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Hybrid particle-field molecular dynamics simulation
for polyelectrolyte systems

You-Liang Zhu,a Zhong-Yuan Lu,b Giuseppe Milano,c An-Chang Shi,d and Zhao-Yan
Sun∗a

To achieve simulations on large spatial and temporal scales with high molecular chemical speci-
ficity, a hybrid particle-field method was proposed recently. This method is developed by com-
bining molecular dynamics and self-consistent field theory (MD-SCF). The MD-SCF method has
been validated by successfully predicting experimentally observable properties of several sys-
tems. Here we propose an efficient scheme for the inclusion of electrostatic interactions in the
MD-SCF framework. In this scheme, charged molecules are interacting with the external fields
that self-consistently determined from the charge densities. The method is validated by comparing
structural properties of polyelectrolytes in solution obtained from the MD-SCF and particle-based
simulations. Moreover, taking PMMA-b-PEO and LiCF3SO3 as an example, the enhancement of
immiscibility between ion-dissolving block and inert block by doping lithium salts into the copoly-
mer is examined by using the MD-SCF method. By employing GPU-acceleration, the high per-
formance of the MD-SCF method with explicit treatment of electrostatics facilitates the simulation
study of many problems involving polyelectrolytes.

1 INTRODUCTION
Although atomistic molecular dynamics (MD) simulation is

an ideal tool to reveal microscopic mechanisms related to dy-
namics, thermodynamics, and structural properties of condensed
matters and biological systems1–3, describing the interactions of
molecules in atomistic details is still a time-consuming task. Even
with greatly enhanced computational power, present atomistic
simulations are still extremely expensive on the mesoscopic time
(> µs) and length (>100 nm) scales. Reducing the number of
degrees of freedom by grouping a set of atoms together into one
“super-atom” and keeping the key degrees of freedom related to
a particular range of interest is a widely used coarse-graining4–9.
The coarse-grained (CG) models are parameterized either in a
“top-down” way by following a trial-and-error refinement pro-
cess targeting the reproduction of key experimental structural
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or thermodynamic features (such as MARTINI model10), or in
a “bottom-up” way by systematically reconstructing a CG Hamil-
tonian based on underlying more detailed simulations, such as
iterative Boltzmann inversion4,11 and inverse Monte Carlo meth-
ods12. However, these CG modelings normally target at a single
resolution in which certain chemical details have to be neglected.
Another strategy of coarse-graining that can simultaneously keep
molecular details and improve computational efficiency is to treat
systems within a single simulation on multiple levels of resolu-
tion, such as adaptive resolution and hybrid particle-field simula-
tions. The former takes a small, well defined region of space at
a higher level of detail, while the surrounding on a coarser, com-
putationally more efficient level13. The latter, which includes a
detailed model and field-derived interactions, is effective to study
some collective properties involving slow ordering processes in
which a large number of molecules participate, such as the phase
transition in multi-component mixtures and the self-assembly of
amphiphilic polymers.

In recent years, hybrid simulation techniques have been fre-
quently proposed to save computational time by adopting self-
consistent molecular field. For example, Sevink et al. introduced
a hybrid model combining the elements of Brownian dynamics
and dynamic density functional theory, for efficiently modeling
vesicles with molecular detail14. Müller and coworkers proposed
the particle and field representation of coarse-grained models
in single chain in mean field (SCMF) method and applied it to
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homopolymer and block copolymer systems15,16. De Pablo and
coworkers proposed a particle-based representation and density-
based non-bonded interactions in Monte Carlo simulations and
Jha et al. applied this method combined with electrostatic Green’s
function approach to study the phase transition behavior of non-
interacting neutral and ionic nanogel in a solvent bath17,18. Hy-
brid models, due to their low computational cost and good per-
formances in parallel applications, are becoming more and more
popular19–22. More recently, the MD method combined with self-
consistent field (SCF) theory was proposed by Milano et al., which
is referred to as the “MD-SCF” approach23,24. Resorting to SCF
to obtain the interactions applied in particle model, this hybrid
particle-field (PF) method can efficiently accelerate the ordering
processes of massive molecules by avoiding kinetic traps. The
method has been validated by correctly reproducing phase be-
haviors of phospholipids in aqueous solutions25,26 and the de-
pendence of morphologies on concentration and temperature of
pluronic-water mixtures27; it also has applications on predict-
ing the interaction of micellar drug nanocarriers and biomem-
branes28, and relaxing all-atom structures of polymer melts29.
However, the lack of explicit treatment of long-range electrostatic
interactions in the original framework makes it unable to study
systems containing charged molecules.

