PCCP

Accepted Manuscript

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Isodesmic reaction for accurate theoretical $\mathrm{p} K_{\mathrm{a}}$ calculations of amino acids and peptides

S. Sastre, ${ }^{\text {a }}$ R. Casasnovas, ${ }^{\text {b }}$ F. Muñoz, ${ }^{\text {a,c }}$ and J. Frau ${ }^{\text {a,c }}$

Keywords: $\mathrm{p} K_{\mathrm{a}}$ calculation, isodesmic reaction, DFT, continuum solvent model, amino acids

Abstract

Theoretical and quantitative prediction of $\mathrm{p} K_{\mathrm{a}}$ values at low computational cost is a current challenge in computational chemistry. We report that the isodesmic reaction scheme provides semi-quantitative predictions (i.e. mean absolute errors of $0.5-1.0 \mathrm{p} K_{\mathrm{a}}$ unit) for the $\mathrm{p} K_{\mathrm{a} 1}$ (α-carboxyl) $\mathrm{p} K_{\mathrm{a} 2}$ (α-amino) and $\mathrm{p} K_{\mathrm{a} 3}$ sidechain groups) of a broad set of amino acids and peptides. This method fills the gaps of thermodynamic cycles for the computational $\mathrm{p} K_{\mathrm{a}}$ calculation of molecules that are unstable in gas phase or undergo proton transfer reactions or large conformational changes from solution to gas phase. We also report the key criteria to choose a reference species to make accurate predictions. This method is computationally inexpensive and makes use of standard density functional theory (DFT) and continuum solvent models. It is also conceptually simple and easy to use for researchers not specialized in theoretical chemistry methods.

[^0]
1. Introduction

Acid-base reactions are one of the most fundamental and ubiquitous reactions in chemistry, organic, inorganic or biological. In the last years great effort has been devoted by many groups, including ours, to develop computational protocols for the accurate prediction of $\mathrm{p} K_{a}$ values [1-4 and references therein]. Our group in particular has tackled some "difficult" cases for $\mathrm{p} K_{\mathrm{a}}$ calculations. These include the $\mathrm{p} K_{\mathrm{a}}$ calculation of extremely weak carbon acids [5-7] p K_{a} s of simple amino acids [5] and the combined calculation of $\mathrm{p} K_{\mathrm{a}}$ of ligands and stability constants of metal complexes [8]. In all these works our approach pursued the maximum accuracy at the least computational cost. Nevertheless, the quantitative prediction of $\mathrm{p} K_{\mathrm{a}} \mathrm{s}$ is still a challenge in many cases and there is room for improvement for the current methodologies to become practical for general cases.

The current protocols use continuum solvent models because they allow a coarse description of solvent effects at low computational cost. Typically, continuum solvent models are designed to reproduce the experimental solvation energies of a given set of molecules [9-13]. For this reason, the free energy associated to the acidity constant K_{a} has been typically calculated with a thermodynamic cycle that considers desolvation of the acid species, its deprotonation in gas phase and eventually solvation of the resulting products [1-4].

The $\mathrm{p} K_{a}$ calculation of amino acids is a paradigm of difficult cases for $\mathrm{p} K_{\mathrm{a}}$ calculations because the most stable protonation states in gas phase and solution differ. In fact, there are scarce studies reporting theoretical calculations of the α carboxylic ($\mathrm{p} K_{\mathrm{a} 1}$), α-amino ($\mathrm{p} K_{\mathrm{a} 2}$) and sidechain groups ($\mathrm{p} K_{\mathrm{a} 3}$). Kiani et al [14] determined the $\mathrm{p} K_{\mathrm{a} 1}$ and $\mathrm{p} K_{\mathrm{a} 2}$ of few amino acids and short peptides with non-polar sidechains with mean absolute deviation (MAD) values of 0.32 and 0.40 units. They used Density Functional Theory (DFT) calculations combined with the PCM continuum solvent model to calculate the free energies of deprotonation of the α-carboxyl and α amino groups against explicit water molecules. Gupta et al. [15] calculated the $\mathrm{p} K_{a 1}$ and $\mathrm{p} K_{a 2}$ of 10 amino acids and also $\mathrm{p} K_{a 3}$ of 2 amino acids by using the thermodynamic cycle 1 (See Scheme 1 in Theory section) with only continuum solvent models or with explicit water solvent for the first solvation shell and a continuum for the bulk solvent. The latter approach provided the best predictions with mean absolute deviations (MAD) of 3.2, 1.8 and 1.6 units respectively for $\mathrm{p} K_{\mathrm{a} 1}, \mathrm{p} K_{\mathrm{a} 2}$ and $\mathrm{p} K_{\mathrm{a} 3}$.

An alternative method for $\mathrm{p} K_{\mathrm{a}}$ calculations that avoids gas phase calculations and the related problems is the isodesmic reaction. This method has been proven to provide very accurate $\mathrm{p} K_{\mathrm{a}}$ values for a variety of organic functionalities [1,5-8,16]. In a previous work, we used the isodesmic reaction to calculate the $p K_{a 1}$ and $p K_{a 2}$ of several nonpolar amino acids [5]. We reported that the isodesmic reaction provides MAD values as low as 0.2 units without needing explicit solvent molecules. Recently, Ho [17] also used the isodesmic reaction to calculate $\mathrm{p} K_{\mathrm{a} 1}$ and $\mathrm{p} K_{\mathrm{a} 2}$ of several nonpolar amino acids concluding that this approach performs better than thermodynamic cycles.

The main objective of the present work is to provide an exhaustive assessment of the isodesmic reaction for the calculation of $\mathrm{p} K_{\mathrm{a}}$ values of the α-carboxylic ($\mathrm{p} K_{\mathrm{a} 1}$), α amino ($\mathrm{p} K_{\mathrm{a} 2}$) and the sidechain groups ($\mathrm{p} K_{\mathrm{a} 3}$) of any amino acid or peptide. For comparison purposes, thermodynamic cycles as well as the ChemOffice $\mathrm{p} K_{\mathrm{a}}$ prediction tool were also used when possible.

2. Theory

Next, three of the most used thermodynamic cycles and the isodesmic reaction are introduced. In all the thermodynamic cycles, the free energy of deprotonation of a given acid species in solution ($\Delta \mathrm{G}_{\text {soln }}$) is obtained as the sum of the deprotonation free energy of such acid in gas phase ($\Delta \mathrm{G}_{\text {gas }}$) and the solvation free energy difference between the products and reactants of the deprotonation reaction ($\Delta \Delta \mathrm{G}_{\text {solv }}$)

$$
\begin{equation*}
\Delta \mathrm{G}_{\text {soln }}=\Delta \mathrm{G}_{\text {gas }}+\Delta \Delta \mathrm{G}_{\text {solv }} \tag{1}
\end{equation*}
$$

If continuum solvent models are used, the solvation free energy of each species is calculated from equation 2 ,

$$
\begin{equation*}
\Delta \mathrm{G}_{\text {solv }}=\mathrm{E}_{\text {soln }}-\mathrm{E}_{\text {gas }} \tag{2}
\end{equation*}
$$

where $E_{\text {soln }}$ corresponds to the potential energy of the solute in the presence of the reaction field of the continuum solvent and $\mathrm{E}_{\text {gas }}$ corresponds to the potential energy of the solute in gas phase. It is important to note that in this approach both $\mathrm{E}_{\text {gas }}$ and $\mathrm{E}_{\text {soln }}$ are calculated from the geometry of the solute optimized in the gas phase.

The two terms of equation 1 adopt different expressions according to the construction of each thermodynamic cycle. For example, the so-called "direct method" or cycle 1 in this paper (Scheme 1) considers the deprotonation of the acid species $\left(\mathrm{AH}^{q}\right)$ in its conjugated base ($\mathrm{A}^{\mathrm{q-1}}$) and an isolated proton $\left(\mathrm{H}^{+}\right)$.

The free energy of deprotonation in the gas phase ($\Delta \mathrm{G}_{\mathrm{gas}}$) is given by equation 3 .

$$
\begin{equation*}
\Delta \mathrm{G}_{\text {gas }}=\mathrm{G}_{\text {gas }}\left(\mathrm{H}^{+}\right)+\mathrm{G}_{\mathrm{gas}}\left(\mathrm{~A}^{\mathrm{q}-1}\right)-\mathrm{G}_{\text {gas }}\left(\mathrm{AH}^{\mathrm{q}}\right)+\Delta \mathrm{n} \mathrm{RT} \ln 24.46 \tag{3}
\end{equation*}
$$

Gas phase free energies are calculated for a standard state of 1 atm but the standard state considered for solvation free energies is 1 M in both gas phase and solution. Therefore, the last term accounts for the free energy increment associated to the change of standard state from 1 atm to 1 M in the gas phase. The free energy of the proton in the gas phase $\left(\mathrm{G}_{\mathrm{gas}}\left(\mathrm{H}^{+}\right)\right)$is $-6.28 \mathrm{kcal} / \mathrm{mol}$ at 298 K and 1 atm . This value is the sum of the entropic contribution, $7.76 \mathrm{kcal} / \mathrm{mol}$ at 298 K and 1 atm obtained from the Sackur-Tetrode equation [18], and the enthalpy contribution given by the translational motion of a monoatomic particle in the gas phase, $5 / 2$ RT or $1.48 \mathrm{kcal} / \mathrm{mol}$ at 298 K and 1 atm .

The solvation free energy difference $\left(\Delta \Delta \mathrm{G}_{\text {solv }}\right)$ is calculated as

$$
\begin{equation*}
\Delta \Delta G_{\text {solv }}=\Delta G_{\text {solv }}\left(H^{+}\right)+\Delta G_{\text {solv }}\left(A^{q-1}\right)-\Delta G_{\text {solv }}\left(A H^{q}\right) \tag{4}
\end{equation*}
$$

Equation 4 makes use of the solvation free energy of the proton $\left(\Delta \mathrm{G}_{\text {solv }}\left(\mathrm{H}^{+}\right)\right)$. Several values of this term have been proposed [4] but currently the accepted value is -265.9 $\mathrm{kcal} / \mathrm{mol}$, reported by Tissandier et al [19] and confirmed by Kelly et al [20]. Eventually, the $\mathrm{p} K_{a}$ is calculated as

$$
\begin{equation*}
\mathrm{p} K_{\mathrm{a}}=\frac{\Delta \mathrm{G}_{\text {soln }}}{2.303 \mathrm{RT}} \tag{5}
\end{equation*}
$$

An inconvenience of cycle 1 is that the solvation free energy of the proton $\Delta \mathrm{G}_{\text {solv }}\left(\mathrm{H}^{+}\right)$ introduces a large uncertainty. However this can be easily circumvented by using cycle 2 (Scheme 2) in which the proton is substituted by the water/hydronium pair $\mathrm{H}_{2} \mathrm{O} / \mathrm{H}_{3} \mathrm{O}^{+}$. In this case, the corresponding gas phase free energies and solvation free energies can be either taken from experiment or calculated [21, 22].

