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Staircase patterns of nuclear fluxes during coherent tunneling in 

excited doublets of symmetric double well potentials 

ChunMei Liu,a,b Jörn Manza,b,c and Yonggang Yanga,c 

Tunneling isomerizations of molecules with symmetric double well potentials are associated with periodic nuclear fluxes, 

from the reactant R to the product P and back to R. Halfway between R and P the fluxes achieve their maximum values at 

the potential barrier. For molecules in the lowest tunneling doublet (v=0) the rises and falls to and from the maximum 

values are approximately bell-shaped. Upon excitations to higher tunneling doublets v=1,2, etc, however, this shape is 

replaced by symmetric "staircase patterns" of the fluxes, with v+1 steps up and down in the domains of R and P, 

respectively. The quantum derivation of the phenomenon is universal. It is demonstrated here for a simple model of 

nuclear fluxes during tunneling isomerization of ammonia along the umbrella inversion mode, with application to 

separation of isotopomers. 

Introduction 

The quantum theory of concerted electronic and nuclear fluxes 

(CENFs) in molecules that react from reactants (R) to products 

(P) by coherent tunneling in symmetric double well potentials 

has been presented recently, as part of the Perspective.1 The 

results therein are for tunneling in the lowest tunneling 

doublet (labeled by quantum number v=0) that is supported by 

the double well potential. Extensions to nuclear fluxes during 

coherent tunneling in asymmetric double well potentials have 

also been published recently, again for the lowest tunneling 

doublet, v=0.2 

The purpose of this paper is to extend the previous 

investigation1 to coherent tunneling in excited tunneling 

doublets, v=1,2,....This extension is motivated by various 

discoveries for tunneling in the doublet v=0, which serves as a 

reference. For example, all CENFs by tunneling in v=0 flow 

synchronously.1 The derivation in Ref. 1 is valid for arbitrary 

molecular processes which involve two eigenstates, hence the 

synchronicity of the CENFs holds not only for tunneling in the 

ground state doublet v=0, but also in excited doublets v=1,2,.... 

Focusing on nuclear fluxes during tunneling in doublet v=0, it 

has been shown that these fluxes can be written as products of 

spatial times temporal factors1-5. The temporal factor accounts 

for periodic tunneling from R to P and back to R, during the 

tunneling time τ  that is related to the tunneling splitting e∆  

by Hund's famous equation .e hτ ⋅ ∆ = 6 Hund's derivation6 

implies that this relation holds for all tunneling doublets 

v=0,1,2,... 

                                                .e h∆ ⋅ =ν ντ                                   (1) 

The spatial factors of the nuclear fluxes during tunneling in 

doublet v=0 are symmetric, with bell-shaped rises and falls in 

the domains of R and P, from zero via maximum values back to 

zero.1-5 The maxima are half way between R and P, at the 

potential barrier between R and P. On first glance, this result 

appeared paradoxical because the nuclear density is always 

localized at either R or P, but never at the potential barrier. 

How can the flux then have its maximum at the barrier? This 

result was rationalized by saying that the systems do not like 

to tunnel, instead they prefer to stay in configurations R or P. 

But since quantum mechanics dictates that they must tunnel 

from R to P and back to R,6 they make it through the barrier as 

fast as possible, hence the fluxes achieve their maximum 

values at the barrier.5 Quite unexpectedly, it was discovered 

that the bell-shaped symmetry of the nuclear fluxes holds not 

only during tunneling in symmetric double well potentials, but 

also in asymmetric ones.2 All these phenomena associated 

with nuclear fluxes in the ground-state doublet (v=0), which 

are rather surprising, motivated the present search for 

additional effects engendered by tunneling in excited doublets 

(v= 1,2,...) of molecules with symmetric double well potentials. 

A key question is whether the symmetric spatial bell-type 

shapes of the fluxes for v=0 persist for tunneling in excited 

doublets v=1,2,... Different shapes, e.g. quantum carpet type7 

or quantum accordion type8 patterns have already been 

discovered for nuclear fluxes at even higher energies, beyond 

tunneling. 