Charged biomolecules and polyelectrolytes play an important
role in life science and material science8,30,31. However, these
charged macromolecules are extremely difficult to be studied by
ordinary MD simulations. The difficulties originate from two as-
pects: First, chain entanglements largely hamper the relaxation
of polymer chains. To understand the level of computational ef-
fort required for polymer simulations: the longest relaxation pro-
cess of an entangled polymer melt of length N scales at least as
N3. Fortunately, computational costs of the PF method are mainly
related to system size rather than to the chain length29. Sec-
ond, the calculation of Coulombic interactions in MD is very time
consuming due to their long-range nature. The Coulombic in-
teraction between two point charges decays slowly as their dis-
tance increases. The spherical cutoff treatment used for short-
ranged interactions (such as Lennard-Jones) is inadequate for
Coulombic interactions because arbitrary truncation can lead to
artifacts. In addition, for MD with periodic boundary conditions,
the Coulombic interactions from image charges have to be con-
sidered. As such, long-range Coulombic interactions in MD have
to be handled in some special ways32–35. A classic method that
properly handles the Coulombic interactions in periodic systems
is the Ewald summation method32. In the Ewald summation,
the Coulombic interaction is split into two parts, i.e., a short-
range part that can be calculated accurately using cutoff treat-
ment and a long-range part that can be calculated in reciprocal-
space using a Fourier series. However, the standard Ewald sum-
mation at best scales as O(N3/2) and therefore becomes inefficient
for large systems. Some variants of the Ewald summation, such
as the particle-particle particle-mesh method (PPPM)36, particle-
mesh Ewald method (PME)37,38, and Non-Uniform FFTs method
(ENUF)39,40, have been developed to accelerate calculation by
taking advantage of fast Fourier transform (FFT), leading to an
O(NlogN) scaling of computation time.

With the aforementioned discussion in mind, it is obvious that
computational efficiency is the key bottleneck for MD simula-
tions of the collective behavior of charged macromolecules. In
this study, we propose an efficient electrostatic treatment in the
framework of MD-SCF. Specifically, we consider a PF electrostatic
interaction scheme taking advantage of the PF interaction nature
of MD-SCF. The accuracy of the electrostatic interactions is tun-
able according to the resolution of the field description. The
charged macromolecules are interacting with the external field
that implicitly depends on the distribution of charge densities and
is hereafter referred to as “E-field”. The field quantities includ-
ing electrostatic potentials and their derivatives are defined on a
three-dimensional lattice with periodic boundary conditions. Ac-
cording to the Ewald summation, electrostatic potential is split
into two parts. By matching the short-range energy to Flory-
Huggins interaction parameter, the short-range part of electro-
static interactions on lattice points is evaluated by collecting the
contributions from the surrounding charges. The long-range part
on lattice points can be calculated by solving the Poisson’s equa-
tion after defining the charge densities on lattice. The derivatives
of energies which are used for the calculation of forces are inter-
polated from the energy distributions.

In previous work, we have developed the GPU-accelerated com-
putation algorithm of MD-SCF method incorporated in GALAM-
OST (downloadable at http://galamost.com). GALAMOST is a
versatile MD package optimized for fully utilizing computational
power of GPU41. To accelerate the simulation of charged macro-
molecular systems, the electrostatic calculation based on MD-SCF
has also been implemented in GALAMOST. Combining the new
framework of the calculation of electrostatic interactions based
on MD-SCF and the high efficiency of GPU computation, we can
tackle problems with larger temporal and spatial scales in simu-
lations of charged macromolecules.

2 MODEL AND METHOD

2.1 The MD-SCF approach

The scales at which the phase behavior and self-assembly prop-
erties of macromolecules are studied by SCF approach can not
be reached easily by ordinary MD simulations42,43. However,
macromolecules in SCF are ideally modeled by using the stan-
dard model, i.e., with assumptions such that (1) incompressibil-
ity of the system, (2) continuous Gaussian chains, and (3) the
δ -function type interaction. Moreover, SCF theory is normally
treated as a mean-field theory neglecting the fluctuations. On the
other hand, molecular dynamics simulations include the molec-
ular details of the system. Therefore, to combine advantages of
SCF and MD, the MD-SCF method that applies the soft potentials
derived from SCF theory in particle models of MD has been pro-
posed23. In this hybrid PF method, a molecule is regarded to be
interacting with surrounding molecules not directly but through
density fields. The density fields are constructed from the spa-
tially inhomogeneous density distributions of segments of inde-
pendent molecules. The interaction formulism in MD-SCF is de-
rived from the minimization of the free energy by applying SCF
theory. However, all intramolecular interaction terms (bond, an-
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gle, etc.) in MD-SCF are usually considered as the conventional
forms in MD. The different scales of interactions can be mitigated
by treating the intramolecular interactions by propagating the
system configuration via a small time step, but treating soft in-
termolecular interactions derived from density fields by updating
the density fields via many of these small time steps25.

According to the spirit of SCF theory, the main issue is to derive
the partition function of a single molecule in an external mean
field and further to obtain a suitable expression of the potential
V (r) and its derivative. Starting from the partition function, the
expression of V (r) can be obtained by using saddle point approx-
imation. Details of the derivation of V (r) are given in previous
publications23–26. For a simple system with short-range pairwise
interactions, the density-dependent external potential can be di-
rectly obtained:

VK(r) = kBT ∑
K′

χKK′ ϕK′ (r)+
1
κ
(∑

K
ϕK(r)−1) , (1)

where each component is specified by an index K, κ is the com-
pressibility, χ represents the mean field parameter which is re-
lated to the Flory−Huggins parameter, and ϕ is the density distri-
bution. In the case of a mixture of two components A and B, the
mean field potential acting on a particle of type A at position r is
given by

VA(r) = kBT [χAAϕA(r)+χABϕB(r)]+
1
κ
(ϕA(r)+ϕB(r)−1) . (2)

Then the force acting on particle A at position r imposed by the
interaction with the density field is

FA(r) =−∂VA(r)
∂r

=−kBT (χAA
∂ϕA(r)

∂r
+χAB

∂ϕB(r)
∂r

)− 1
κ
(

∂ϕA(r)
∂r

+
∂ϕB(r)

∂r
) .