In cycle 2 the gas phase deprotonation energy ($\Delta \mathrm{G}_{\mathrm{gas}}$) and the solvation free energy increment ($\Delta \Delta \mathrm{G}_{\text {solv }}$) are given respectively by equations 6 and 7

$$
\begin{gather*}
\Delta \mathrm{G}_{\text {gas }}=\mathrm{G}_{\text {gas }}\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)+\mathrm{G}_{\text {gas }}\left(\mathrm{A}^{\mathrm{q}-1}\right)-\mathrm{G}_{\text {gas }}\left(\mathrm{AH}^{\mathrm{q}}\right)-\mathrm{G}_{\text {gas }}\left(\mathrm{H}_{2} \mathrm{O}\right) \tag{6}\\
\Delta \Delta \mathrm{G}_{\text {solv }}=\Delta \mathrm{G}_{\text {solv }}\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)+\Delta \mathrm{G}_{\text {solv }}\left(\mathrm{A}^{\mathrm{q}-1}\right)-\Delta \mathrm{G}_{\text {solv }}\left(\mathrm{AH}^{\mathrm{q}}\right)-\Delta \mathrm{G}_{\text {solv }}\left(\mathrm{H}_{2} \mathrm{O}\right)(7)
\end{gather*}
$$

As shown in equation 6, the free energy term corresponding to the change of standard state from 1 atm to 1 M vanishes because the number of molecules in both sides of the reaction is equal in cycle 2. The free energy of the reaction in solution given by cycle 2 corresponds to the equilibrium constant of the proton transfer reaction, $K_{e q}$, which is in turn related to the acidity constant K_{a}

$$
\begin{equation*}
K_{e q}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{\mathrm{q}-1}\right]}{\left[\mathrm{AH}^{\mathrm{q}}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}=\frac{K_{\mathrm{a}}\left(\mathrm{AH}^{q}\right)}{\left[\mathrm{H}_{2} \mathrm{O}\right]} \tag{8}
\end{equation*}
$$

Therefore the $\mathrm{p} K_{a}$ can be calculated as

$$
\begin{equation*}
\mathrm{p} K_{\mathrm{a}}=\frac{\Delta \mathrm{G}_{\text {soln }}}{2.303 \mathrm{RT}}-\log \left[\mathrm{H}_{2} \mathrm{O}\right] \tag{9}
\end{equation*}
$$

The last cycle introduced here, cycle 3, is a variant of cycle 2 in which water and hydronium are substituted by another base (B) and conjugated acid (BH) pair (Scheme 3). Cycle 3 allows B and BH to be chosen in a way that their formal charges equal those of A and AH respectively. This entails a significant advantage over cycles 1 and 2 by improving the accuracy of the $\mathrm{p} K_{a}$ predictions because the cancelation of errors between the solvation free energies increases [1,4,23].

Similar to cycle 2 , the resulting free energy calculated with cycle 3 is related to the equilibrium constant of the acid base reaction, which can be expressed in terms of the $\mathrm{p} K_{a}$ values of AH and BH .

$$
\begin{equation*}
K_{\mathrm{eq}}=\frac{\left[A^{q-1}\right]\left[B H^{m}\right]}{\left[A H^{q}\right]\left[B^{m-1}\right]}=\frac{K_{\mathrm{a}}\left(A H^{q}\right)}{K_{\mathrm{a}}\left(B H^{m}\right)} \tag{10}
\end{equation*}
$$

Hence cycle 3 provides $\mathrm{p} K_{a}$ values of AH relative to BH . For this reason, BH is also known as reference acid species.

$$
\begin{equation*}
\mathrm{p} K_{\mathrm{a}}\left(\mathrm{AH}^{\mathrm{q}}\right)=\frac{\Delta \mathrm{G}_{\text {soln }}}{2.303 \mathrm{RT}}+\mathrm{p} K_{\mathrm{a}}\left(\mathrm{BH}^{\mathrm{m}}\right) \tag{11}
\end{equation*}
$$

In this cycle, the free energy of the proton transfer reaction is calculated again as the sum of $\Delta \mathrm{G}_{\text {gas }}$ and $\Delta \Delta \mathrm{G}_{\text {solv }}$, given by equations 12 and 13 .

$$
\begin{align*}
& \Delta \Delta G_{\text {solv }}=\Delta G_{\text {solv }}\left(B H^{\mathrm{m}}\right)+\Delta \mathrm{G}_{\text {solv }}\left(\mathrm{A}^{\mathrm{q}-1}\right)-\Delta \mathrm{G}_{\text {solv }}\left(\mathrm{AH}^{\mathrm{q}}\right)-\Delta \mathrm{G}_{\text {solv }}\left(\mathrm{B}^{\mathrm{m}-1}\right) \\
& \Delta \mathrm{G}_{\text {gas }}=\mathrm{G}_{\text {gas }}\left(\mathrm{BH}^{\mathrm{m}}\right)+\mathrm{G}_{\text {gas }}\left(\mathrm{A}^{\mathrm{q}-1}\right)-\mathrm{G}_{\text {gas }}\left(\mathrm{AH}^{\mathrm{q}}\right)-\mathrm{G}_{\text {gas }}\left(\mathrm{B}^{\mathrm{m}-1}\right)(13) \tag{13}
\end{align*}
$$

Because of the way solvation energies are calculated, thermodynamic cycles cannot be used for species that are not stable in gas phase or for species that undergo large conformational changes upon solvation. Recently our group proposed the calculation of $\mathrm{p} K_{a}$ values by avoiding all gas phase calculations [1,5-8,16]. Our protocol is based on an isodesmic reaction, defined in the IUPAC's Gold Book as a reaction in which the types of bonds that are made in forming the products are the same as those which are broken in the reactants (Scheme 4).

This protocol has been successfully used in the $\mathrm{p} K_{a}$ calculation of common organic acids like aliphatic alcohols, carboxylic acids, amines, phenols, benzoic acids and pyridines [1,5,16], weak acids like carbon acids [5-7] and organic groups of ligands in metal complexes [8]. In these studies it is shown that the $\mathrm{p} K_{a}$ values calculated with the
isodesmic reaction are as accurate as the best results obtained with thermodynamic cycles. For example, the mean absolute deviation (MAD) of the predicted $\mathrm{p} K_{a}$ values lies between 0.5 and 1.0 units for common organic acids [16]. Besides, the isodesmic reaction is more robust and good accuracy is obtained independently of the formal charge of the reference acid species and without using microsolvation of explicit water molecules [5].

Like cycle 3, the isodesmic reaction describes an acid base reaction whose equilibrium constant is given by equation 10 and the $\mathrm{p} K_{a}$ of AH is calculated from equation 11 with the use of a reference acid species BH . However, the free energy of the reaction $\Delta \mathrm{G}_{\text {soln }}$ is calculated only with the free energies in solution of the reactants and products (equation 14).

$$
\begin{equation*}
\Delta G_{\text {soln }}=G_{\text {soln }}\left(B H^{m}\right)+G_{\text {soln }}\left(A^{q-1}\right)-G_{\text {soln }}\left(A H^{q}\right)-G_{\text {soln }}\left(B^{m-1}\right) \tag{14}
\end{equation*}
$$

A rigorous calculation of the free energies requires knowledge of the partition functions. However, these are unknown for a species in solution. Therefore, the best approach would involve statistical methods to sample the relevant states under the given conditions of pressure and temperature. However doing so would also break the philosophy of minimal computational cost of the current protocols. Still it is desirable to include temperature effects in some fashion but it is also true that the partition functions of the harmonic and rigid rotor approximations do not represent the physics of a species in solution. As a compromise, our group proposed the introduction of thermal effects by assuming that the harmonic approximation is valid to represent the vibrational motions in solution and that accounts for the largest thermal effects. Also, we assume that all the remaining contributions from the nuclei motion are similar between reactants and products and do not contribute to $\Delta \mathrm{G}_{\text {soln }}$ as they cancel out in equation 14. Accordingly, the free energy in solution of each species $G_{\text {soln }}$ is calculated as

$$
\begin{equation*}
\mathrm{G}_{\text {soln }}=\mathrm{E}_{\text {soln }}+\mathrm{G}_{\text {nes }}+\Delta \mathrm{G}_{\text {corr__soln }} \tag{15}
\end{equation*}
$$

where $\mathrm{E}_{\text {soln }}$ is the potential energy of the solute at 0 K including the electrostatic interactions with the dielectric continuum, $\Delta \mathrm{G}_{\text {corr_soln }}$ corresponds to the thermal effects of vibrational motion at 298 K and $\mathrm{G}_{\text {nes }}$ includes all the non-electrostatic solute continuum interactions (i.e. dispersion, repulsion and cavitation).

3. Computational details

The calculations were performed with Density Functional Theory (DFT) methods by using the M052X [24], M062X [25] and B3LYP [26,27] exchange correlation functionals. The non-DFT PM6 semiempirical Hamiltonian was also used [28]. Solvent effects were introduced by using the SMD $[13,29]$ continuum solvent model.

In previous publications [5,16] we made use of composite methods like CBS-QB3 and CBS-4B3* [26] for the calculation of deprotonation free energies and $\mathrm{p} K_{\mathrm{a}}$ values. From those studies we conclude that when used with continuum solvent models like CPCM or SMD such methods provide similar precision for relative free energies, from which $\mathrm{p} K_{\mathrm{a}}$ values are calculated, than DFT methods at higher computational cost.

The SMD solvent model was parametrized by using M05-2X/6-31+G(d,p) and M05$2 \mathrm{X} / \mathrm{cc}-\mathrm{pVTZ}$ calculations $[13,29]$. In the present work we used the $6-31+\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set.