The results will be demonstrated for a simple example. The 

new phenomenon is universal, however, i.e. it holds for all 

molecules with symmetric double well potentials. At the end 

of this paper, we also propose an experiment for separation of 

isotopomers by tunneling in different levels v=0 and v>0. 
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In view of the Perspective1, this paper should make a new 

contribution to the emerging field of research on 

intramolecular fluxes, including nuclear2-12, electronic13-29 as 

well as CENFs.1,30-43 The general importance of intramolecular 

fluxes in reaction dynamics and the microscopic foundation of 

chemical kinetics is documented in the monography (44). 

Model, theory and methods  

As model system for demonstrations of nuclear fluxes during 

tunneling in excited doublets v=1,2,... of double well potentials, and 

for comparisons with the phenomena in the ground state doublet 

v=0, we adapt the one-dimensional (1D) model of tunneling 

isomerization of ammonia by umbrella inversion from Ref. (45), see 

also Ref. (46). The model assumes conservation of C3v symmetry, 

fixed NH bond lengths, fixed molecular orientation, and fixed 

nuclear center of mass. In the NCM frame, the protons move along 

equivalent arcs about the nucleus of the nitrogen atom. These arcs 

define the nuclear coordinate q for umbrella inversion. The 

corresponding symmetric 1D double-well potential ( ) ( )V q V q= −  is 

adapted from Ref. (45). It is shown in Figures 1, 2, 3 below; it has 

also been used in Refs. (2,4,5). Its barrier height,
1( 0) 2022.18 cmbV V q hc
−= = = ⋅ , is attained at the planar 

configuration, 0q = Å. The "left" and "right" potential minima,
1( ) ( ) 0 cmR PV q V q hc
−= = ⋅  at 0.3925R Pq q± = = ±∓ Å, specify the 

classical configurations of the "reactant" (R) and "product" (P). For 

convenience the associated domains of the "left" (q<0) and "right" 

(q>0) potential wells are defined as R and P, respectively. The 

model uses isotopomer (subscript "i") selective reduced masses 
iµ

45. It is validated by excellent agreement of the calculated and 

experimental mean energies 
ieν  and tunneling splittings

ie∆ ν  for all 

levels v below 
bV  and for all isotopomers14NH3, 15NH3, 14ND3, 15ND3, 

14NT3, as documented in Table 145-55. Here these isotopomers are 

labeled i=1,2,...,5, respectively. Table 1 also lists the tunneling times 

i ih e= ∆ν ντ  (see eqn. (1)), and results predicted for 15NT3 (i=6). 

Evidently the tunneling times decrease with decreasing mass
iM  

and corresponding reduced mass
iµ  of the isotopomer, and also 

with excitation to higher levels v of the tunneling doublets.  
The tunneling doublets of isotopomers i with levels v = 0, 1, 2, ... 

are characterized by their mean energies ( ) 2i i ie e e+ −= +ν ν ν  and 

their tunneling splittings 
i i ie e e− +∆ = −ν ν ν . These are defined in 

terms of the eigen-energies 
ie +ν  and 

ie −ν  with parities + and -. The 

eigen-energies are determined, together with the corresponding 
orthonormal sets of eigenfunctions ( )i q+νφ  and ( )i q−νφ , by 

diagonalizing the 1D model Hamiltonian 
2 2

2
( )

2 i

H V q
qµ
∂

= − +
∂

ℏ
 by 

means of the fast Fourier Transform (FFT) discrete-variable 
representation (DVR). The corresponding normalized wavefunctions 
and nuclear probability densities (NPDs) representing R and P of 

isotopomers i in levels v are , ( ) 2i R i i+ −= +ν ν νψ φ φ , 
2

, ,i R i R=ν νρ ψ  

and , ( ) 2i P i i+ −= − +ν ν νψ φ φ , 
2

, ,i P i P=ν νρ ψ , respectively.1,2 The 

NPDs of R and P are mirror images of each other, 

, ,( ) ( )
i R i P

q q= −ν νρ ρ .                                (2) 

