
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

www.rsc.org/pccp

PCCP

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


Charge Mobility Induced by

Brownian Fluctuations in π-Conjugated Polymers in Solution

Jessica Ellen Poole1,2, Djamshid Ahmud Damry1,3,

Oliver Robert Tozer1,4, and William Barford1,2

1Department of Chemistry, Physical and Theoretical Chemistry Laboratory,

University of Oxford, Oxford, OX1 3QZ, United Kingdom

2Balliol College, University of Oxford,

Oxford, OX1 3BJ, United Kingdom

3Worcester College, University of Oxford,

Oxford, OX1 2HB, United Kingdom

4University College, University of Oxford,

Oxford, OX1 4BH, United Kingdom

1

Page 1 of 16 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



Abstract

We study the motion of a doped charge in a π-conjugated polymer chain in solution sub-

ject to Brownian fluctuations. Specifically, we take poly(para-phenylene) to be our model

system where the Brownian fluctuations cause rotational motion of the phenylene rings. The

instantaneous torsional fluctuations cause Anderson localization of the charge wavefunction,

with the lower-energy spectrum being composed of local ground states and the higher-energy

spectrum being composed of quasi-extended states. At low temperatures, additional charge

localization occurs via torsional relaxation. The dynamical torsional fluctuations lead to

two distinct modes of motion of the charge: adiabatic and non-adiabatic. Adiabatic motion

is a ‘crawling’ motion of the charge along the polymer chain while the charge remains in

its local ground state. Non-adiabatic motion is a rapid ‘hopping’ motion as the charge is

excited into higher energy quasi-extended states and travels ballistically along the chain

before relaxing into a local ground state. The adiabatic motion dominates at low temper-

atures, and exhibits a linear temperature dependence and thus a constant zero-field charge

mobility. Non-adiabatic motion begins to dominate as the temperature is increased, as the

charge is thermally excited into higher energy states. At high temperatures the diffusion

constant becomes almost temperature independent, indicating a decrease in the charge mo-

bility with increasing temperature, which we attribute to the charge localization length being

a decreasing function of temperature at high temperatures.
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I. INTRODUCTION

Owing to the potential electronic device applications of π-conjugated polymers, the role

of conformational disorder and polaronic effects on charge transport in polymers is of top-

ical interest. Early work by Prins et al.1 studied charge transport in polymers with static

torsional disorder via the time-dependent Schrödinger equation. They showed that the dis-

order causes initially ballistic transport to become diffusive. Hultell and Strafström2 also

used the time-dependent Schrödinger equation to model charge mobility in polymer chains

with static disorder, but in addition, they introduced polaronic effects via bond relaxation.

Subsequently, they also considered polaronic effects via torsional relaxation3. In both of

these works the authors showed that when driven by an electric field the charge transport

exhibited both diffusive and hopping behaviour.

The role of thermally driven torsional fluctuations on charge transport has been studied

by Albu and Yaron4, who investigated charge transport on a polymer chain in solution where

the torsional dynamics are driven by Brownian fluctuations. They considered the adiabatic

regime (by assuming that the charge remains in its ground state) and found polaronic,

diffusive behaviour. Fornari and Troisi5 used a Fermi Golden Rule (FGR) formalism to

investigate the role of both static and dynamic torsional fluctuations on charge transport,

while also including polaronic effects via bond relaxation. This approach necessarily models

non-adiabatic processes, with the authors predicting both short range and longer range hops

via more delocalized states (as described in more detail below).

In this work we make a link between ref4 and ref5 by extending the work of ref4 to

include non-adiabatic processes. In particular, we consider a polymer chain in solution

whose monomers are subject to Brownian fluctuations. The Brownian motion drives the

torsional fluctuations which, now being time-dependent, causes changes to and transitions

between the quasi-stationary states.

In addition to the torsional fluctuations causing charge delocalization, the instantaneous

torsional disorder also causes charge localization. As is well known in one-dimensional

systems, disorder localizes all quantum states. However, as observed by Malyshev and

Malyshev6 in their study of excitonic states in disordered J-aggregates via the Frenkel exciton

model (mathematically equivalent to Eq. (1) of this paper), the low-energy spectrum is

composed of superlocalized, virtually nodeless states that are non-overlapping and space-

3
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filling6. These states are called local ground states (LGSs). Higher energy states, however,

are nodeful and more delocalized; these are called quasi-extended states (QESs). These

ideas were extended to π-conjugated polymers using the Frenkel exciton model by Makhov

and Barford7. Similar observations on exciton localization in polymers via atomistic models

have been made by Barford and Trembath8 and Ma et al.9. Likewise, similar observations

on charge localization in polymers via atomistic models have been made by Qin and Troisi10.