All structures were optimized and characterized as energy minima by the absence of imaginary frequencies. All calculations were performed with the Gaussian09 software [30].

4. Results and discussion

4.1. $\mathrm{p} K_{\mathrm{a}}$ calculation of α-carboxylic $\left(\mathrm{p} K_{\mathrm{a} 1}\right)$ and α-amino groups ($\mathrm{p} K_{\mathrm{a} 2}$). The isodesmic reaction scheme was used to calculate the $\mathrm{p} K_{a}$ of the α-carboxylic and α amino groups of 19 of the proteinogenic amino acids. Alanine in the full protonated state was used as a reference species for the calculations of the α-carboxylic group whereas alanine in the zwitterionic state was used as a reference species for the calculations of the α-amino group (Scheme 5).

Table 1 and Table 2 show the absolute errors, mean absolute deviation (MAD) and standard deviation (SD) of the calculated $\mathrm{p} K_{\mathrm{a} 1}$ and $\mathrm{p} K_{\mathrm{a} 2}$ with respect to the experimental values. In terms of absolute errors, most predictions of $\mathrm{p} K_{\mathrm{a} 1}$ and $\mathrm{pK} \mathrm{a}_{\mathrm{a} 2}$ have errors lower than $1.0 \mathrm{p} K_{\mathrm{a}}$ units for all the DFT functionals and the PM6 Hamiltonian. For $\mathrm{pK} \mathrm{K}_{\mathrm{a} 1}$ and $\mathrm{p} K_{\mathrm{a} 2}$ the MAD values are approximately $0.5 \mathrm{p} K_{\mathrm{a}}$ units with the exception of the predictions of $\mathrm{p} K_{\mathrm{a} 2}$ with PM6, which shows a higher MAD value of 0.9 units.

The $\mathrm{p} K_{\mathrm{a} 1}$ and $\mathrm{p} K_{\mathrm{a} 2}$ were also calculated for a series of peptides. In this case two reference species were used: the alanine amino acid and the glycylglycine dipeptide. Table 3 and Table 4 show the absolute errors, MAD and standard deviations of $\mathrm{p} K_{\mathrm{a} 1}$ and $\mathrm{p} K_{\mathrm{a} 2}$ calculated with the glygylglycine reference with respect to the corresponding experimental values.

When glycylglycine is used as a reference, the absolute errors of 46 predictions of $\mathrm{p} K_{\mathrm{a} 1}$ are lower than $0.5 \mathrm{p} K_{\mathrm{a}}$ units and 29 are between 0.5 to $1.0 \mathrm{p} K_{\mathrm{a}}$ units. For $\mathrm{p} K_{\mathrm{a} 2}, 81$ predictions show absolute errors lower than $1.0 \mathrm{p} K_{\mathrm{a}}$ units.

If alanine is used as a reference, the MAD value of $\mathrm{p} K_{a 1}$ shows little difference with the MAD obtained with glycylglycine as reference species (i.e. $\sim 0.85-1.61 \mathrm{p} K_{\mathrm{a}}$ units, Table S1). However the MAD values of $\mathrm{p} K_{\mathrm{a} 2}$ increase by $\sim 0.5 \mathrm{p} K_{\mathrm{a}}$ units when using alanine and DFT methods (Table S2). Instead, in the case of alanine as a reference the PM6 Hamiltonian improves the MAD by $\sim 0.7 \mathrm{p} K_{\mathrm{a}}$ units (Supporting Information).

In the case of glycylvaline and glycylphenylalanine there are calculated values in the literature to compare with. We find that our calculations show similar errors than those reported by Kiani et al. [14].

The $\mathrm{p} K_{\mathrm{a}}$ prediction tool of the ChemOffice software [31] was also used for $\mathrm{p} K_{\mathrm{a} 1}$ and $\mathrm{p} K_{\mathrm{a} 2}$ of the same amino acids and peptides. The MAD and SD of ChemOffice predictions are 3-4 times lower than those of the isodesmic reaction results for $\mathrm{pK} \mathrm{a}_{1}$ (Table 1, Table 3). For $\mathrm{pK}_{\mathrm{a} 2}$, the MAD and SD of ChemOffice predictions are similar for amino acids (Table 2) but better for peptides (Table 4). This case shows that wellparametrized methods can provide very good $\mathrm{p} K_{\mathrm{a}}$ estimations. However, the isodesmic reaction does not require explicit parametrization. In fact, in the isodesmic reaction, the parametrization is performed in situ by the inclusion of the reference species. Therefore any $\mathrm{p} K_{\mathrm{a}}$ of any molecule can be calculated, provided that a suitable reference species is chosen.
4.2. Influence of the reference species in $\mathrm{p} K_{\mathrm{a} 1}$ and $\mathrm{p} K_{\mathrm{a} 2}$. A key point in the $\mathrm{p} K_{\mathrm{a}}$ calculation with the isodesmic reaction is the choice of reference species. It is particularly important to show how dependent is the accuracy of the calculations on the reference species.

The calculation of $\mathrm{p} K_{\mathrm{a} 1}$ and $\mathrm{p} K_{\mathrm{a} 2}$ of amino acids were repeated by systematically using all of them one by one as reference species. In most cases the obtained MAD values fall between 0.5 and 1.0 pka units (Table S3). Note that the MAD of pKa1 when using histidine as reference species is significantly higher than for the other amino acids (Table S3).

Then, acetic acid and ethylamine were used as, arguably, the simplest reference species for carboxylic acids and amines. The obtained MAD for $\mathrm{p} K_{\mathrm{a} 1}$ and $\mathrm{p} K_{\mathrm{a} 2}$ of amino acids were ~ 2.6 and $\sim 1.5 \mathrm{p} K_{\mathrm{a}}$ units respectively, while the MAD for $\mathrm{p} K_{\mathrm{a} 1}$ and $\mathrm{p} K_{\mathrm{a} 2}$ of peptides were ~ 2.1 and $\sim 0.8 \mathrm{p} K_{\mathrm{a}}$ units respectively (Table 5).

To explain these results it should be considered that a good reference species should have similar solute-solvent interactions than the studied acid. Actually, and following the notation of Scheme 5 , the interaction of BH^{m} with the continuum solvent should be as similar as possible to that of AH^{q}, and likewise for $\mathrm{B}^{\mathrm{m}-1}$ and $\mathrm{A}^{\mathrm{q}-1}$. For this reason an amino acid reference species yields absolute errors of $\sim 0.75 \mathrm{p} K_{\mathrm{a}}$ units for the calculation of $\mathrm{p} K_{\mathrm{a} 1}$ and $\mathrm{p} K_{\mathrm{a} 2}$ of other amino acids (Table S3). On the other hand, if the reference species contains the same functional group but shows significantly different charge distribution, the calculated errors raise. Such is the case when acetic acid and ethylamine are used as reference species for the calculation of $\mathrm{p} K_{\mathrm{a} 1}$ and $\mathrm{p} K_{\mathrm{a} 2}$ of amino acids (Table 5).

It should be noted that we refer to the charge distribution of the reference species because it has been shown that the electrostatic interaction with the continuum model is the major source of error in these calculations. However, the chemical environment should not be neglected. In fact, the large errors obtained for the $\mathrm{p} K_{\mathrm{a} 1}$ of histidine and aspartic acid can be attributed to that factor. In both cases, the sidechain functional group is close enough to interact with the α-carboxyl and, or the α-amino groups. Since these interactions are absent in the alanine reference species and are not constant upon deprotonation of the α-carboxyl group of aspartic acid and histidine, the cancelation of errors is worsened.

In the case of peptides, the use of glycylglycine dipeptide as a reference leads to a decrease of MAD down to .091 and 0.81 units for $\mathrm{p} K_{\mathrm{a} 1}$ and $\mathrm{p} K_{\mathrm{a} 2}$ (Table 5).

If acetic acid is used as a reference for the calculation of $\mathrm{p} K_{\mathrm{a} 1}$, the MAD of peptides doubles but that of amino acids dramatically multiplies by 5 (Table 5). In the present case, in which the peptides are short and the chosen conformations are extended, this is attributable to the larger separation between the α-carboxylic and α-amino groups in peptides so, the acetic acid reference is a better descriptor of the solute-solvent interactions for a peptide than for an amino acid. For the same reason, ethylamine yields lower errors of $\mathrm{p} K_{\mathrm{a} 2}$ for peptides than for amino acids.

We also analyzed the errors (MAD and SD) of the calculated $\mathrm{p} K_{\mathrm{a} 1}$ and $\mathrm{p} K_{\mathrm{a} 2}$ depending on the global charge and separation between the α-carboxyl and α-amino groups (Table S4). The clearest result is that alanine and glycylglycine are better reference species for amino acids and peptides respectively. Regarding the effect of the global charge, the MAD values of $\mathrm{p} K_{\mathrm{a} 1}$ or $\mathrm{p} K_{\mathrm{a} 2}$ fluctuate around $1 \mathrm{p} K_{\mathrm{a}}$ unit, without clear trend.

These results are in agreement with previous works of our group, which show that rather than the global charge, the local charge distribution of the acid and the reference species are key to obtain low errors $[1,5,16]$. This is due to the fact that when using continuum solvent models, the electrostatic is the largest solute-solvent interaction and such interactions are computed locally [9-13,29]. The isodesmic reaction scheme exploits the local design of continuum solvent models. This is why there is a clear distinction between the MADs of amino acids and peptides but no clear trend between dipeptides and tripeptides or between differently charged species.

In summary, the two main criteria to consider when choosing the reference acid species are the functional acid group and its neighboring charge distribution as well as other important interactions like hydrogen bonds.
4.3. $\mathrm{p} K_{\mathrm{a}}$ calculation of sidechain groups $\left(\mathrm{p} K_{\mathrm{a} 3}\right)$. The isodesmic reaction was also used to calculate the $\mathrm{p} K_{\mathrm{a}}$ of acid functionalities in the sidechains of peptides (i.e. $\mathrm{p} K_{\mathrm{a} 3}$), namely: ε-amino of lysine, guanidinium of arginine, sulfhydryl of cysteine, phenol of tyrosine, imidazole of histidine and carboxyl of glutamic and aspartic acids. In these cases the reference species was the acid group of the sidechain in the isolated amino acids lysine, arginine, cysteine, tyrosine, histidine and glutamic acid respectively.