The nodal structures of the eigenfunctions imply simple lobe-

structures of the NPDs of R and P. Specifically, , ( )
i R

qνρ  and 

, ( )
i P

qνρ  consist of v bell-shaped lobes in the domains of R and P, 

respectively. The lobes are well separated from each other. The 

relation (2) implies that these lobes are also mirror images of each 

other in the domains of R and P. In contrast, the NPDs of R and P 

are entirely negligible in the complementary domains of P and R, 

respectively. 

Starting from R in level v, the NPD of isotopomer i evolves as1,2 

2
, , , ,( , ) ( ) ( ) ( ) sin ( )i R i R i P i Rq t q q q t = + − ν ν ν νρ ρ ρ ρ π τ .      (3) 

Accordingly it oscillates periodically as the system tunnels from R at 

t = 0, 
iντ , 2 iντ , ... etc to P at 2it = ντ , 3 2iντ , 5 2iντ , and back to 

R. The resulting nuclear flux density (NFD) or flux is1,2 

0
, , ,( , ) ( ) ( ) ( )sin(2 )

q

i R i R i P iviv
q

j q t q q dq t′ ′ ′ = − ⋅ ∫ν ν νρ ρ π τ π τ          (4) 

Apparently, the nuclear flux depends on the level v of 

isotopomer i. Eqn. (4) also confirms that the nuclear fluxes are 

products of spatial times temporal factors. The temporal factor is 

sinusoidal with amplitude
iνπ τ  and period

iντ , corresponding to 

alternating positive and negative flux during tunneling from R to P 

and back to R during time intervals (0, 2iντ ), (
iντ , 3 2iντ ), ... etc., 

and ( 2iντ ,
iντ ), ( 3 2iντ , 2 iντ ), ... etc., respectively. The spatial 

factor is an integral of the difference , ,( ) ( )
i R i P

q q−ν νρ ρ  of the 

densities of R and P. The lower integration limit 0 1.0q = − Å is 

chosen such that the integrand is negligible for 0q q< . The relation 

(2) implies that the differences of the NPDs are antisymmetric, 

, , , ,( ) ( ) ( ) ( )i R i P i R i Pq q q q − = − − − − ν ν ν νρ ρ ρ ρ .                          (5) 

Furthermore, the dominant contributions to the differences of 

the NPDs in the domains of R and P are , ( )
i R

qνρ and , ( )
i P

qνρ , 

respectively. Their lobe-structures are, therefore, also 

antisymmetric, in accord with eqn (5). The antisymmetry (5) yields 

the symmetry of the NFDs, 

, ,( , ) ( , )
i R i R
j q t j q t= −ν ν .                      (6) 

Hence, the rises of the spatial factors of the fluxes (4) in the 
domain of R (from 0 at q0 to maximum values at q=0) are mirror 
images of their falls in the domain of P. The normalizations of the 

NPDs ( , ( ) 1i R q dq
+∞

−∞
=∫ νρ and , ( ) 1i P q dq

+∞

−∞
=∫ νρ ) imply that the 

maximum values of the spatial profiles are close to 1. As a 
consequence, all the fluxes reach their maximum values (

i≈ νπ τ ) 

at the potential barrier (q=0), halfway between R and P (at 
4it = ντ ). 

Results and discussions 

We are now ready for the key point of this paper. It is based on 

expression (4) for the NFDs, on the antisymmetry (5), and on the 

lobe-structure of the difference of the NPDs (see the discussions 

after eqns. (2) and (5)). The differences of the NPDs of R and P are 

illustrated in Figures 1a, 2a, 3a, exemplarily for levels v=0, 1, 2 of 

isotopomers i=1 (14NH3), 1 and 5 (14NT3), respectively. The spatial 

integral (4) in the domain of R encompasses the successive lobes of

, ( )
i R

qνρ starting from the lobe nearest to q0. Each of these positive 

lobes thus adds a "step" to the value of the flux. The NPD of an 

isotopomer in level v has v+1 lobes that generate, therefore, the 

nuclear tunneling flux with v+1 "steps up" in the domain of R. 