As we show in this paper, QESs play a key role in charge mobility.

Since the torsional degrees of freedom are coupled to the electronic degrees of freedom,

an additional localization mechanism is the polaronic self-localization of the charge via

torsional relaxation. For charges, however, the self-trapped polaron binding energy via

torsional relaxation is rather small (equivalent to ∼ 260 K), so such self-localization is only

a dominant process for T ≤ 260 K.

As we show in this paper, there are two mechanisms for charge mobility from an initially

self-localized polaron, where – as explained in §III – the term ‘polaron’ refers to a self-

localized Landau polaron at low temperarures and an Anderson localized polaron at high

temperatures. First, at low temperatures there is small-displacement diffusive motion of

the polaron as a whole along the polymer chain caused by partially planarization of the

torsional angles. This is the adiabatic motion observed by Albu and Yaron4. Second, at

higher temperatures there are thermally activated transitions from polarons to higher energy

more delocalized QESs. This is the non-adiabatic motion modelled via the FGR by Fornari

and Troisi5.

In this paper we take poly(para-phenylene) (PPP) as our model system. We model

the torsional dynamics via the Langevin equation. The motion of the charge is modelled

by projecting the instantaneous eigenstates of a coarse-grained tight-binding model onto

the charge wavefunction of the previous time step, and selecting the eigenstate with the

largest overlap. The methodology employed here follows that described in ref11 to model

exciton dynamics induced via torsional fluctuations (see also ref4 and ref12). The general

methodology is described in the next section. In Section III we discuss the temperature

dependence of the polaron localization length. Section IV contains our results, and we

conclude in Section V.
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II. MODEL AND METHODOLOGY

A. Coarse-Grained Tight-Binding Model

The poly(para-phenylene) chains are modelled using a coarse-grained tight-binding

model. In this model, the polymer chain is formed of N sites, with each site representing

one of the phenylene rings in the polymer chain. The tight-binding Hamiltonian describing

the motion of the doped electron, HTB, is then given by

HTB = E0

N∑
n=1

c†ncn −
N−1∑
n=1

tn(c
†
ncn+1 + c†n+1cn) (1)

where c†n (cn) creates (destroys) an electron in the LUMO on monomer n. tn is the charge

transfer integral across the nth bond, which links monomers n and (n + 1). Since the pz

atomic amplitude on the bridging carbon atoms is13 1/
√
3,

tn = (ts/3) cos θn, (2)

where θn is the torsional angle between monomers n and (n+1) and ts = 2.2 eV. E0 = tp is

the LUMO energy of the electron, where tp = 2.4 eV. An equivalent Hamiltonian describes

the hole motion via the HOMOs, except that in this case tn has the opposite sign.

The state vector of the doped electron, |Ψ⟩, is then formed by a linear combination of

single monomer LUMO basis states, |n⟩, as

|Ψ⟩ =
N∑

n=1

Ψn|n⟩ (3)

where Ψn is the electron wavefunction.

In solution, the dihedral angle across the nth bond is assumed to have an equilibrium

value, θ0n, of ±40◦ due to the steric interactions betwen adjacent monomers. In the absence

of a charge the torsional mode is assumed to behave harmonically, such that there is a

restoring torque on phenylene ring n

Γel
n = −K(δθn−1 − δθn), (4)

where δθn = (θn − θ0n) is the deviation of the torsional angle, θn, from the equilibrium

torsional angle, θ0n. The spring constant for the torsional modes of PPP, K, has a value of

5
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1.13 eV. If a torsional mode is behaving harmonically, then in thermal equilibrium there is

a Gaussian distribution of bond angles with a standard deviation given by8

⟨σθ⟩ =
(
kBT

K

) 1
2

(5)

where kB is the Boltzmann constant and T is the temperature.

In addition to the harmonic torque, there is a net torque on the phenylene rings due to

the presence of the doped charge, resulting in the formation of a self-localized charge Landau

polaron at low temperatures. From the Hellmann-Feynman theorem, this torque is

Γch
n = −

⟨
Ψ

∣∣∣∣∂HTB

∂ϕn

∣∣∣∣Ψ⟩
= −(ts/3)Ψn (Ψn+1 sin θn −Ψn−1 sin θn−1) , (6)

where ϕn is the torsional coordinate of the nth ring, such that θn = (ϕn+1 − ϕn). The total

systematic torque is

Γsyst
n = Γel

n + Γch
n . (7)

B. Brownian Dynamics

The Brownian dynamics of the phenylene rings are modelled by the Langevin equation.