(3)

2.2 The treatment of electrostatic interactions in MD-SCF

In the framework of MD-SCF, electrostatic interactions between
charged molecules are not considered directly, but through the
E-fields, which in turn depend on the spatially inhomogeneous
distributions of charge densities. In order to represent the E-
fields, the simulation box (L1, L2, L3) is divided into N1×N2×N3

cells (where Nα is the number of cells in the Lα direction, with
α = 1,2,3). The location of the lattice points can be given by l =
(l1L1/N1, l2L2/N2, l3L3/N3) (lα is integer and 0 ≤ lα < Nα ). The
total Coulomb energy is expressed as

E =
1
2 ∑

i
qiψ(ri) , (4)

where ψ(r) is the electrostatic potential, and q is the reduced
charge. ψ(r) can be obtained by collecting the contributions of
all particles

ψ(r) = kBT lB ∑
n

∑
j

q j∣∣r− r j +n
∣∣ , (5)

where the outer sum is over the vectors n = n1L1 + n2L2 + n3L3

with periodic boundary conditions, lB = e2/4πε0εrkBT is the Bjer-
rum length; e, ε0, and εr are elementary charge, electric perme-
ability of vacuum, and relative dielectric constant, respectively.
Using the Ewald summation, the electrostatic potential can be
split into two parts ψ(r) = ψL(r)+ψS(r) with

ψS(r) = kBT lB ∑
n

∑
j

q jerfc(α
∣∣r− r j +n

∣∣)∣∣r− r j +n
∣∣ , (6)

ψL(r) = ∑
m ̸=0

ψ̂L(m)exp(im · r) , (7)

where ψ̂L in Eq. 7 is the long-range part of the electrostatic poten-
tial in reciprocal space. With the Gaussian distribution of charge
density, the Poisson’s equation can be solved in reciprocal space,
resulting in the expression of ψ̂L as

ψ̂L(m) =C(m)
N

∑
j=1

q jexp(−im · r j)

with C(m) = 4πkBT lB
exp(−m2/4α2)

V m2 , (8)

where m = 2π(m1L∗
1 +m2L∗

2 +m3L∗
3) with m1, m2, m3 integers not

all zero, V is the volume of simulation box. The conjugate recip-
rocal vectors L∗

α are defined by the relations L∗
α ·Lβ = δαβ (the

Kronecker delta), for α,β = 1,2,3.

By linearly interpolating the complex exponentials
∑N

j=1 q jexp(−im · r j) in Eq. 8 (see interpolation details in
APPENDIX A or Ref.38), we obtain the approximate complex
exponentials at lattice points. Further, we can rewrite ψ̂L(m) as

ψ̂L(m) =C(m)F(Q)(m1,m2,m3) , (9)

where Q (see definition in APPENDIX A) can be regarded as the
charge densities at lattice points and F(Q) is the discrete Fourier
transform (DFT). The long-range part of the electrostatic poten-
tial at the lattice point of spacial position l can be rewritten in
total DFT form

ψL(l) = ∑
m ̸=0

ψ̂L(m)exp(im · l)

=
N1−1

∑
m1=0

N2−1

∑
m2=0

N3−1

∑
m3=0

ψ̂L(m)exp
[

2πi
(

m1l1
N1

+
m2l2
N2

+
m3l3
N3

)]

= F−1[CF(Q)](l1, l2, l3) . (10)

Thereby, the long-range part of the electrostatic potential can be
obtained with a forward and a backward DFT. The DFT can be
efficiently calculated by employing FFT library, such as cuFFT on
GPUs.

The short-range part of electrostatic interactions given by Eq. 6
is usually considered as pairwise interaction in MD. However, for
PF simulations, only mean field parameters are applicable. To this
end, a χe parameter for short-range part of electrostatic interac-
tions can be obtained by following the Flory-Huggins approach
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for lattice models

χe =
zCN

kBT

[
2uCC′ − (uCN +uC′N)

2

]
= zCN lB

erfc(ασ)

σ
, (11)

where the parameter zCN is the coordination number which takes
a value of 6 for a three-dimensional cubic lattice; uCC′ , uCN , and
uC′N are the pairwise short-range electrostatic energies between a
pair of adjacent lattice sites, with uCC′ = kBT lBerfc(ασ)/σ for the
lattice sites occupied by charged particles and being related to the
diameter σ of the coarse-grained particles, uCN = uC′N = 0 for the
lattice sites occupied by one particle with elementary charge and
the other one being neutral. Thereby, the short-range part of the
electrostatic potential at lattice point of spacial position l can be
obtained in the density field manner23

ψS(l) = χeQ(l1, l2, l3)kBT . (12)

The approximation of short-range electrostatic potential from lin-
ear interpolation also gives a similar expression of Eq. 12, as
shown in APPENDIX B. The electric fields ψ ′