Likewise, , ( )
i P

q− νρ  in the domain of P has v+1 negative lobes 

which appear as the inverse of the positive lobes in the domain of R. 

Integration of these lobes yields the flux in the domain of P with 
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corresponding v+1 "steps down". Altogether the spatial profile of 

the nuclear flux appears as a symmetric staircase with v+1 steps up 

and down in the domains of R and P, respectively. This is illustrated 

in Figures 1b, 2b, 3b, for the cases of v+1=1, 2, 3 "steps up and 

down" for isotopomers i=1,1,5 in levels v=0, 1, 2, respectively. For 

example, Figure 2a shows the difference of the NPDs of 14NH3(v=1) 

with two positive lobes in the domain of R which are separated 

from each other at 1 0.369Rq = − Å. Accordingly, the nuclear flux 

shown in Figure 2b has two steps up in the domain of R, also 

separated at 1 0.369Rq = − Å. Likewise, the difference of the NPDs 

has corresponding two negative lobes in the domain of P, causing 

two steps down in the nuclear flux, separated at 1 0.369Pq = Å. 

Figures 3a and 3b for 14NT3 show analogous separations of three 

positive plus three negative lobes of the difference of the NPDs in 

the domains of R and P, causing three steps up and down in the 

nuclear fluxes, separated at 1 0.430Rq = − Å, 2 0.296Rq = − Å and at 

1 0.430Pq = Å, 2 0.296Pq = Å, respectively. In retrospect, the 

example of 14NH3(v=0) shown in Figures 1a and 1b (adapted from 

Ref. (2)) appear as special case with single positive and negative 

lobes of the difference of the NPDs in the domains of R and P, 

corresponding to one-step rises and falls of the nuclear densities in 

the domains of R and P, respectively. Finally, the corresponding 

NPDs (3) and NFDs (4) are illustrated by contour diagrams in Figures 

1c, 2c, 3c and 1d, 2d, 3d, respectively. The results for isotopomers 
15NH3 (i=2) and 15NT3 (i=6) in levels 0, 1 and 2 are similar to those of 
14NH3 (i=1) and 14NT3 (i=5); in fact they are almost indistinguishable 

on the scale of Figures 1, 2, 3.  

Conclusions and outlook 

The present "staircase patterns" of nuclear fluxes are 

complementary to patterns of "quantum carpets" and the 

"quantum accordion" which have been reported in Refs. (7) 

and (8), respectively. They may be monitored experimentally, 

e.g., by means of pump-probe spectroscopy, see Ref. (8). It is 

easy to predict analogous staircase patterns of nuclear fluxes 

in systems with cyclic symmetric double-well potentials (e.g. in 

molecules with torsional degrees of freedom.4,5) The cyclic 

boundary condition opens two equivalent clockwise and 

anticlockwise paths for tunneling from one potential minimum 

representing R to the opposite one representing P. Symmetry 

breaking by external electric fields may support one of the 

paths while suppressing the other.2 As a consequence, 

clockwise tunneling from R to P will alternate with anti-

clockwise tunneling from P to R, which is reminiscent of 

alternating clockwise-anticlockwise electron circulations.56,57 

Again, the nuclear tunneling fluxes in excited states will exhibit 

staircase patterns. 