Table 6 reports the absolute errors, MAD and SD of the calculated $\mathrm{p} K_{\mathrm{a} 3}$ with respect to the experimental values. The resulting MADs are below $1.0 \mathrm{p} K_{\mathrm{a}}$ units for all residues
but histidines, for the DFT calculations. The PM6 Hamiltonian performs somewhat worse for lysines, cysteines and tyrosines but better for histidines. The absolute error is lower than $1.0 \mathrm{p} K_{\mathrm{a}}$ units for 47 cases independently of the residue type. The remaining 15 cases, in which the errors are larger than $1.0 \mathrm{p} K_{\mathrm{a}}$ unit, are mostly predictions for histidines and then a few lysines, arginines, tyrosines and aspartic acids. Therefore, with the exception of histidines, the isodesmic reaction performs satisfactorily (i.e. errors lower than $1.0 \mathrm{p} K_{\mathrm{a}}$ unit) for all types of residues.

In these cases, the ChemOffice software [31] was also used for the prediction of $\mathrm{p} K_{\mathrm{a} 3}$ (Table 6). The $\mathrm{p} K_{\mathrm{a}}$ prediction tool of this software cannot calculate imidazole and thiol groups. However, for the remaining functionalities, the obtained errors are similar to the ones obtained for the Isodesmic reaction scheme for lysines, tyrosines and aspartic or glutamic acids but much worse for arginines.
4.4. Influence of the reference species in $\mathrm{p} K_{\mathrm{a} 3}$. To evaluate the influence of the reference species in $\mathrm{p} K_{\mathrm{a} 3}$, non-amino acid references were used for each kind of residue sidechain. The $\mathrm{p} \mathrm{K}_{\mathrm{a} 3}$ of lysines, arginines, histidines, cysteines, tyrosine and glutamic or aspartic acids were calculated by using ethylamine, ethylguanidinium, 4methylimidazole, ethanethiol, phenol and acetic acid respectively. The absolute errors, MAD and SD are reported in Table 7.

For lysines, arginines, tyrosines and glutamic or aspartic acids the MAD values with the amino acid and non-amino acid references differ in less than $0.5 \mathrm{p} K_{\mathrm{a}}$ units. For cysteines, the MAD increase dramatically but given that there are only this two values, it is difficult to make conclusions about the change of reference species in this case.

The case of histidines is worth mentioning as an example in which the reference species is non-intuitive. As can be seen from the absolute errors, MAD and SD in Table 7, 4-methylimidazole is a better reference species than histidine for $\mathrm{p} K_{\mathrm{a} 3}$ of other histidine residues in peptides. We attribute this effect to interactions established between the imidazole ring and the neighboring α-carboxyl group in the histidine reference that are not present in other peptides. In fact, the lowest errors are obtained for those dipeptides in which the histidine is C-terminal and, therefore, such interactions can be also established. Oppositely, when the histidine residue is N terminal or internal, the obtained errors are higher.
4.5. Thermodynamic cycles for the calculation of $\mathrm{p} K_{\mathrm{a} 3}$. The use of thermodynamic cycles implies inconveniences for chemical species that are unstable in gas phase or undergo large conformational changes during solvation/desolvation. In a previous work we reported that the thermodynamic cycle approach is not practical for the calculation of $\mathrm{p} K_{\mathrm{a} 1}$ and $\mathrm{p} K_{\mathrm{a} 2}$ of amino acids because the zwitterionic species are unstable in gas phase and there are spontaneous proton transfers between the α-amino and α carboxyl groups [5]. Our purpose here is to compare the isodesmic reaction with some of the thermodynamic cycles introduced in the theory section for the calculation of $\mathrm{p} K_{\mathrm{a} 3}$.

The calculation of $\mathrm{p} K_{\mathrm{a} 3}$ was unfeasible for many peptides due to one or more of the following events: a) proton transfer involving the functional group for which $\mathrm{p}_{\mathrm{a} 3}$ is being calculated. Typically proton transfers from the protonated lysine, histidine, arginine sidechains to the deprotonated α-carboxylate group; b) proton transfer involving other groups than the object of study; c) large conformational changes between gas phase and solution.

Table 8 shows the experimental values of $\mathrm{p} K_{\mathrm{a} 3}$ and the absolute errors, MAD and SD of the peptides for which the calculation was possible with thermodynamic cycles. As can be seen in Table 8, only the isodesmic reaction systematically provides low errors (i.e. approximately $1 \mathrm{p} K_{\mathrm{a}}$ unit on average). Oppositely, none of the thermodynamic cycles is a real alternative for the calculation of $\mathrm{p} K_{\mathrm{a}} \mathrm{s}$ in peptides.
4.6. Conformational sampling and $\mathrm{p} K_{\mathrm{a}}$ calculations. An important aspect of peptides is their capability to adopt an enormous range of conformations at room temperature by rotations of the backbone dihedrals and the sidechain dihedrals. This entails that each acid functional group in the peptide sequence can potentially establish many intramolecular interactions. For the same reason, the folding state of the peptide also modulates the degree of solvent exposure of the acidic groups. These effects can be major contributions to the $\mathrm{p} K_{\mathrm{a}}$ shifts of each residue.

These effects are also expected to gain importance in long peptides and proteins. However, we performed a conformational search on each protonation state of some amino acids and recalculated their $\mathrm{p} K_{\mathrm{a} 1}, \mathrm{p} K_{\mathrm{a}}$ and $\mathrm{p} K_{\mathrm{a} 3}$ values. In these cases, the $\mathrm{p} K_{\mathrm{a}}$ values were calculated as

$$
\begin{equation*}
\mathrm{p} K_{\mathrm{a}(\mathrm{AH})}=\mathrm{p} K_{\mathrm{a}(\mathrm{RefH})}-\log \frac{Q_{A} Q_{R e f H}}{Q_{A H} Q_{R e f}} \tag{16}
\end{equation*}
$$

Where Q_{i} stands for the partition function of the species i.

$$
\begin{equation*}
Q_{\mathrm{i}}=\sum \exp \left(-E / k_{b} T\right) \tag{17}
\end{equation*}
$$

Between 10 and 18 initial conformations were generated for each protonation state of each molecule with the OpenBabel 2.3.1 software [40]. The conformational search was performed to optimize the root mean square deviation (RMSD) diversity [40]. The resulting conformers were subsequently minimized with the PM6 Hamiltonian in aqueous solution modeled with the SMD method [13, 29]. In some cases, the starting geometry was poor and the geometry optimization lead to a chemical chimera or did not converge. The final number of conformations employed for each amino acid is reported in Table 9. As can be seen in Table 9, using a conformational ensemble also leads to good predictions but does not entail a systematic improvement of $\mathrm{p} K_{\mathrm{a} 1}, \mathrm{p} K_{\mathrm{a} 2}$ and $p K_{\text {a }}$.

The variations of the potential energies (E) within the conformational ensemble, measured as standard deviation, are of $\sim 0.5-1 \mathrm{kcal} / \mathrm{mol}$ in most cases. Comparison with the experimental $\mathrm{p} K_{\mathrm{a}}$ values, suggest that these fluctuations cancel out in equation 16, as a result of the isodesmic scheme. On other hand, such energy differences fall in the accuracy limit of the employed DFT and semiempirical Hamiltonians and the typical continuum solvent models. The positive message drawn from our results is that for amino acids and other small molecules there is no need of an exhaustive search for the absolute lowest energy conformation.

However, the conformational space of peptides grows rapidly as more residues are in the polymer chain. A conformational search was carried out on the peptide structures to evaluate the effect of the employed conformation on the $\mathrm{p} K_{\mathrm{a}}$ calculations. In this case, the OpenBabel 2.3.1 [40] software and the mmff94 force field [41] were employed to generate an ensemble of conformations and choose the most stable one for each protonation state of each peptide. Then, the geometries of the resulting conformers were optimized with the PM6 Hamiltonian and the SMD solvent model.

The mean absolute deviations (MAD) and standard deviations (SD) of $\mathrm{p} K_{\mathrm{a} 1}, \mathrm{p} K_{\mathrm{a} 2}$ and $\mathrm{p} K_{\mathrm{a} 3}$ calculated by using the most stable conformers as initial configurations are reported in Table 10. Comparison with the $\mathrm{p} K_{\mathrm{a}}$ values calculated with PM6 on manually generated initial structures shows that the conformational search improved the predictions of $\mathrm{p} K_{\mathrm{a} 2}$ by ~ 0.2 units but the predictions of $\mathrm{p} K_{\mathrm{a} 1}$ and $\mathrm{p} K_{\mathrm{a} 3}$ worsened by ~ 1 unit (Table10). The predictions of $\mathrm{p} K_{\mathrm{a} 3}$ worsened for all sidechain functional groups. While the errors for lysines, cysteines and tyrosines increased moderately (i.e. 0.21, 0.25 and 0.7 units respectively), the errors of glutamic/aspartic acids, histidines and particularly arginines increased significantly (i.e. 1.05, 1.42 and 2.49 units) (Table 10).

A deeper analysis of the individual $\mathrm{p} K_{\mathrm{a} 3}$ values of each peptide (Table S5) shows that the errors increase for the largest and more flexible peptides. For instance, the
error on the $\mathrm{p} K_{\mathrm{a} 3}$ of the lysine residue in the LysGlu dipeptide is $0.44 \mathrm{p} K_{a}$ units while the corresponding error on the GlyGlyLysAla is $5.48 \mathrm{p} K_{a}$ units. Similar trends are observed for histidines, tyrosines, arginines and, although in a less extent, aspartic and glutamic acids (Table S5).

Examination of the peptide structures shows that the most stable generated conformations of large peptides tended to be packed. In this way the non-covalent Van der Waals, Coulomb and H -bond interactions were maximized because OpenBabel performs the conformational search in the gas phase. Therefore, this conformational study cannot validate the peptide structures generated manually as representative conformers in solution. However, it clearly indicates that using a structure that is a bad representative of the most populated conformation in solution can lead to large errors in the $\mathrm{p} K_{\mathrm{a}}$ calculations (Table 10). The fact that the $\mathrm{p} K_{\mathrm{a}}$ values predicted for peptides (Tables 2-6) show errors similar to those of small molecules (i.e. amino acids) in which conformations are less important, suggests that the structures generated manually are decent representatives of the solution conformations.