(l), which are used
for the calculation of electrostatic forces, can be obtained by lin-
ear interpolation between lattices with

ψ
′

1(l1, l2, l3) =
1
2
[ψ(l1 +1, l2, l3)−ψ(l1 −1, l2, l3)]N/|L1|,

ψ
′

2(l1, l2, l3) =
1
2
[ψ(l1, l2 +1, l3)−ψ(l1, l2 −1, l3)]N/|L2|,

ψ
′

3(l1, l2, l3) =
1
2
[ψ(l1, l2, l3 +1)−ψ(l1, l2, l3 −1)]N/|L3|. (13)

With the established E-fields, the electrostatic energy and force of
charged particles at arbitrary positions can be calculated reversely
by linear interpolation. The linear interpolation scheme is used
in E-fields to keep consistent with the one in density fields. It
should be mentioned that the self-energy kBT lBq2

j α/
√

π should
be removed from the total electrostatic energy of particle j.

3 RESULTS AND DISCUSSION

3.1 Polyelectrolyte solution

To validate our treatment of the electrostatic interactions, we
have performed MD-SCF simulations of a linear polyelectrolyte
chain in solution and compared its structural properties at differ-
ent dielectric constants with those from reference particle-based
(PP) simulations. The polyelectrolyte molecule contains 100 re-
peating CG particles with 20% of these particles carrying a neg-
ative charge. The charged particles are equally spaced along the
polymer backbone. In addition, the system contains 20 monova-
lent CG cations as counterions and 7430 solvent particles. The
particles are classified as P (polyelectrolyte), C (counterion), and
S (solvent) types, respectively. Initially, the polyelectrolyte chain
with equilibrium bond length of 0.4 nm is placed with a random
configuration in a cubic box with a volume of (10 nm)3. A spring
constant of 1000 kJ/mol is used for the harmonic bond interac-
tions. The mass of all CG particles is set as 72 amu. The simula-
tions are performed at 300 K.

In reference PP simulations, all Lennard-Jones (LJ) interac-

tions VLJ(r) = 4ε[(σ/r)12 − (σ/r)6] are characterized with ε = 1.0
kJ/mol and σ = 0.47 nm. For PF simulations, the parameter χKK′

in Eq. 1 that represents the mean field parameter for the interac-
tion of a particle of type K with the density fields due to particles
of type K′ is needed. A simple choice of the parameter can be
obtained by following Flory-Huggins approach for the calculation
of χ parameters for lattice models

χKK′ =
zCN

kBT

[
2uKK′ − (uKK +uK′K′)

2

]
, (14)

where uKK′ is the pairwise interaction energy between a pair of
adjacent lattice sites occupied by the units of types K and K′.
It can be set as uKK′ = −εKK′ , where εKK′ is the LJ parameter.
According to Eq. 15, the derived mean field parameters for the
PF simulations are χKK′ = 0 (for K, K′ = P, C, S), which cor-
respond to an athermal condition. The excluded volume effects
between particles are taken into account in the field description
by imposing the incompressibility condition. The criterion to de-
termine the value of the compressibility κ in Eq. 1 is reproducing
the value of average density fluctuations. In particular, using val-
ues of κ ≈ 8RT (where R is the gas constant and T temperature),
average density fluctuations were found in agreement with the
reference PP simulation25. Thereby, the only tunable parameters
are grid size and the parameter α in Eq. 6. The α, which is re-
lated to the Gaussian distribution width of the charge, controls
the relative rate of convergence of the direct and the reciprocal
sums. However, the total electrostatic potential energy is invari-
ant to α. We consider the Ewald coefficient α as 4.2 nm−1, fol-
lowing Ref.38. The same grid size l and update frequency △tupdate

of density field are applied in E-field. For this system, the update
frequency is chosen as △tupdate = 1 for maximum precision. Here,
we test three distinct grid sizes: l = 0.625 nm (∼ 1.33 σ), l =
0.313 nm (∼ 0.67 σ), and l = 0.238 nm (∼ 0.51 σ), which cor-
respond to 163, 323, and 423 lattice points, respectively.

Fig. 1 Typical conformations of a polyelectrolyte chain in solution at
relative dielectric constant of (a) 3.9, (b) 7.8, (c) 15.6, (d) 20.0, and (e)
78.0, respectively. These snapshots are taken from the PF simulations
with the grid size of l = 0.238 nm.

By increasing dielectric constant, we can observe the globule-
coil-stretch transition of the polyelectrolyte chain. Typical equi-
librium chain conformations at different dielectric constants in
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PF simulations are shown in Fig. 1. At low dielectric constants,
the polyelectrolyte chain is in a globule state due to the strong
electrostatic attractions between negative charges of the polyelec-
trolyte chain and positive charges of the counterions. While at
high dielectric constants, the weak electrostatic attractions be-
tween opposite charges can not constrain the counterions to the
polyelectrolyte chain. In this case, the electrostatic repulsions be-
tween the bound negative charges on the polyelectrolyte back-
bone result in an extended chain conformation. At moderate di-
electric constants, the two effects compete and the polyelectrolyte
is a coil. At the relative dielectric constant (εr) of about 16, the
radius of gyration (Rg) of the polyelectrolyte chain is close to the
corresponding neutral chain (about 2.71 nm, the PF and PP sim-
ulations give the same value).