Finally, as an outlook, we propose an experiment that 

makes use of tunneling in ground state and excited state 

doublets, for separations of isotopomers. The concept is 

adapted from Quack's approach to the even more demanding 

task, distinction of left- and right-handed enantiomers 

embedded in corresponding double well potentials, by means 

of the parity-violating energy difference 
PVE∆  due to weak 

currents.58-61 Quack's strategy consists of several steps, here 

we focus on the following. (For consistency of the notation in 

this paper, we allow the possibility of various molecular 

isotopomers i.) Consider first the scenario without weak 

currents. In order to be distinguishable, the different 

enantiomers must be separated by a very high potential 

barrier. As a consequence, the splittings
ie∆ ν  of the lowest 

doublets are extremely narrow6. Now let us turn on the 

"perturbation" 
PVE∆  of the weak current. There are two 

limiting cases which are labeled by (7b), (7c), and by analogy 

(9b), (9c) below. If the ratio 

,i PV i PV
r e E= ∆ ∆ν ν                               (7a) 

is much larger than 1, 

, 1
i PV
r >>ν ,                               (7b) 

then the perturbation 
PVE∆  is negligible and the system is 

dominated by the properties of the double-well potential, thus 

supporting delocalized eigenstates as described above. On the 

other hand, if 

, 1
i PV
r <<ν ,                                (7c) 

then the "perturbation" 
PVE∆  is dominant. Consequently the 

molecular eigenstates are localized, representing either left- or 

right-handed enantiomers. Quack considers the scenario (7c). 

His trick for measuring 
PVE∆  is to prepare the system in a 

parity-selective state in an excited doublet. Since this state is 

not an eigenstate of the system, it evolves from one parity to 

the other with period 

/PV PVh E= ∆τ ,                           (8) 

analogous to eqn. (1).58-61 
We propose an analogous trick for separating the least 

abundant isotopomer 15NT3 (i=6) from all others (i=1,2,...,5). 
Instead of perturbations of the molecular double-well 
potentials by weak currents, we introduce perturbations by a 

z-polarized external electric field m

dE
E E z

dz
= + ⋅  with mean 

value 
mE  and inhomogeneity 

dE

dz
. For simplicity, we assume 

that the ammonia molecules have been oriented along z (e.g., 
by the methods of Refs. (62-65)). Accordingly the ratio (7a) is 
replaced by 

, mi E i i m ir e d E+ −= ∆ − ⋅ν ν ν νφ φ                (9a) 

where i m id E+ −− ⋅ν νφ φ  is the interaction of the electric field 

mE  with the transition dipole (d) of isotopomer i at doublet v. 

As for the limits (7b), (7c), the cases 

, 1
mi E

r >>ν                           (9b) 

and 

, 1
mi E

r <<ν                                 (9c) 
yield delocalized and localized eigenstates, respectively. 
Reactant states, which are constructed as superpositions of 
the delocalized states tend to tunnel periodically, as described 
above. Hence the long time averages of the dipoles (called 

"mean dipoles" below) approach the zero limit, 0ivd → . In 

contrast, case (9c) blocks tunneling, that means the reactants 
remain trapped in the reactant well of the double-well 
potential, and the mean dipoles approach the rather large 

values of the reactants, iv iv R
d d→ .2 

For any given isotopomer i in level v with tunneling 
splitting 

ive∆  one can choose sufficiently weak or strong 

electric fields 
mE  in order to achieve the limits (9b) or (9c), 

respectively. Specifically, for an electric field of about 80kV/m, 
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isotopomers i=1,2,3,4 in level v=0 (the dominant level at low 
temperature) as well as i=5 excited to v=1 approach the limit 
(9b), whereas the target isomer 15NT3 (i=6) approaches the 

limit (9c). As a consequence, the mean dipole 6, 0i vd = =  of 

isotopomer i=6 in level v=0 is rather large compared with all 
others. Hence, one can employ the inhomogeneous field 

component 
dE

z
dz
⋅  in order to drive the target isotopomer i=6 

away from all others. The success of this separation of 
isotopomers rests on the excitation of isotopomer 5 to level 
v=1, causing tunneling by two-step fluxes with corresponding 
low values of the mean dipole. After the separation of the 
isotopomer i=6, one can use the same concept to separate the 
other isotopomers sequentially with suitable electric fields and 
inductions of fluxes with staircase patterns in the first or 
higher excited states. 
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Table 1. Calculated mean energies 
ieν  above the ground state 0ie + , tunneling splittings 

ie∆ ν  and tunneling periods 
iντ  of v=0,1,2… 

doublets for six isotopomers (i) of ammonia. Experimental data and previous theoretical results are given for comparison when available. 