We intend to perform further investigations to include solvent effects and conformational sampling for $\mathrm{p} K_{\mathrm{a}}$ calculations.

5. Conclusions and further challenges

We have shown that the isodesmic reaction scheme shows significant advantages with respect to thermodynamic cycles, mainly due to the inconveniences resulting from gas phase calculations.

The isodesmic reaction provides accurate results for the $\mathrm{p} K_{\mathrm{a}}$ calculation of the α carboxylic, α-amino groups and sidechains of amino acids and peptides, resulting mean absolute deviations (MAD) of $1 \mathrm{pK} \mathrm{K}_{\mathrm{a}}$ unit or lower.

The accuracy shows to be robust regarding the choice of the DFT functional. In fact, simpler semiempirical calculations also provide good results. The achieved accuracy in the isodesmic reaction is similar to that of available empirical $\mathrm{p} K_{\mathrm{a}}$ estimators. So, even though using a quantum method is slower than other estimators, it is much less limited regarding the chemical composition and structure of the acid of interest.

The choice of the reference species is important for the precision of the $\mathrm{p} K_{\mathrm{a}}$ calculations. However, the cancelation of errors intrinsic to the isodesmic reaction allows more flexibility for the choice of such species. As in previous works, we confirm that it is key to choose a reference species for which the local charge distribution neighboring the acid group is similar to that of the studied species. In most cases, this is fulfilled by choosing a molecule with the same functional acid group.

Conformational sampling is not a major source of error in the prediction of $\mathrm{p} K_{\mathrm{a}}$ values of small molecules like the amino acids but it can have a large impact on the $\mathrm{p} K_{\mathrm{a}}$ calculations as the peptide size increases.

As a final remark, we would like to mention that this scheme is applicable to the calculation of non-aqueous solvents in a simple manner as long as there is an available reference species with a known $\mathrm{p} K_{\mathrm{a}}$ value in such solvent. The solvent environment can be changed in many continuum models simply by setting the correspondent static dielectric constant of the desired solvent. However, for this reason dealing with solvent mixtures can be more challenging.

We conclude that the isodesmic reaction is a suitable methodology for the theoretical calculation of $\mathrm{p} K_{\mathrm{a}}$ values, especially in those species implying difficulties for thermodynamic cycles. We expect that in the near future this work can be expanded to address more of the current difficulties.

Acknowledgements

This work was cofunded by the Ministerio de Economía y Competitividad (MINECO) and by the European Fund for Regional Development (FEDER) (CTQ2014-55835-R). It was also funded by the Conselleria d'Educació, Cultura i Universitats (Ajuts a accions especials d'R+D AAEE027/2014). The authors are grateful to "Centro de Cálculo de

Supercomputación de Galicia (CESGA)" and to "Consorci de Serveis Universitaris de Catalunya (CSUC)" for providing access to their computational facilities.

References

1. R. Casasnovas, J. Ortega-Castro, J. Frau, J. Donoso, F. Muñoz, Int. J. Quantum Chem. 2014, 114, 1350-1363.
2. P. G. Seybold, G. C. Shields, WIREs Comput. Mol. Sci. 2015, 5, 290-297.
3. J. Ho, M. L. Coote, WIREs Comput. Mol. Sci. 2011, 1, 649-660.
4. J. Ho, M. L. Coote, Theor. Chem. Acc. 2010, 125, 3-21.
5. R. Casasnovas, D. Fernández, J. Ortega-Castro, J. Frau, J. Donoso, F. Muñoz, Theor. Chem. Acc., 2011, 130, 1-13.
6. R. Casasnovas, M. Adrover, J. Ortega-Castro, J. Frau, J. Donoso, F. Muñoz J. Phys. Chem. B, 2012, 116, 10665-10675.
7. R. Casasnovas, J. Ortega-Castro, J. Frau, J. Donoso, F. Muñoz, J. Phys. Chem. B, 2013, 117, 2339-2347.
8. R. Casasnovas, J. Ortega-Castro, J. Donoso, J. Frau, F. Muñoz, Phys. Chem. Chem. Phys. 2013, 15, 16303-16313.
9. J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999-3093.
10. C. J. Cramer, D. G. Truhlar, Chem. Rev. 1999, 99, 2161-2200.
11. A. Klamt, G. Schuurman, J. Chem. Soc. Perkin Trans. 1993, 2, 799-805.
12. M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 2003, 24, 669681.
13. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.
14. F. Kiani, A. A. Rostami, S. Sharifi, A. Bahadori, M. J. Chaichi J. Chem. Eng. Data 2010, 55, 2732-2740.
15. M. Gupta, E. F. da Silva, H. F. Svendsen J. Chem. Theory Comput. 2013, 9, 5021-5037.
16. S. Sastre, R. Casasnovas, F. Muñoz, J. Frau Theor. Chem. Acc. 2013, 132:1310.
17. Ho, J. Phys. Chem. Chem. Phys. 2015, 17, 2859-2868.
18. McQuarrie, D.M. Statistical Mechanics, Harper and Row, New York, 1970.
19. M. D. Tissandier, K. A. Cowen, W. Y. Feng, E. Gundlach, M. H. Cohen, A. D. Earhart, J. V. Coe, T. R. Tuttle, Jr. J. Phys. Chem. A 1998, 102, 7787-7794.
20. C. P. Kelly, C. J. Cramer, D. G. Truhlar J. Phys. Chem. B 2006, 110, 1606616081.
21. M. W. Palascak, G. C. Shields J. Phys. Chem. A 2004, 108, 3692-3694.
22. J. R. Pliego Jr., J. M. Riveros Phys. Lett. 2000, 332, 597-602.
23. R. Casasnovas, J. Frau, J. Ortega-Castro, A. Salvà, J. Donoso, F. Muñoz J. Mol. Struct. Theochem 2009, 912, 5-12.
24. Y. Zhao, N. E. Schultz, D. G. Truhlar J. Chem. Theory Comput. 2006, 2, 364382.
25. Y. Zhao, D. G. Truhlar Theor. Chem. Acc. 2008, 120, 215-241.
26. A. D. Becke J. Chem. Phys. 1993, 98, 5648-5652.
27. C. Lee, W. Yang, G. Parr Phys. Rev. B 1988, 37, 785-789.
28. J. J. P. Stewart J. Mol. Model. 2007, 13, 1173-1213.
29. A. V. Marenich, C. J. Cramer, D. G. Truhlar J. Phys. Chem. B 2009, 113, 45384543.
30. Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K.

Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
31. ChemOffice, Cambridgesoft, Copyright 1998-2016 PerkinElmer Inc.
32. J. A. Dean (1999) Mc Graw-Hill, inc. Lange's Handbook of Chemistry, Fourteenth edition
33. W. P. Jencks, J. Regenstein Ionization Constants of Acids and Bases. Handbook of Biochemistry and Molecular Biology. CRC Press: Cleveland, 1970, 67.
34. H. Schmidt, I. Andersson, D. Rehder, L. Pettersson Chemistry. 2001, 7, 251.
35. T. T. Tominaga, H. Imasato, O. R. Nascimento, M. Tabak Anal. Chim. Acta 1995, 315, 217.
36. M. Remelli, C. Conato, A. Agarossi, F. Pulidori, P. Mlynarz, H. Kozlowski Polyhedron 2000, 19, 2409-2419.
37. D. L. Rabenstein, M. S. Greenberg, C. A. Evans Biochemistry 1977, 16, 977981.
38. M. R. Arnold, W. Kremer, H. D. Ludemann, H. R. Kalbitzer Biophys. Chem. 2002, 96, 129-140.
39. G. Vistoli, V. Straniero, A. Pedreti, L. Fumagalli, C. Bolchi, M. Pallavicini, E. Valoti, B. Testa Chirality 2012, 24, 566-576.
40. a. N. M. O'Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, G. R. Hutchison J. Cheminf. 2011, 3, 33. b. The Open Babel Package, version 2.3.1 http://openbabel.org
41. a. T. A. Halgren J. Comput. Chem. 1996, 17, 490-519. b. T. A. Halgren J. Comput. Chem. 1996, 17, 520-552. c. T. A. Halgren J. Comput. Chem. 1996, 17, 553-586. d. T. A. Halgren J. Comput. Chem. 1996, 17, 587-615. e. T. A. Halgren J. Comput. Chem. 1996, 17, 616-641. f. T. A. Halgren J. Comput. Chem. 1999, 20, 720-729.

Scheme 1. Thermodynamic cycle 1 in which an acid species AH^{a} is dissociated in its conjugated base A^{q-1} and a proton. $\Delta \mathrm{G}_{\text {gas }}, \Delta \mathrm{G}_{\text {soln }}$ and $\Delta \mathrm{G}_{\text {solv }}$ are respectively the free energies of deprotonation in gas phase, in solution and the free energy of solvation. The formal charge of the acid AH is represented by q.

Scheme 2. Thermodynamic cycle 2 in which an acid species $A H^{q}$ donates a proton to a water molecule to yield its conjugated base A^{q-1} and a hydronium cation. $\Delta G_{g a s}, \Delta G_{\text {soln }}$ and $\Delta \mathrm{G}_{\text {solv }}$ are respectively the free energies of deprotonation in gas phase, in solution and the free energy of solvation. The formal charge of the acid AH is represented by q .

$$
\begin{aligned}
& \Delta G_{\text {gas }} \\
& \mathrm{AH}^{q} \text { (gas) }+\mathrm{B}^{m-1} \text { (gas) } \longrightarrow \mathrm{A}^{q-1} \text { (gas) }+\mathrm{BH}^{m} \text { (gas) } \\
& \downarrow \Delta G_{\text {solv }}\left(A H^{q}\right) \quad \Delta \Delta G_{\text {solv }}\left(B^{m-1}\right) \quad \Delta \Delta G_{\text {solv }}\left(A^{q-1}\right) \quad \Delta G_{\text {solv }}\left(B H^{m}\right) \\
& \mathrm{AH}^{\mathrm{q}} \text { (soln) }+\mathrm{B}^{\mathrm{m}-1} \text { (soln) } \longrightarrow \mathrm{A}^{\mathrm{q}-1} \text { (soln) }+\mathrm{BH}^{m} \text { (soln) }
\end{aligned}
$$

Scheme 3. Thermodynamic cycle 3 in which an acid species AH^{q} donates a proton to a base B^{m-1} to yield the conjugated base A^{q-1} and acid $A H^{m} . \Delta G_{\text {gas }}, \Delta G_{\text {soln }}$ and $\Delta G_{\text {solv }}$ are respectively the free energies of deprotonation in gas phase, in solution and the free energy of solvation. The formal charge of the acids AH and BH are represented by q and m .

