pulse sequence in Fig. 1(a), which is based on the sequence introduced by Lasič et al.50 The 
images were read out with a rapid acquisition with relaxation enhancement (RARE) block,79 
giving 4.8 × 4.8 mm field-of-view (x × y), 128 × 32 acquisition matrix size, 5 mm slice 
thickness (z), and 65 ms duration of the echo train. The relation between the imaging slice 
and the NMR tube is shown in Fig. 2. The RARE block was preceded by a spin-echo 
diffusion-encoding block with 35 ms duration. Identical gradient waveforms G(t) of duration 
τ = 15.9 ms and maximum gradient amplitude of approximately 1.2 T/m were located on 
each side of the 180º pulse. A shaped gradient pulse with 1.59 ms quarter-sine ramp-up and 
2.39 ms half-cosine ramp-down was used to define an axial waveform GA(t), which was 
converted to the radial waveform GR(t) and G(t) as described with the scheme in Fig. 1(b). 
The diffusion-encoding tensor b was sampled for a grid of four magnitudes b (geometric 
spacing from 26 to 8610⋅106 sm–2), four anisotropies b∆ (linear spacing from –0.5 to 1), and 

31 directions (Θ,Φ) chosen according to the electrostatic repulsion scheme,80 giving in total 
496 images. The values of b∆ and b were varied by changing the angle ζ and scaling the 
amplitudes of the waveforms GA(t) and GR(t) at constant timing parameters. Each image was 
acquired as the sum of two transients at 3 s recycle delay, resulting in 52 min of total 
experiment time. 

Data analysis 

All data processing was performed with in-house code written in Matlab (MathWorks, 
Natick, MA). The images were reconstructed at 128 × 128 matrix size, giving 
37.5 µm × 37.5 µm nominal spatial resolution, and subjected to 0.15 mm Gaussian 
smoothing. For each voxel, the average diffusion tensor 〈D〉 was evaluated by non-linear 
fitting of Eq. (19) to the acquired signal intensities I(b),72,73 using the initial intensity I0 and 
the three eigenvalues and Euler angles of 〈D〉 as adjustable parameters. Equations for 
evaluating the tensor elements 〈Dij〉 from the eigenvalues and Euler angles can be found in, 
e.g., the tutorial by Kingsley,81 while Eq. (25) gives the relations between the b tensor 
elements and its parameterization as b, b∆, Θ, and Φ. The sizes and shapes of the microscopic 
diffusion tensors D were estimated on a voxel-by-voxel basis by averaging the I(b) data over 
the 31 acquisition directions,50 leaving a reduced set of 4 × 4 data points I(b,b∆), and fitting 
Eq. (29) to the data using I0, Diso, and D∆ as adjustable parameters.60 Subsequently, the 

elements of the Saupe order tensor S were evaluated by inserting the values of 〈Dij〉, Diso, and 
D∆ into Eq. (12). The fit results were downsampled to 16 × 16 matrix size, corresponding to 

0.3 mm × 0.3 mm spatial resolution, when displaying the results as superquadric tensor 
glyphs,71 while the 128 × 128 matrix size was used for generating color-coded parameter 
maps. 
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Results and discussion 

Experimental tensors 〈D〉, D, and S′ are shown in Fig. 3 for all samples. The oriented Lα 

sample features oblate (λ∆ < 0) tensors 〈D〉 with minor axes in parallel with the normal 

vectors of the tube wall. The nearly planar shape (λ∆ = –1/2) is consistent with the underlying 
lamellar geometry of the liquid crystal, but could according to Eq. (13) in principle result 
from an ensemble of linear microscopic diffusion tensors (D∆ = 1) randomly oriented within 
a single plane (SZZ = –1/2). All experimental D are oblate with values of the D∆ around –0.49, 
proving that the liquid crystal is of the lamellar type throughout the sample. Using the 
knowledge of the size and shape of D, information about the director orientations can be 
disentangled from 〈D〉 using Eq. (12). For nearly all voxels of the oriented Lα sample, the 

order tensors S′ are linear (SZZ ≈ 1), indicating a single preferred director orientation within 
each voxel, and oriented radially with respect to the tube axis. A few exceptions occur in the 
very center of the tube, where the planar shapes of the S′ tensors show that the voxels contain 
a distribution of director orientations within the xy-plane. 

The 〈D〉 tensors for the random Lα sample have shapes ranging from oblate (λ∆ < 0) to 

prolate (λ∆ > 0). Since all D tensors are identical also in this case, the varying shapes of 〈D〉 
result from the voxel-scale orientation distributions rather than from any differences in the 
microscopic geometries of the liquid crystal. The resulting S′ tensors cover a range of shapes, 
but they are all mainly located within the xy-plane, indicating that the directors in the 
“random” Lα sample tend to avoid the z-direction just as for the oriented Lα sample, albeit 
with a less distinct radial pattern. 