All energies are in units of  hc•cm-1, times are in units of ps. 

 

Isotopomer i ν  

Mean energies 
i
eν  

This 

work 
Experiment Experiment[50] Theory[47] Theory[45] Theory[46] 

14NH3 1 
0 0.403 0.395[48] 0.330 0.470 0.403 0.397 

1 950.282 950.265[49] 950.160 949.585 950.289 949.79 

15NH3 2 
0 0.384 0.380[54]  0.450 0.384  

1 946.239 945.670[55]  945.240 946.402  

14ND3 3 

0 0.0197 0.0250[51]  0.030 0.0195  

1 746.749 747.375[51]  747.215 746.731  

2 1398.335 1394.000[52]  1394.600 1398.304  

15ND3 4 

0 0.0178 0.0250[51]  0.030 0.0180  

1 741.293 741.005[51]  741.445 741.245  

2 1389.585   1385.020 1389.505  

14NT3 5 

0 0.00284 0.005[53]  0.025 0.003  

1 654.032 656.780 [54]  654.945 653.781  

2 1245.410   1243.300 1244.986  

15NT3 6 

0 0.00245      

1 647.813      

2 1234.785      

Table 1 (Continued): 

Isotopomer i ν  

Tuneling splittings
ie∆ ν  

iντ  This 

work 
Experiment Experiment[50] Theory[47] Theory[45] Theory[46] 

14NH3 1 
0 0.805 0.79[48] 0.66 0.94 0.805 0.793 41.4 

1 35.751 35.67[49] 35.84 38.41 35.757 35.62 0.93 

15NH3 2 
0 0.767 0.76[54]  0.90 0.768  43.5 

1 34.386 34.53[55]  37.1 34.442  0.97 

14ND3 3 

0 0.0394 0.05 [51]  0.06 0.039  845.3 

1 2.746 3.55 [51]  3.91 2.746  12.2 

2 59.618 70[52]  73.86 59.611  0.56 

15ND3 4 

0 0.0356 0.05[51]  0.06 0.036  935.8 

1 2.509 2.95[51]  3.59 2.508  13.3 

2 55.834   69.6 55.807  0.60 

14NT3 5 

0 0.00568 0.01[53]  0.05 0.006  5845.0 

1 0.483 0.82[54]  0.89 0.48  69.1 

2 15.178   23.38 15.113  2.2 

15NT3 6 

0 0.00490      6788.9 

1 0.422      79.1 

2 13.555      2.5 
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Figure 1. Nuclear probability density (NPD) and nuclear flux density (NFD) for the tunneling inversion of 14NH3 at doublet v=0. (a): 1D 
potential energy curve V(q) (black) along the tunneling inversion coordinate q and the difference of the NPDs of the reactant R and product 

P (red). (b): NFD ( )j q at the time 4t =τ  in units of π τ , where 41.4ps=τ for v=0. Panels (c) and (d) show the time evolutions of the NPD

( , )q tρ  (eqn. (3)) (c) and NFD ( , )j q t (eqn. (4)) (d), respectively.   
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Figure 2. Nuclear probability density (NPD) and nuclear flux density (NFD) with staircase pattern for the tunneling inversion of 14NH3 at 

doublet v=1. The tunneling period is 0.93ps=τ . The notation is as in Fig. 1. 
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Figure 3. Nuclear probability density (NPD) and nuclear flux density (NFD) with staircase pattern for the tunneling inversion of 14NT3 at 

doublet v=2. The tunneling period is 2.2ps=τ . The notation is as in Fig. 1. 
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