The dependence of Rg on relative dielectric constant is given
in Fig. 2. The curves of Rg vs. εr for different field resolutions
are compared with the one obtained by reference PP simulations
(performed by using GROMACS with PME method44). Although
the grid size affects the Rg values (especially at low dielectric
constants), the globule-coil-stretch transition in PF simulations
agrees well with that in reference PP simulations. Similar tran-
sition had also been reported in previous works35,45. When the
grid size is smaller (e.g. l = 0.313 nm and l = 0.238 nm) than the
diameter of particles (σ = 0.47 nm), the Rg values at a series of
dielectric constants obtained by our PF simulations are very close
to those obtained by reference PP simulations.

0 10 20 30 40 50 60 70 80
1.0

1.5

2.0
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 Particle-Particle,  = 0.47 nm
 Particle-Field, l = 0.625 nm
 Particle-Field, l = 0.313 nm
 Particle-Field, l = 0.238 nm

 

 

R
g

r

Fig. 2 The radius of gyration Rg of a polyelectrolyte chain in solution
with different relative dielectric constants from PF simulations and PP
simulations. The horizontal dash line indicates the equilibrium Rg of the
neutral polymer without charges.

We analyzed the pair correlations between polyelectrolyte par-
ticles (including charged and neutral ones) and counterions. As
shown in Fig. 3, the radial distribution function shows typical
behavior of the polyelectrolyte chain in dilute solution, i.e., the
curves have a correlation hole at short distances and a peak fol-
lowed by further decaying at longer distance and finally reach
zero; the height of the peak of the correlation between charged
particles and counterions is much higher than the one between
neutral particles and counterions due to the electrostatic attrac-
tive interactions. When the spatial resolution of the density field

becomes smaller than σ , the data of PF simulations show a deep
correlation hole at short distances and similar decaying behavior
as in PP simulations. The main differences in the behavior of the
radial distribution functions between the PP and hybrid PF sim-
ulations can be ascribed to the mean field approximation in PF
treatment, which results in weak correlation at short distances.
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Fig. 3 The pair correlations between polyelectrolyte particles and
counterions at relative dielectric constant of 11.7. The charged and
neutral polyelectrolyte particles are indicated by Pc and Pn, respectively.

3.2 Microphase separation of block copolymers containing
charged blocks

Poly(ethylene oxide) (PEO)-based copolymers doped with salt
ions, such as lithium ion (Li+), are potential candidates for elec-
trolytes used in solid-state rechargeable lithium batteries. Since
the binding energy between Li+ and oxygen is very large, PEO
with its bound Li+ ions is effectively a polyelectrolyte. A promis-
ing candidate of polymer electrolyte with both high ionic con-
ductivity and dimensional stability consists in covalently bond-
ing an ion-dissolving block, such as PEO, to an nonconducting
block, such as poly (methyl methacrylate) (PMMA), thereby form-
ing a block copolymer. Block copolymers are usually ordered at
low temperature due to the immiscibility between the block seg-
ments. These materials will undergo an order/disorder transition
(ODT), accompanied by a solid-like/liquid-like rheological tran-
sition, when heated to a sufficiently high temperature. However,
for PMMA-b-PEO copolymer, the high miscibility between PEO
and PMMA makes this copolymer essentially segmentally mixed
at all temperatures. The disordered liquid state without the ad-
dition of a common solvent is clearly desirable for melting pro-
cessing. The degree of immiscibility between PEO and PMMA can
be dramatically increased by even small additions of lithium salts,
such as LiCF3SO3, which results in microphase separation and the
formation of ordered structures46.

Here we use MD-SCF method to study the structure formation
of PMMA-b-PEO block copolymers by adding salts. According to
the formulation of MD-SCF method, the intramolecular terms (in-
cluding bond, angle, and dihedral interactions) have the conven-
tional forms as in MD simulations. Their functional forms and
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parameters can be chosen as those in the original MARTINI force
field. We have modeled the PMMA-b-PEO copolymer by mapping
the PMMA monomer to two CG beads: One bead (A type) for
backbone and the other bead (B type) for side chain, and mapping
the PEO monomer to one bead (C type). The schematic CG strat-
egy is shown in Fig. 4. The intramolecular interactions of PEO CG
beads have been given in MARTINI force field, which were de-
rived in a bottom-up manner from the all-atom simulations47. For
the intramolecular interactions of PMMA CG beads that are not
yet included in MARTINI force field, we have employed the ana-
lytical potentials that were also derived from bottom-up coarse-
graining by mapping the structural properties of PMMA to re-
sults of all-atom simulations48. With the CG model, we consider
PMMA-b-PEO copolymer with two chain lengths, (AB)10C20 and
(AB)50C100, respectively. These two copolymers have the same
PEO volume fraction ( fPEO) with fPEO ≈ 0.5. The doping of
Li cations is treated in our model by randomly choosing some
C beads as charged beads, each carrying a positive elementary
charge. The same number of “free” beads (D type), each carry-
ing a negative elementary charge, are added as counterions. Ac-
cording to previous studies, the grid size l and update frequency
△tupdate can be tuned to obtain maximum computational perfor-
mance without an obvious loss of precision25,26. Therefore, a grid
size l = 1.5σ (0.625 nm) and an update frequency △tupdate = 10
are employed in the simulations. The update frequency can be ex-
tended to a larger value. However, we find that the computational
performance increases little with △tupdate when △tupdate ≥ 10 (see
Table 1).