Scheme 4. Isodesmic reaction employed for the calculation of $\mathrm{p} K_{a}(\mathrm{AH}) . \Delta \mathrm{G}_{\text {soln }}$ is the free energy of the acid-base reaction in solution. The formal charge of the acids AH and BH are represented by q and m .

Scheme 5. Isodesmic reaction for the $\mathrm{p} K_{\mathrm{a}}$ calculation of $\mathrm{p} K_{\mathrm{a} 1}$ (top) and $\mathrm{p} K_{\mathrm{a} 2}$ (bottom) with alanine as reference.

	$\mathrm{p} K_{\mathrm{a} 1}$ $\left(\right.$ exptl $\left.^{\mathrm{a}}\right)$	$\Delta \mathrm{p} K_{\mathrm{a} 1}$ $(\mathrm{M} 052 \mathrm{X})$	$\Delta \mathrm{p} K_{\mathrm{a} 1}$ $(\mathrm{M} 062 \mathrm{X})$	$\Delta \mathrm{p} K_{\mathrm{a} 1}$ $(\mathrm{~B} 3 \mathrm{YP})$	$\Delta \mathrm{p} K_{\mathrm{a} 1}$ $(\mathrm{PM} 6)$	$\Delta \mathrm{p} K_{\mathrm{a} 1}$ $($ ChemOffice $)$
Alanine (Ref)	2.34	-	-	-	-	0.08
Glycine	2.34	0.42	0.18	0.42	0.09	0.03
Valine	2.32	0.40	0.64	0.26	0.48	0.14
Iso-Leucine	2.35	0.28	0.11	0.13	0.36	0.06
Leucine	2.33	0.02	0.02	0.35	0.29	0.04
Methionine	2.28	0.37	0.13	0.04	0.15	0.04
Proline	1.99	0.37	0.10	0.36	0.43	0.53
Phenylalanine	1.83	0.08	0.03	0.33	0.62	0.38
Tryptophan	2.38	0.26	0.28	0.32	0.11	0.29
Serine	2.21	0.67	0.60	0.31	1.37	0.05
Threonine	2.09	0.57	0.49	0.87	1.35	0.09
Asparagine	2.01	0.76	0.97	0.16	1.70	0.09
Glutamine	2.17	0.44	0.28	0.19	0.27	0.02
Tyrosine	2.18	0.06	0.08	0.12	0.09	0.16
Lysine	2.18	0.36	0.44	0.63	0.49	0.11
Arginine	2.17	0.92	1.06	0.46	0.04	0.02
Cysteine	1.96	0.28	0.70	0.21	0.02	0.14
Histidine	1.82	2.34	2.78	2.48	1.89	0.38
Aspartic acid	1.89	1.35	1.31	0.85	1.09	0.03
Glutamic acid	2.19	0.75	0.71	0.28	0.34	0.04
MAD		0.56	0.57	0.46	0.59	0.14
SD		0.54	0.65	0.54	0.59	0.14

637
638
639
640
Table 1. Mean absolute deviation and standard deviation of $p K_{a 1}$ of amino acids calculated with the Isodesmic reaction compared to the experimental values.
Alanine was used as the reference species.

${ }^{\text {a }}$ Experimental values taken from Reference [32].

Table 2. Mean absolute deviation and standard deviation of $p K_{\mathrm{a} 2}$ of amino acids calculated with the Isodesmic reaction compared to the experimental values.
Alanine was used as the reference species.

	$\mathrm{p} K_{\mathrm{a} 2}$ $\left(\right.$ exptl. $\left.{ }^{a}\right)$	$\Delta \mathrm{p} K_{\mathrm{a} 2}$ $(\mathrm{M} 052 \mathrm{X})$	$\Delta \mathrm{p} K_{\mathrm{a} 2}$ $(\mathrm{M} 062 \mathrm{X})$	$\Delta \mathrm{p} K_{\mathrm{a} 2}$ $(\mathrm{~B} 3 \mathrm{YP})$	$\Delta \mathrm{p} K_{\mathrm{a} 2}$ $(\mathrm{PM} 2)$	$\Delta \mathrm{p} K_{\mathrm{a} 2}$ (ChemOffice)
Alanine (Ref)	9.69	-	-	-	-	0.5
Glycine	9.6	1.13	0.10	0.61	0.17	0.45
Valine	9.79	0.63	0.74	0.30	0.30	0.6
Iso-Leucine	9.68	0.64	0.69	0.56	0.63	0.54
Leucine	9.6	0.14	0.04	0.26	0.59	0.62
Methionine	9.21	0.03	0.87	0.00	1.20	0.85
Proline	10.60^{b}	2.13	1.79	1.55	2.36	0.78
Phenylalanine	9.12	0.06	0.14	0.21	0.00	0.81
Tryptophan	9.39	0.22	0.10	0.20	0.56	0.62
Serine	9.15	0.71	0.75	1.36	1.24	0.22
Threonine	9.1	0.90	0.99	0.89	0.84	0.35
Asparagine	8.8	0.22	0.50	0.29	0.40	1.35
Glutamine	9.13	0.30	0.41	0.19	1.40	0.38
Tyrosine	9.11	0.06	0.18	0.48	0.84	1.56
Lysine	8.94	0.32	0.71	0.08	0.52	0.84
Arginine	9.04	0.36	0.55	0.05	0.84	1.14
Cysteine	10.28	0.69	0.82	0.65	1.28	0.44
Histidine	9.16	0.49	0.39	0.15	0.83	0.82
Aspartic acid	9.6	0.62	0.85	0.82	1.06	0.55
Glutamic acid	9.67	0.31	0.77	0.01	1.13	0.52
MAD		0.52	0.60	0.46	0.85	0.70
SD		0.49	0.42	0.44	0.53	0.34

645
646
647
${ }^{a}$ Experimental values taken from Reference [32]. ${ }^{\mathrm{b}}$ Ref. [33]

Table 3. Absolute errors of $\mathrm{p} K_{\mathrm{a} 1}$ of peptides calculated with the Isodesmic reaction compared to the experimental values. GlycylGlycine was used as reference species.

	$\mathrm{p} K_{\mathrm{a} 1}$ $\left(\right.$ exptl. $\left.{ }^{\mathrm{a}}\right)$	$\Delta \mathrm{p} K_{\mathrm{a} 1}$ $(\mathrm{M} 052 \mathrm{X})$	$\Delta \mathrm{p} K_{\mathrm{a} 1}$ $(\mathrm{M} 062 \mathrm{X})$	$\Delta \mathrm{p} K_{\mathrm{a} 1}$ $(\mathrm{~B} 3 \mathrm{LYP})$	$\Delta \mathrm{p} K_{\mathrm{a} 1}$ (PM)	$\Delta \mathrm{p} K_{\mathrm{a} 1}$ (ChemOffice)
GlyGly	3.13	-	-	-	-	0.17
GlyVal	3.18	0.16	0.40	0.29	0.20	0.12
GlyPhe	3.23	0.33	0.47	0.10	1.70	0.39
GlyAla	3.15	0.85	0.72	0.64	1.45	0.10
AlaGly	3.16^{b}	0.10	0.43	0.34	0.93	0.22
AlaAla	3.32	2.08	1.95	1.01	0.35	0.29
AsnGly	2.90^{b}	0.97	0.68	0.18	2.34	0.24
ValGly	3.23	1.37	1.56	1.22	1.12	0.24
SerGly	3.10^{b}	0.31	0.63	0.26	0.80	0.07
SerLeu	3.08	0.87	1.94	0.45	3.32	0.01
AlaHis	2.64^{c}	2.45	2.23	2.13	0.44	0.16
GlyTyr	2.93	2.39	2.39	0.25	1.31	0.28
HisGly	2.40	1.04	0.57	0.21	0.36	0.42
GlyAsp	2.81	0.78	0.76	0.55	1.54	0.27
CysAsn	2.97	0.60	0.63	1.68	0.83	0.37
PheArg	2.66	0.37	0.14	0.53	1.01	0.06
LysAla	3.22^{b}	2.26	1.87	1.89	0.91	0.20
LeuTyr	3.46	1.90	1.37	0.73	1.53	0.85
TyrGly	2.98^{a}	0.28	0.97	0.33	0.52	0.11
LysGlu	2.93	2.93	1.29	1.86	2.33	1.10
TyrArg	2.65	0.15	0.12	0.54	0.66	0.07
HisLys	2.50^{e}	2.13	2.12	1.08	1.21	0.28
AspHis	-	-	-	-	-	-
GlyHis	-	-	-	-	-	-
GlyLys	2.96^{e}	0.01	0.07	0.31	0.47	0.04
AspGly	2.10^{b}	0.08	0.01	0.20	0.35	0.42
AlaGlyGly	3.19^{b}	0.12	0.18	0.07	4.26	0.42
GlyAlaAla	3.38	1.61	2.44	0.64	1.97	0.30
GlySerGly	3.32	0.41	0.35	0.96	0.21	0.36
GlyGlyGly	3.23	0.09	0.20	0.71	1.69	0.39
CysGlyGly	3.13^{b}	0.14	0.05	0.80	2.79	0.47
AlaLysAla	3.15^{b}	0.24	0.69	1.32	1.47	0.52
PheAlaArg	2.60^{b}	0.27	0.02	0.81	1.01	0.83
GlyHisLys	-	-	-	--	-	-
MAD		0.91	0.91	0.74	1.30	0.32
SD		0.89	0.79	0.57	0.96	0.25

${ }^{a}$ Experimental values taken from Reference [32] unless otherwise noted. ${ }^{b}$ Ref.
[33], ${ }^{\text {c Ref. [34], }}{ }^{\text {d Ref. [35], }}{ }^{\text {e Ref. [36] }}$