The equation of motion for phenylene ring n is given by

I
dΩn(t)

dt
= −IγΩn(t) + Γsyst

n (t) +Rn(t), (8)

where I = 9.119 × 10−27 eV s2 is the moment of inertia of a phenylene ring about its

rotational axis, Ωn = dϕn/dt is its angular velocity, and Rn(t) is the stochastic torque on

the ring due to the random fluctuations in the solvent. γ is the friction coefficient for the

specific solvent and condition; we set γ = 1012 s−1.

By the fluctuation-dissipation theorem14, the distribution of random torques, Rn(t), is

given by

⟨Rn(0)Rm(t)⟩ = 2IγkBTδmnδ(t). (9)

In addition to being both spatially and temporally uncorrelated, these torques are also

assumed to be independent of the angular velocity of the phenylene ring and independent

of the systematic torque, Γsyst
n . These stochastic torques then form a Gaussian distribution

with a standard deviation of

σR = (2IγkBT )
1
2 . (10)

6
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We implement the Brownian dynamics using the algorithm described by van Gunsteren and

Berendsen15.

C. Charge Dynamics

The torsional dynamics renders the tight-binding Hamiltonian time-dependent. However,

since the torsional degrees of freedom are much slower than the electronic degrees of freedom,

we assume that the charge state vector, |Φ(t)⟩, evolves quasi-adiabatically. That is, its

evolution is determined by calculating the instantaneous eigenstates of the Hamiltonian at

time (t+ δt), i.e., {|Ψ(t+ δt)⟩}, and projecting them onto the target charge state vector at

the previous time step t, i.e., |Φ(t)⟩. The eigenstate with the largest overlap is selected to

be the target charge state vector at the next iteration, i.e., |Φ(t+ δt)⟩.

It should be noted that the projection of the instantaneous wavefunction onto an instan-

taneous eigenstate corresponds to a ‘measurement’ of the system, and thus in principle the

time-step, ∆t, becomes a parameter in the simulation. It would be preferable to solve the

time-dependent Schrödinger equation (see, e.g., ref1–3). However, the Ehrenfest approxi-

mation fails when coupled to a heat bath, because the quantum and classical degrees are

uncorrelated, thus inhibiting relaxation processes16. Appendix A discusses the role of the

step size, ∆t. We take ∆t = 10−14 s, which for the temperature ranges considered is small

enough to accurately model torsional dynamics, but large enough to avoid ‘measurement’

problems.

Typically, we performed the simulations on polymers with 200 monomers (i.e., 200 coarse-

grained sites). During the simulation the boundaries of the chain were displaced, as described

in ref11, to ensure that on average the charge remained in the centre of the chain. Each

simulation of the mean-square-distance travelled at a particular value of temperature was

performed over 200 realizations of the Brownian fluctuations.

III. POLARONS

A polaron is a localized charge wavefunction. In the field of π-conjugated polymers,

polarons are often regarded as self-localized wavefunctions arising from the coupling of a

charge to a set of harmonic oscillators (e.g., bond vibrations or torsional fluctuations). This

7
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coupling ‘self-traps’ the charge and if the oscillators are sufficiently slow, the self-trapping

causes self-localization and ‘Landau’ polarons. As discussed in ref17, the high-frequency

C-C bond oscillations are not expected to self-localize charges, whereas the low-frequency

torsional fluctuations are more likely to do so. Thus, in this work we only consider polaron

self-localization via the torsional fluctuations. The calculated binding energy of the polaron

is 0.0225 eV, corresponding to a temperature of 261 K.

Another mechanism to localize charge wavefunctions (and hence form polarons) is Ander-

son localization18 arising from conformational disorder. The disorder in the dihedral angles

causes Anderson localization of the charge wavefunctions, resulting in the low-energy states

being superlocalized into non-overlapping local ground states (LGSs),6,7. As these states are

essentially nodeless, they can be identified by calculating a signed-value-parameter, SVP,

for each state, where6

SVP =

∣∣∣∣ N∑
n=1

Ψn|Ψn|
∣∣∣∣. (11)

A truly nodeless state will have a value of SVP = 1, while a LGS is generally defined as any

state where SVP ≥ 0.95. States with a SVP ≤ 0.95 are generally quasi-extended.