The oriented HII sample yields mainly prolate 〈D〉 tensors in a pattern forming nearly 
concentric circles in the image plane, while the random HII sample features 〈D〉 tensors 
covering a range of shapes from oblate to spherical. The corresponding D tensors all have 
prolate shapes and values of D∆ around 0.9, leading to similar shapes and identical semi-axis 

orientations of the 〈D〉 and S′ tensors. The concentric pattern of 〈D〉 tensor orientations for the 
oriented HII sample thus directly corresponds to the pattern of director orientations. The 
nearly spherical 〈D〉 and S′ tensors in the interior of the random HII sample verify that the 
directors to a reasonable approximation are randomly oriented, while the more oblate tensors 
close to the glass surface indicate that director orientations in parallel with the surface normal 
vectors are less favorable. 

In order to more clearly visualize the shapes and orientations of the S′ tensors 
throughout the entire image plane, color-coded maps were generated as shown and explained 
in Fig. 4. The oriented Lα sample has perfect radial director orientations throughout the 
sample (red and green colors at surfaces with normal vectors along x and y, respectively). The 
pattern with director orientations in concentric circles (green and red at normal vectors along 
x and y, respectively) is well developed for most parts of the oriented HII sample, but 
somewhat less distinct in the third quadrant of the image where the bluish tint hints at 
directors aligned with the tube axis. Both “random” samples feature irregular patterns and 
color variations on multiple length scales. Also for these samples the director orientations are 
clearly affected by the presence of the tube walls: the random Lα sample shows a rim of 
radially oriented directors, while the directors avoid the radial orientation in the random HII 
sample as evidenced by the dominance of turquoise and purple colors close to surfaces with 
normal vectors in the x- and y-directions, respectively. 
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Conclusions 
We have shown that information from standard diffusion tensor imaging and our recent 

method for measuring the size and shape of microscopic diffusion tensors can be combined to 
generate fields of Saupe order tensors, thereby enabling quantification of liquid crystal 
director orientations at an unprecedented level of detail. By defining a shifted and rescaled 
order tensor, the spatial pattern of director orientations were visualized as arrays of tensor 
glyphs and color-coded maps. In addition to detailed multi-scale characterization of liquid 
crystalline materials, we believe that our approach can be adapted to in vivo studies of cell 
shapes and orientations in normal and pathological tissues by minor modifications of the 
pulse sequence used by Szczepankiewicz et al.69 
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Figures 

 
Fig. 1 Axisymmetric diffusion-encoding in diffusion MRI. (a) Pulse sequence with a spin 
echo (90º and 180º RF pulses) preceding RARE image read-out. Identical diffusion-encoding 
gradient waveforms G(t) with duration τ bracket the 180º pulse. The Cartesian components 
Gx, Gy, and Gz are shown in red, green, and blue, respectively. (b) Flow-scheme for 
generating G(t). The panels show the axial and radial waveforms GA(t) and GR(t), and the 
magnitude q(t) and azimuthal angle ψ(t) of the dephasing vector q(t). The real and imaginary 
parts of GR(t) are colored red and green, respectively. The magnitude b and anisotropy b∆ of 

the b-tensor are given by GA(t) and the q-vector inclination ζ via Eqs. (32), (33), and (35). 
Rotation of G(t) through the polar and azimuthal angles Θ and Φ results in the corresponding 
rotation of the b-tensor. 

 
Fig. 2 Schematic geometry for the MRI experiments on samples with 0.5 ml liquid crystal in 
an NMR tube with 5 mm outer diameter. The coils for generating the magnetic field gradients 
define the xyz lab frame. The gray box indicates the 5 mm thick slice excited in the MRI 
experiments. The magnified black square shows the 4.8 × 4.8 mm field-of-view of the image 
plane, while the gray circle delineates the outer surface of the liquid crystal within this plane. 
The tensor glyphs represent voxel-average diffusion tensors 〈D〉 for the oriented Lα sample 

obtained at 0.3 mm × 0.3 mm resolution in the xy-plane. 
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Fig. 3 Experimental results for the oriented Lα (row 1), random Lα (row 2), oriented HII (row 
3), and random HII (row 4) samples displayed as superquadric tensor glyphs representing the 
voxel-average diffusion tensor 〈D〉 (column 1), microscopic diffusion tensor D (column 2), 
and order tensor S′ (column 3) at a spatial resolution of 0.3 mm × 0.3 mm in the xy-plane. 
The figures show an oblique view of a section of the image plane illustrated in Fig. 2. The 
experiment for determining D is designed to be insensitive to tensor orientation, and, for 
simplicity, all these tensors are shown with the cylindrical symmetry axis along the z-
direction. 

 
Fig. 4 Maps of the order tensor S′ with color-coding according to [R,G,B] = [S′xx,S′yy,S′zz]/S′33, 
where S′33 is the largest eigenvalue of S′. Linear tensors give red, green, and blue colors when 
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they are oriented in, respectively, the x-, y-, and, z-directions. The colors of planar tensors are 
obtained by additive color mixing: yellow (red+green) for tensors spanning the xy-plane, 
purple (red+blue) for the xz-plane, and turquoise (green+blue) for the yz-plane. White 
(red+green+blue) corresponds to spherical tensors. The field-of-view is 4.8 mm × 4.8 mm in 
the xy-plane.   
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