	$\begin{gathered} \mathrm{p} K_{\mathrm{a} 2} \\ \text { (exptl.) } \end{gathered}$	$\begin{gathered} \Delta \mathrm{p} K_{\mathrm{a} 2} \\ (\mathrm{M} 052 \mathrm{X}) \\ \hline \end{gathered}$	$\begin{gathered} \Delta \mathrm{p} K_{\mathrm{a} 2} \\ (\mathrm{M} 062 \mathrm{X}) \\ \hline \end{gathered}$	$\begin{gathered} \Delta \mathrm{p} K_{\mathrm{a} 2} \\ (\mathrm{~B} 3 \mathrm{LYP}) \end{gathered}$	$\begin{aligned} & \Delta \mathrm{p} K_{\mathrm{a}} \\ & (\mathrm{PM} 6) \end{aligned}$	$\begin{gathered} \Delta \mathrm{p} K_{\mathrm{a} 2} \\ \text { (ChemOffice) } \end{gathered}$
GlyGly	8.25	-	-	-	-	0.71
GlyVal	8.18	0.34	0.22	0.59	1.68	0.61
GlyPhe	8.11	1.64	1.52	1.54	0.77	0.58
GlyAla	8.33	0.03	0.37	0.08	2.14	0.77
AlaGly	$8.24{ }^{\text {b }}$	0.27	0.16	0.53	2.17	0.57
AlaAla	8.13	1.24	0.99	0.92	1.47	0.43
AsnGly	$7.25{ }^{\text {b }}$	0.10	0.65	0.16	2.15	0.98
ValGly	8.00	0.91	1.17	1.61	0.49	0.31
SerGly	$7.33{ }^{\text {b }}$	0.49	0.76	1.04	0.64	0.47
SerLeu	7.45	0.34	0.51	0.61	2.59	0.55
AlaHis	$9.40^{\text {c }}$	0.16	0.21	0.45	4.26	0.37
GlyTyr	8.45	0.72	0.11	0.17	0.18	0.91
HisGly	7.82	0.51	0.80	2.56	3.74	0.36
GlyAsp	8.60	0.68	0.64	0.39	1.34	1.04
CysAsn	8.47	2.43	3.02	3.31	0.66	1.25
PheArg	7.57	0.14	0.15	0.25	2.20	0.16
LysAla	$8.47{ }^{\text {b }}$	0.41	0.69	0.47	2.70	1.18
LeuTyr	7.84	1.05	0.73	1.32	0.03	0.14
TyrGly	$8.00{ }^{\text {a }}$	0.12	0.18	0.32	1.44	0.56
LysGlu	7.75	0.88	0.47	0.08	0.82	0.64
TyrArg	7.39	0.54	0.77	0.26	0.89	0.05
HisLys	$7.41^{\text {e }}$	0.23	0.45	0.70	2.01	0.07
AspHis	$7.98{ }^{\text {b }}$	2.49	2.43	1.23	3.60	0.64
GlyHis	8.20	2.49	2.43	1.23	3.60	0.32
GlyLys	$8.01{ }^{\text {e }}$	1.35	1.56	1.29	0.56	0.46
AspGly	$9.07{ }^{\text {b }}$	1.69	1.84	1.93	4.28	1.43
AlaGlyGly	$8.15{ }^{\text {b }}$	0.36	0.47	0.55	3.29	0.83
GlyAlaAla	8.10	0.33	1.03	1.29	1.24	0.89
GlySerGly	7.99	0.04	0.28	0.46	2.49	0.87
GlyGlyGly	8.09	0.29	0.18	0.13	3.31	0.9
CysGlyGly	$6.95{ }^{\text {b }}$	4.43	4.71	4.58	0.46	0.04
AlaLysAla	$7.65{ }^{\text {b }}$	0.50	0.62	0.49	1.53	0.32
PheAlaArg	$7.54{ }^{\text {b }}$	0.12	0.49	0.20	2.25	0.46
GlyHisLys	$8.06{ }^{\dagger}$	0.84	0.09	0.23	0.96	0.85
MAD		0.81	0.88	0.92	1.76	0.61
SD		0.91	0.96	0.99	1.12	0.35

Table 4. Absolute errors of $\mathrm{p} K_{\mathrm{a} 2}$ of peptides calculated with the Isodesmic reaction compared to the experimental values. GlycylGlycine was used as reference species.
${ }^{a}$ Experimental values taken from Reference [32] unless otherwise noted. ${ }^{\text {c }}$ Ref. [33], ${ }^{\text {d } R e f . ~[34], ~}{ }^{\text {e } R e f . ~[35], ~}{ }^{\text {f Ref. [36], }}{ }^{9}$ Ref. [37]

Table 5. Mean absolute deviation (MAD) of $\mathrm{p} K_{\mathrm{a} 1}$ and $\mathrm{p} K_{\mathrm{a} 2}$ of amino acids and peptides calculated with M05-2X with various reference species.

	$\mathrm{p} K_{\mathrm{a} 1}$		$\mathrm{p} K_{\mathrm{a} 2}$		
Reference	Amino acids	Peptides	Reference	Amino acids	Peptides
Alanine	0.56	1.02	Alanine	0.52	1.44
GlyGly	0.87	0.91	GlyGly	2.10	0.81
Acetic acid	2.63	2.06	Ethylamine	1.46	0.81

676

Table 6. Absolute errors of $\mathrm{p} K_{\mathrm{a} 3}$ calculated with the Isodesmic reaction compared to the experimental values.

	$\begin{gathered} \mathrm{pK}_{\mathrm{a} 3} \\ (\mathrm{exptl} .) \end{gathered}$	$\begin{gathered} \Delta \mathrm{p} K_{\mathrm{a} 3} \\ (\mathrm{M} 052 \mathrm{X}) \end{gathered}$	$\begin{gathered} \Delta \mathrm{p} K_{\mathrm{a} 3} \\ (\mathrm{M} 062 \mathrm{X}) \end{gathered}$	$\begin{gathered} \Delta \mathrm{p} K_{\mathrm{a} 3} \\ \text { (B3LYP) } \end{gathered}$	$\Delta \mathrm{p} K_{\mathrm{a} 3}$ (PM6)	$\begin{gathered} \Delta \mathrm{p} K_{\mathrm{a} 3} \\ \text { (ChemOffice) } \end{gathered}$
Lysine						
Lys (ref.)	$10.53{ }^{\text {a }}$	-	-	-	-	0.24
LysGlu	$10.50^{\text {a }}$	0.38	0.58	0.60	2.13	0.36
GlyLys	$10.50{ }^{\text {b }}$	0.24	0.27	0.06	0.00	0.35
HisLys	$10.49^{\text {b }}$	0.02	0.28	0.58	0.50	0.34
LysAla	$10.70^{\text {a }}$	0.14	0.05	0.95	2.14	0.55
AlaLys	$10.70^{\text {b }}$	0.26	0.39	0.03	1.00	0.36
AlaLysAla	$10.30^{\text {c }}$	0.29	0.39	0.48	2.18	0.30
LysD-Ala	$10.63{ }^{\text {b }}$	0.65	0.78	0.59	1.78	0.48
GlyHisLys	$10.71{ }^{\text {d }}$	1.68	1.10	1.30	2.71	0.57
GlyGlyLysAla	11.10^{e}	2.28	1.08	0.38	3.54	1.10
MAD		0.66	0.55	0.55	1.78	0.47
SD		0.78	0.37	0.40	1.11	0.25
Arginine						
Arg (ref.)	$12.47^{\text {a }}$	-	-	-	-	3.88
PheArg	$12.40{ }^{\text {a }}$	0.00	0.00	0.00	0.00	3.76
TyrArg	$11.62^{\text {a }}$	1.64	2.20	0.71	1.42	2.98
PheAlaArg	$12.43{ }^{\text {c }}$	0.38	0.31	2.29	0.59	3.79
MAD		0.78	1.66	0.72	0.73	3.60
SD		0.93	1.39	1.24	0.92	0.42
Histidine						
His (ref.)	$6.00^{\text {a }}$	-	-	-	-	-
AlaHis	$6.72{ }^{\text {f }}$	1.10	1.81	2.31	0.78	-
HisGly	$5.80{ }^{\text {a }}$	1.38	2.51	4.58	2.84	-
HisLys	$5.91{ }^{\text {b }}$	1.93	2.73	2.18	2.45	-
AspHis	$6.82{ }^{\text {a }}$	0.52	0.98	1.01	0.02	-
GlyHis	$6.77^{\text {a }}$	0.48	0.99	0.64	0.70	-
GlyHisLys	$6.60{ }^{\text {d }}$	2.00	2.23	2.54	0.89	-
GlyHisGly	$6.62{ }^{\text {d }}$	1.93	2.24	2.69	0.13	-
GlyGlyHisAla	$7.00{ }^{\text {e }}$	1.51	1.01	2.71	0.38	-
TyrHisOMe	6.41^{\dagger}	2.17	2.59	3.05	1.95	-
GluHisOMe	$6.44{ }^{\dagger}$	2.34	2.94	2.76	1.81	-
MAD		1.53	2.00	2.45	1.19	-
SD		0.66	0.76	1.08	1.00	-
Cysteine						
Cys (ref.)	$8.18^{\text {a }}$	-	-	-	-	-
CysAsn	$7.09{ }^{\text {a }}$	0.24	0.20	0.09	1.49	-
CysGlyGly	$6.36{ }^{\text {c }}$	0.88	1.24	1.06	0.93	-
MAD		0.56	0.72	0.57	1.21	-
SD		0.45	0.73	0.69	0.39	-
Tyrosine						
Tyr (ref.)	$10.60^{\text {a }}$	-	-	-	-	1.25
GlyTyr	$10.49^{\text {a }}$	2.45	1.97	0.23	0.63	1.08
TyrArg	$9.36{ }^{\text {a }}$	1.10	1.32	0.81	0.82	0.17
LeuTyr	$10.09^{\text {a }}$	0.86	1.02	0.71	1.82	0.69
TyrGly	10.51^{9}	0.18	0.01	0.12	1.43	0.97
GlyGlyTyrAla	$10.30^{\text {e }}$	0.80	0.22	0.33	2.03	0.88
D-LeuTyr	$10.35{ }^{\text {a }}$	0.62	0.30	1.00	1.01	0.95
TyrHisOMe	$9.69^{\text { }}$	0.20	0.17	0.74	0.13	0.16
MAD		0.89	0.72	0.56	1.13	0.77
SD		0.77	0.74	0.34	0.67	0.41
Glu/Asp						
Glu (ref.)	$4.25{ }^{\text {a }}$	-	-	-	-	1.20
Asp	$3.65{ }^{\text {a }}$	1.07	1.76	0.42	0.60	1.79
LysGlu	$4.47{ }^{\text {a }}$	0.14	0.74	0.16	0.42	0.44
GlyGlyGluAla	$4.30^{\text {e }}$	0.22	0.56	0.27	0.31	0.06
GlyAsp	$4.45{ }^{\text {a }}$	1.58	2.15	1.33	0.14	0.80
GlyGlyAspAla	$3.90{ }^{\text {e }}$	0.53	1.70	1.83	0.87	0.24
GluHisOMe	$3.79{ }^{\text {f }}$	0.04	0.18	1.03	0.93	0.66
AspGly	$4.53{ }^{\text {c }}$	0.84	0.27	0.93	0.21	2.76
MAD		0.63	1.05	0.85	0.50	0.99
SD		0.56	0.80	0.61	0.31	0.90
All						
MAD		0.94	1.13	1.16	1.17	1.11
SD		0.75	0.87	1.05	0.89	1.14