Figure 1 shows the the ensemble averaged charge localization length, ℓ, defined as

ℓ = 5.6
√

⟨R2⟩ − ⟨R⟩2 (12)

where

⟨Rl⟩ =
N∑

n=1

Rl
n|Ψn|2 (13)

and the factor of 5.6 arises from the ratio between the root-mean-square spread of a LGS

and the length of chain it occupies.8 For T < 10 K, ℓ is virtually independent of temperature,

because the charge is bound in its self-trapped, self-localized Landau polaron. For T greater

than the polaron self-trapped binding energy (∼ 260 K), however, ℓ is a decreasing function

of temperature, reflecting the behaviour of an Anderson localized polaron whose localization

length satisfies19 ℓ ∼ (σt/t)
−2/3, where σt is the standard deviation of the charge transfer

integral, t. However, since t ∼ ts cos θ, σt ∼ t tan θ0σθ, where σθ is the standard deviation

of θ. Thus, since from Eq. (5) σθ ∼ T 1/2, we deduce that ℓ ∼ T−1/3. The intermediate

temperature range illustrates the cross-over between the low-temperature Landau polaron

behaviour to the high-temperature Anderson polaron behaviour. As we show in the next

section, the temperature dependence of the polaron size affects the charge mobility.

8
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FIG. 1: The mean polaron localization length, ℓ, (in units of the monomer size) as a function of

temperature. This is an interpolation between the low-temperature Landau polaron size (which

is independent of temperature) and the high-temperature Anderson polaron size (which varies as

T−1/3). The maximum value of ℓ occurs at ∼ 260 K, corresponding to the polaron self-trapped

binding energy.

IV. CHARGE MOTION

Assuming that the charge moves diffusively, the mean square distance moved by a charge

in a polymer chain in a time t, ⟨L2⟩, can be expressed as

⟨L2⟩ = 2D(T )t, (14)

where D(T ) is the temperature dependent diffusion constant. Figure 2 indicates that the

charge motion is indeed diffusive for all temperatures investigated. From the gradients we

extract the total diffusion constant, as shown in Fig. 3.

We also extract the adiabatic and non-adiabatic contributions to the diffusion constant,

as follows. Adiabatic motion is defined by the signed-value-parameter (Eq. (11)) remaining

≥ 0.95, i.e., the charge remains in a LGS (but not necessarily the global ground state). Since

9
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FIG. 2: The mean square distance travelled, ⟨L2⟩, by a charge along the polymer chain at different

temperatures. The motion is diffusive, as shown by ⟨L2⟩ increasing linearly with time.

transitions between neigbouring LGSs is vanishingly unlikely, because of the very small bond-

order-overlap between them, adiabatic motion means slow evolution of the quasi-stationary

states. Thus, adiabatic motion corresponds to the polaron moving along the chain as random

collisions with the solvent molecules cause rings in one direction to planarize more, and rings

in the opposite direction to planarize less, thereby making the polaron ‘crawl’ around the

chain. As the adiabatic movement is likely to be activationless, it is expected to exhibit

behaviour predicted by the Einstein-Smoluchowski equation

D(T ) =
(µ
e

)
kBT, (15)

where µ is the zero-field charge mobility. The low-temperature dynamics is entirely adiabatic

and, as Fig. 4 indicates, Eq. (15) is satisfied.

In the low-temperature limit (i.e., T . 100 K) the calculated value of µ ≃ 100 cm2/Vs,

with an error of ∼ 10 cm2/Vs, for a value of γ = 1012 s−1. This applies only when the

charge exhibits adiabatic behaviour. Extrapolating the data obtained by Albu and Yaron

10
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FIG. 3: The charge diffusion constant (squares) along the polymer chain, obtained from Fig.

2, as a function of temperature. Also shown are the contributions from adiabatic (circles) and

non-adiabatic (triangles) motion, as defined in the text. Adiabatic motion dominates at low tem-

peratures (see Fig. 4), whereas non-adiabatic motion dominates at higher temperatures.

for their poly(para-phenylene vinylene) calculations4 to our value of γ, we find that our

calculated mobility for PPP is over an order of magnitude larger than theirs. We note that

this is the zero-field curvilinear mobility along the chain, and does not correspond to a

three-dimensional mobility.

Non-adiabatic dynamics occur when the charge is thermally excited from a localized

polaron into a more delocalized electronic state, i.e., a QES. In this case, there is a sharp drop

in SVP to typically close to zero. As Fig. 3 indicates, at higher temperatures non-adiabatic

motion begins to dominate, and indeed the extent of adiabatic motion decreases. The latter

result could be a consequence of the charge being continuously excited into higher states,

spending less time in the polaron, and therefore the contribution of the crawling polaron

movement to the overall motion is reduced. Alternatively, it could be due to the rings

being increasingly less able to planarize (Brownian motion effects increase with increasing

11
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FIG. 4: Low-temperature charge diffusion constant as a function of temperature, satisfying Eq.

(15).

temperature) and hence the polaron can crawl less easily along the rings.