Fig. 4 The coarse-graining scheme of PMMA-b-PEO.

For the (AB)10C20 system, 1200 chains are initially randomly
placed in a cubic box with a volume of (15 nm)3. The mean
field parameter χ = χAC = χBC can be estimated from solubility
parameters (δ) by49

χKK′ =
Vb (δK −δK′)2

RT
, (15)

where Vb is the volume of CG units. δPMMA for 10-monomer
block and δPEO for 20-monomer block were given by atomistic
MD simulations50 with δPEO = 4.04 (cal/cm3)0.5 and δPMMA =
6.83 (cal/cm3)0.5. Here, Vb ≈ 62.5 cm3/mol, thereby the χ pa-
rameter is about 0.82 at the temperature of 300 K. For both neat
and salt-doped systems, 1.2 µs MD-SCF simulation is enough to
obtain equilibrium structures. In our hybrid PF simulations, the
neat system is disordered at 300 K with χ = 0.82, which is in

consistent with the fact that PMMA-b-PEO copolymers are seg-
mentally mixed at all temperatures46. In our simulations, the
neat system is disordered mainly due to strong fluctuations at
short chain lengths.

Recently, Nakamura and Wang demonstrated the important
role of dielectric self energy in phase separation of block copoly-
mers when there is a difference in the relative dielectric constant
between the two blocks51. Sing et al. scrutinized dielectric in-
homogeneity effect and electrostatic cohesion effect, and demon-
strated their different behaviors52. The dielectric inhomogeneity
essentially changes the phase behavior by shifting the phase dia-
gram vertically. While the electrostatic cohesion among charged
monomers and ions tilts the phase diagram. To understand the
electrostatic cohesion effect, we refer to the case of a polyelec-
trolyte in solution described in the last subsection. At low relative
dielectric constants, strong electrostatic interactions energetically
favour a state of high densities of charges, which overcome the
entropy of counterions. In our study, we consider εr,AB = εr,C =
7.3 to highlight the effect of electrostatic cohesion53. It should be
noted that the electrostatic interactions are only included in the
salt-doped system. With the diameter of charged particles σ =
0.47 nm and the Ewald coefficient α = 4.2 nm−1, the parameter
lB and χe (see Eq. 11) can be derived, specifically as lB = 7.67 nm
and χe = 0.51 for this system.

Fig. 5 The snapshots of neat and salt-doped (AB)10C20 systems, both
at χAC = χBC = 0.82. The A, B, C, and D types are shown in red, blue,
green, and white, respectively.

At a temperature of 300 K, the salt-doped system becomes
phase separated into a lamellar structure at a χODT of 0.76 for
[Li+]:[EO] = 1:20, 0.72 for [Li+]:[EO] = 2:20, and 0.80 for
[Li+]:[EO] = 3:20. The mean field theory predicted that the
electrostatic cohesion enhances phase separation in primarily
low charged-block fraction materials, and either enhances or de-
presses phase separation in high charged-block fraction materials
depending on salt-doping ratio52. In our simulations, the electro-
static cohesion effect enhances phase separation not linearly with
the increase of salt-doping ratio, which qualitatively agrees with
the mean field prediction. It can be attributed to that the entropic
penalty, which suppresses phase separation, increases as the num-
ber of charged particles increases. The snapshots of both neat and
salt-doped systems at χ = 0.82 and [Li+]:[EO] = 1:20 are shown
in Fig. 5. The density profiles of one block (PMMA) and coun-
terions along the normal direction of layers are analyzed for the
salt-doped system at χ = 0.80 and 0.88 and [Li+]:[EO] = 1:20, as
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shown in Fig. 6. According to the density profiles, the thickness
of periodic layers of salt-doped systems does not change much
(d ≈ 5.1 nm). In experiments, the thickness of periodic layers
increases with the salt-doping ratio for PEO-b-PS copolymer54.
However, the changes of the thickness are not obvious at differ-
ent salt-doping ratios for PMMA-b-PEO and PCL-b-PEO46,55.
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Fig. 6 The density fraction profiles of PMMA block and counterions of
(AB)10C20 systems along the normal of layers. The value of density
fraction of counterions has been magnified five times to guide eyes.

For the (AB)10C20 system, we measure the performances of the
PF method and compare them with those of the reference PP
simulations all implemented on GPU. The performances of the
PF simulations on different grid sizes which correspond to differ-
ent number of lattice points and different update frequencies are
shown in Table 1. The PF simulations gain a speed-up ratio from
11.6 to 15.3 as compared to the reference PP simulations. The
computational efficiency of the PF approach allows the speed up
of the simulations by a factor of up to 10 for the considered sys-
tems. To have an idea about the efficiency of PF method for the
systems considered in this paper, we take 1,920 (AB)50C100 as an
example. It contains a total of 393,600 beads, and the perfor-
mance is about 0.39 µs/day on 1 GTX 980 GPU. The snapshot of
the system in equilibrium is shown in Fig. 7. As we can see, the
well separated lamellar phase can be formed for these long chain
systems by using PF method.