Table 7. Mean absolute deviations and standard deviations of $p K_{\mathrm{a} 3}$ calculated with the Isodesmic reaction and simple organic molecules as reference species ${ }^{\text {a }}$.

	$\Delta \mathrm{p} K_{\mathrm{a} 3}$ $(\mathrm{M} 052 \mathrm{X})$	$\Delta \mathrm{p} K_{\mathrm{a} 3}$ $(\mathrm{M} 062 \mathrm{X})$	$\Delta \mathrm{p} K_{\mathrm{a} 3}$ $(\mathrm{~B} 3 \mathrm{YP})$	$\Delta \mathrm{p} K_{\mathrm{a} 3}$ $(\mathrm{PM} 6)$
Lysine				
MAD	0.59	0.48	0.48	1.54
SD	0.76	0.49	0.35	1.13
Arginine				
MAD	1.52	0.99	1.67	0.69
SD	0.89	0.84	1.28	0.54
Histidine				
MAD	0.63	0.77	0.92	1.90
SD	0.43	0.52	0.81	1.04
Cysteine				
MAD	2.34	2.46	1.94	2.58
SD	0.46	0.66	0.59	0.75
Tyrosine				
MAD	1.46	0.71	0.77	2.17
SD	0.61	0.71	0.47	1.25
Glu/Asp				
MAD	0.70	1.22	0.89	2.24
SD	0.42	0.87	0.52	0.53
All				
MAD	$\mathbf{0 . 9 8}$	$\mathbf{0 . 9 1}$	$\mathbf{0 . 9 3}$	$\mathbf{1 . 8 7}$
SD	$\mathbf{0 . 7 7}$	$\mathbf{0 . 7 9}$	$\mathbf{0 . 7 5}$	$\mathbf{1 . 0 5}$

${ }^{\text {a }}$ Organic molecule reference species (i.e. ethylamine, ethylguanidinium, 4methylimidazole, ethanethiol, phenol and acetic acid).

Table 8. Absolute errors of $p K_{a 3}$ calculated with thermodynamic cycles or the isodesmic reaction compared to the experimental values.

	$\begin{gathered} \mathrm{p} K_{\mathrm{a} 3} \\ \text { (exptl.) } \end{gathered}$	C1	C2	C3	Isodesmic reaction
Tyr	$10.60{ }^{\text {c }}$	5.15	6.09	-	-
GlyTyr ${ }^{\text {b }}$	$10.49^{\text {c }}$	1.12	2.06	4.03	2.46
LeuTyr	$10.09^{\text {c }}$	3.81	2.87	8.96	0.86
TyrGly	$10.12{ }^{\text {d }}$	5.09	6.03	0.06	0.21
GlyGlyTyrAla	$10.30^{\text {e }}$	3.32	4.26	1.83	0.80
D-LeuTyr	$10.35{ }^{\text {c }}$	2.23	1.28	7.37	0.62
TyrHisOMe	$9.69{ }^{\text { }}$	0.37	0.57	5.52	0.19
PheArg	$12.40{ }^{\text {c }}$	22.43	21.48	- ${ }^{\text {a }}$	1.65
PheAlaArg	$12.43{ }^{\text {g }}$	31.10	30.15	$-^{\text {a }}$	0.79
TyrHisOMe	6.41^{\dagger}	0.98	1.93	- ${ }^{\text {a }}$	2.18
MAD		7.56	7.67	4.63	1.08
SD		10.46	9.95	3.35	0.82

${ }^{\text {a }}$ Omitted values because restraints to one or more species in the gas phase calculations were required. ${ }^{\mathrm{b}}$ Residues of which $\mathrm{p} K_{\mathrm{a}}$ are calculated are shown in bold. ${ }^{\mathrm{C}}$ Ref. [32], ${ }^{\mathrm{d}}$ Ref. [35], ${ }^{\mathrm{e}}$ Ref. [38], ${ }^{\dagger}$ Ref. [39], ${ }^{9}$ Ref. [33].

Table 9. Absolute errors of $\mathrm{p} K_{\mathrm{a} 1}, \mathrm{p} K_{\mathrm{a} 2}$ and $\mathrm{p} K_{\mathrm{a} 3}$ calculated with the Isodesmic reaction and PM6 by considering a conformational ensemble.

	$\mathrm{N}^{\text {a }}$	$\begin{gathered} \mathrm{p} K_{\mathrm{a} 1}{ }^{\mathrm{d}} \\ \left(\text { exptl. }{ }^{\mathrm{d}}\right. \end{gathered}$	$\Delta \mathrm{p} K_{\mathrm{a} 1}$ (PM6)	$\begin{gathered} \mathrm{p} K_{\mathrm{a} 2}{ }^{\mathrm{d}} \\ \text { (exptl. }{ }^{\text {a }} \end{gathered}$	$\Delta \mathrm{p} K_{\mathrm{a} 2}$ (PM6)	$\begin{gathered} \mathrm{p} K_{\mathrm{a} 3}{ }^{\mathrm{d}} \\ \text { (exptl. }{ }^{\mathrm{d}} \end{gathered}$	$\begin{aligned} & \hline \mathrm{p} K_{\mathrm{a3}}{ }^{\mathrm{b}} \\ & (\mathrm{PM} 6) \\ & \hline \end{aligned}$
Alanine	25	2.34	-	9.69	-		
Aspartic acid	38	1.89	1.17	9.6	1.21	3.65	1.94
Glutamic acid	57	2.19	0.16	9.67	2.25	4.25	2.50
Histidine	67	1.82	0.18	9.16	0.81	6.0	0.93
Lysine	61	2.18	0.36	8.94	0.17	10.53	0.57
Arginine	60	2.17	0.03	9.04	0.18	12.47	0.12
Tyrosine	46	2.18	0.30	9.11	0.84	10.6	1.71
Cysteine	40	1.71	0.07	10.78	2.49	8.18	2.65
MAD			0.33		1.14		1.49
SD			0.39		0.92		0.97
MAD ${ }^{\text {c }}$			0.59		0.9		1.87
SD ${ }^{\text {c }}$			0.59		0.62		1.05

${ }^{a}$ Total number of conformations used in the calculation. ${ }^{\text {b }}$ Organic molecules were used as reference species for the calculation of $\mathrm{p} K_{\mathrm{a} 3}$. ${ }^{\text {}}$ MAD and SD values calculated with a single structure for each protonation state. ${ }^{d}$ Ref. [32].

Table 10. Mean absolute deviations and standard deviations of $\mathrm{p} K_{\mathrm{a} 1}, \mathrm{p} K_{\mathrm{a} 2}$ and $\mathrm{p} K_{\mathrm{a} 3}$ of peptides calculated with the Isodesmic reaction and PM6 by using the minimum energy conformer as an initial structure.

	PM6	PM6 minimum energy conformer in vacuum
$\Delta \mathrm{p} K_{\mathrm{a} 1}{ }^{\mathrm{a}}$	1.30 ± 0.96	2.40 ± 1.77
$\Delta \mathrm{p} K_{\mathrm{a} 2}$	1.80 ± 1.18	1.62 ± 1.51
$\Delta \mathrm{p} K_{\mathrm{a} 3}$ total ${ }^{\mathrm{b}}$	1.17 ± 0.89	2.13 ± 1.51
$\Delta \mathrm{p} K_{\mathrm{a} 3}$ lys.	1.78 ± 1.11	1.99 ± 1.75
$\Delta \mathrm{p} K_{\mathrm{a} 3}$ arg.	0.92 ± 0.44	3.41 ± 2.97
$\Delta \mathrm{p} K_{\mathrm{a} 3}$ his.	1.19 ± 1.00	2.61 ± 1.15
$\Delta \mathrm{p} K_{\mathrm{a} 3}$ cys.	1.21 ± 0.39	1.46 ± 1.57
$\Delta \mathrm{p} K_{\mathrm{a} 3}$ tyr.	1.13 ± 0.67	1.83 ± 1.09
$\Delta \mathrm{p} K_{\mathrm{a} 3}$ glu.lasp.	0.50 ± 0.31	1.55 ± 1.27

${ }^{\text {a }}$ Errors reported as the mean absolute deviations (MAD) \pm standard deviation (SD). ${ }^{\mathrm{b}}$ Amino acids were used as reference species for the calculation of $\mathrm{p} K_{\mathrm{a} 3}$.

[^0]: [a] Mr. Sebastià Sastre, Dr. Francisco Muñoz and Dr. Juan Frau Department de Química, Universitat de les Illes Balears Palma de Mallorca 07122, Spain
 E-mail: juan.frau@uib.es
 [b] Dr. Rodrigo Casasnovas
 Institute of Neuroscience and Medicine INM-9, Institute for Advanced Simulations IAS-5. Computational Biomedicine, Forschungszentrum Jülich 52428, Germany
 [c] Dr. Francisco Muñoz and Dr. Juan Frau Instituto de Investigación Sanitaria de Palma (IdISPa), 07010, Palma, Spain