Table 1 The comparison of performance between the PF simulations
achieved by GALAMOST and the PP simulations achieved by
GROMACS 44 all on a single GPU (GTX 980). The system contains total
49,200 particles; 2,400 particles of them are charged. All simulations
are performed in single precision operations. The update frequency is in
the unit of time steps.

Model Grid size △tupdate Highest ∆t Performance Speed-up

PP 10 fs 144.8 ns/day 1.0
PF 0.469 nm 1 30 fs 1674.4 ns/day 11.6
PF 0.625 nm 1 30 fs 1783.3 ns/day 12.3
PF 0.625 nm 5 30 fs 2115.1 ns/day 14.6
PF 0.625 nm 10 30 fs 2203.2 ns/day 15.2
PF 0.625 nm 20 30 fs 2210.5 ns/day 15.3

3.3 Application scope and limitations
The PF method is scalable at simulated spatial and temporal

scales. It can reproduce the essential structural features of electric
double layers given by MD [see section (a) in the ESI†]. In addi-
tion, it also can present the phase behaviors of a polyelectrolyte-
surfactant complex system predicted by dissipative particle dy-
namics [see section (b) in the ESI†]. The difference of density
profiles of ions in electric double layers between PP and PF sim-
ulations can be ascribed to the softness nature of interactions in
PF simulation. These tests further validate the method. However,
the strength of this method rather becomes visible when focusing
on phase transitions or ordering effects of long charged macro-
molecules, meanwhile with higher molecular chemical specificity
in model.

Unlike MD simulations, in which accurate interactions are pur-
sued, PF simulations implement the mean field interactions de-
rived from both density field and E-field. Therefore, the strong
electrostatic attractions and core repulsions at much shorter dis-
tances in MD simulations which come to compact ion clusters or
tight ion pairs can not be presented in PF formulism. In addition,
the calculation of direct excluded-volume interactions is avoided
inherently by the method. With this aspect, the dynamics asso-
ciated to the chain entanglements can not be truly reflected due
to that chain molecules are allowed to cross each other. However,
the lack of entanglement limitations accelerate chains movement,
which facilitates a rapid convergency of simulated phase behav-
iors or self-assembled structures.

4 CONCLUSIONS
In this work, we propose a PF scheme for the calculation of

electrostatic interactions in the framework of MD-SCF. Based on

Fig. 7 The snapshot of phase separated structure of (AB)50C100
system.
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the Ewald summation, electrostatic potential is split into a short-
range part and a long-range part. The short-range part is evalu-
ated by matching the short-range electrostatic potential to Flory-
Huggins χ-parameter and collecting the contributions from the
particles around grid points. The long-range part is treated by
discrete Fourier transform of the charge densities at lattice points
and the computation can be accelerated by the FFT with cuFFT
library on GPUs. The resolution of describing electrostatic inter-
actions can be tuned by changing the grid size of E-fields. This
electrostatic method is validated by comparing the configurations
of a polyelectrolyte chain at different dielectric constants in salt-
free, athermal solution to those of reference PP simulations. Fur-
thermore, we have employed MD-SCF with electrostatics to study
the salt-induced phase separation of PMMA-b-PEO block copoly-
mers. By employing GPU-acceleration, the performances of this
PF method are evaluated at different grid sizes and update fre-
quencies and compared with those of PP method by using GRO-
MACS running on CPUs. The MD-SCF with electrostatics shows
high computational performance and has a great potential in the
studies of a vast kind of problems involving polyelectrolytes and
biomolecules. We believe that, including the new theoretical de-
velopments, our PF scheme has a broad and timely interest in the
soft matter community.
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APPENDIX A
In order to employ the fast Fourier transform, we need to

approximate the complex exponentials appearing in the expres-
sion of ψ̂L(m) from particles to lattice points. We denote the
scaled fractional coordinates by uα j = Nα L∗

α · r j (0 ≤ uα j < Nα ,
for α = 1,2,3). Then we can rewrite the complex exponentials as

N

∑
j=1

q jexp(−im · r j) =
N

∑
j=1

q jexp
[
−2πi

(
m1u1 j

N1
+

m2u2 j

N2
+

m3u3 j

N3

)]
.

(16)

For real numbers uα , let [uα ] denote the integer part of uα , that
is, the unique integer satisfying [uα ]< uα < [uα ]+1. Using linear
interpolation, we can approximate the individual exponentials on
the right hand side of Eq. 16 by

exp
(
−2πi

mα uα
Nα

)
≈ (1− (uα − [uα ]))exp

(
−2πi

mα [uα ]

Nα

)

+(uα − [uα ])exp
(
−2πi

mα ([uα ]+1)
Nα

)
. (17)

Let W (u) denote the linear hat function given by W (u) = 1−|u| for
|u|< 1, W (u) = 0 for |u|> 1. Then we can rewrite Eq. 17 as

exp
(
−2πi

mα uα
Nα

)
≈

∞

∑
k=−∞

W (uα − kα )exp
(
−2πi

mα kα
Nα

)
, (18)

where kα is integer. The complex exponentials can be written as
the fast Fourier transform of charge densities defined at the lattice
points as

N

∑
j=1

q jexp(−im · r j)

=
N

∑
j=1

q j

∞

∑
k1=−∞

∞

∑
k2=−∞

∞

∑
k3=−∞

W (u1 j − k1)W (u2 j − k2)W (u3 j − k3)

exp
(
−2πi

m1k1

N1

)
exp

(
−2πi

m2k2

N2

)
exp

(
−2πi

m3k3

N3

)

=
N1−1

∑
k1=0

N2−1

∑
k2=0

N3−1

∑
k3=0

Q(k1,k2,k3)exp
[
−2πi

(
m1k1

N1
+

m2k2

N2
+

m3k3

N3

)]

= F(Q)(m1,m2,m3) . (19)

The charge density Q(l1, l2, l3) at lattice point l is

Q(l1, l2, l3) =
N

∑
j=1

q jW (u1 j − l1)W (u2 j − l2)W (u3 j − l3). (20)

The electrostatic potentials at reciprocal space ψ̂L can be calcu-
lated by the three dimensional fast Fourier transform

ψ̂L(m) =4πkBT lB
exp(−m2/4α2)

V m2

N

∑
j=1

q jexp(−im · r j)

=C(m)F(Q)(m1,m2,m3) , (21)

with the expression of C(m) = 4πkBT lBexp(−m2/4α2)/V m2.

APPENDIX B

The short-range electrostatic potential is divergent at zero dis-
tance, therefore, the collective short-range electrostatic potential
at lattice points can not be calculated directly by

ψS(l1, l2, l3) = kBT lB ∑
j

q jerfc(α
∣∣rl1,l2,l3 − r j

∣∣)∣∣rl1,l2,l3 − r j
∣∣ . (22)

For mean field interactions, it should be approximated to remove
the divergency. According to the distance dependence, we ap-
proximate the short-range electrostatic potential to be a linearly
decaying form as

ψS(l1, l2, l3)

= kBT lB
erfc(ασ)

σ ∑
j

q j

(
1− f

√
(u1 j − l1)2 +(u2 j − l2)2 +(u3 j − l3)2

)

for |uα j − lα | ≤ 1 , (23)
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where σ is the diameter of charged particles, kBT lBerfc(ασ)/σ is
adhesion energy, and f is a parameter, chosen to keep

erfc(ασ)

σ
(1− f

√
3) =

erfc(α
√

3H)√
3H

(24)

at |u1 − l1| = |u2 − l2| = |u3 − l3| = 1, where H = |L|/N is the side
length of subcell. For most parameter fields used in this work,
the parameter f is in a range of 0.3 ∼ 0.35. To comply with the
formulism of PF, we need to further approximate Eq. 23 to be

ψS(l1, l2, l3)

= kBT lB
erfc(ασ)

σ ∑
j

q jZAPW (u1 j − l1)W (u2 j − l2)W (u3 j − l3)

= kBT lB
erfc(ασ)

σ
ZAPQ(l1, l2, l3) , (25)

where ZAP is a parameter to keep equivalence of Eq. 25 with
Eq. 23 in mean field framework. By integration of the space of
a subcell, we can obtain the value of ZAP by∫ 1

0

∫ 1

0

∫ 1

0
ZAPW (x)W (y)W (z)dxdydz

=
∫ 1

0

∫ 1

0

∫ 1

0
(1− f

√
x2 + y2 + z2)dxdydz . (26)

The integration results in ZAP = 8(1−0.96 f ). Thereby, ZAP is in a
range of 5.3 ∼ 5.7, which is very close to the coordination number
of 6 in three-dimension.
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4 D. Reith, M. Pütz and F. Müller-Plathe, J. Comput. Chem.,
2003, 24, 1624–1636.

5 G. Milano and F. Müller-Plathe, J. Phys. Chem. B, 2005, 109,
18609–18619.

6 C. Peter and K. Kremer, Soft Matter, 2009, 5, 4357–4366.
7 H. A. Karimi-Varzaneh, N. F. A. van der Vegt, F. Müller-Plathe

and P. Carbone, ChemPhysChem, 2012, 13, 3428–3439.
8 Z. Wu, Q. Cui and A. Yethiraj, J. Phys. Chem. B, 2013, 117,

12145–12156.
9 T. Chen, H.-J. Qian, Y.-L. Zhu and Z.-Y. Lu, Macromolecules,

2015, 48, 2751–2760.
10 L. Monticelli, S. K. Kandasamy, X. Periole, R. G. Larson, D. P.

Tieleman and S.-J. Marrink, J. Chem. Theory Comput., 2008,
4, 819–834.

11 H. A. Karimi-Varzaneh, H.-J. Qian, X.-Y. Chen, P. Carbone and
F. Müller-Plathe, J. Comput. Chem., 2011, 32, 1475–1487.

12 A. P. Lyubartsev and A. Laaksonen, Phys. Rev. E, 1995, 52,
3730–3737.

13 R. Potestio, S. Fritsch, P. Español, R. Delgado-Buscalioni,
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