For charges, the high temperature behaviour of the diffusion coefficient becomes almost

temperature independent above ca. 500 K, indicating a decrease in the charge mobility with

increasing temperature. For T & 300 K, we find that µ ∼ 2× 104/T cm2/Vs. We attribute

this observation of a decreasing mobility to the localization length of the quasi-extended

states decreasing as T−1/3, and thus ballistic transport in these extended states is inhibited.

(This is in contrast to what is expected in the condensed phase, where disorder is frozen

and the localization lengths are temperature independent.20)

V. CONCLUSIONS

In this work we have studied the motion of a doped charge in a poly(para-phenylene)

chain in solution subject to Brownian fluctuations, which cause rotational motion of the

phenylene rings. The instantaneous torsional fluctuations cause Anderson localization of

12
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the charge wavefunction, with the lower-energy spectrum being composed of local ground

states and the higher-energy spectrum being composed of quasi-extended states. At low

temperatures, additional charge localization occurs via torsional relaxation, but since the

polaron self-trapped binding energy from torsional modes is relatively small (∼ 260 K), this

is not an important effect at room temperature.

The dynamical torsional fluctuations lead to two distinct modes of motion of the charge:

adiabatic and non-adiabatic. Adiabatic motion is a ‘crawling’ motion of the polaron along

the polymer chain while the charge remains in its local ground state. Non-adiabatic motion

is a rapid ‘hopping’ motion as the charge is excited into higher energy quasi-extended states

and travels ballistically along the chain before relaxing into a local ground state. The adia-

batic motion dominates at low temperatures, and exhibits a linear temperature dependence

and thus a constant zero-field charge mobility. Non-adiabatic motion begins to dominate

as the temperature is increased, where the charge is thermally excited into higher energy

states. At high temperatures the diffusion constant becomes almost temperature indepen-

dent, indicating a decrease in the charge mobility with increasing temperature, which we

attribute to the temperature dependence of the polaron localization length.

This research is thus a natural extension of the previous work by Albu and Yaron, who

studied a similar system considering only adiabatic motion.4 It also makes a link to Fornari

and Troisi5 who considered non-adiabatic transitions in the condensed phase via the FGR

formalism. (A direct comparison of mobilities to ref5 is not meaningful, however, because

our calculated mobility is the curvilinear mobility along a chain in solution, not the three-

dimensional mobility in the solid state.)

This work is also comparative to that done on exciton dynamics11. Notable differences

in the dynamics of charges and excitons arise partially due to the charge-polaron binding

energy, which is about a sixth of that of the exciton-polaron binding energy. Consequently,

non-adiabatic motion occurs at significantly lower temperatures for charges than it does

for excitons. The high temperature behaviour also differs; for excitons, in the temperature

range analysed, there is a continuous increase of the diffusion constant with temperature,

however for charges, the diffusion constant is shown to level off at high temperatures.

Obvious extensions to this work include a treatment of the torsional and vibrational

degrees of freedom on an equal footing, and a full time-dependent solution of the charge

Schrödinger equation. These extensions, however, require a full quantum mechanical treat-

13
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ment of the problem because first, treating the high frequency C-C vibrations classically

causes unphysical self-localization17 and second, the Ehrenfest approximation fails to prop-

erly treat relaxation processes. Finally, extensions to the condensed phase are necessary to

predict the charge mobilities in polymer devices.

VI. APPENDIX: THE ROLE OF THE TIME STEP, ∆t

Qualitative insight into the role of the time step, ∆t, on the charge dynamics can be

obtained by considering the Landau-Zener problem.21 Consider two localized, diabatic states

|ϕA⟩ and |ϕB⟩, which might correspond to two localized charge states on the chain. The

Landau-Zener Hamiltonian is given by αt V

V −αt

 ,

where the off-diagonal elements are the time independent coupling of the two states. If the

system is prepared in the diabatic state |ϕA⟩ at t → −∞, then the probability, PB, that it

evolves on the instantaneous adiabatic surface, i.e., that there is a transition to the other

diabatic state |ϕB⟩ as t → +∞, is

PB = 1− exp

(
−πV 2

α~

)
. (16)

For there to be a transition to the other instantaneous adiabatic surface - and hence for

the system to remain in its original diabatic state, |ϕA⟩ - phase coherence in the time-evolving

state vector must develop between the two instantaneous eigenstates. Now, suppose that

at each time step, ∆t, the time-evolving state vector is projected onto the instantaneous

eigenstate with the largest overlap. As ∆t → 0 this projection must always be to the lower

energy (initial) instantaneous eigenstate, i.e., the system evolves adiabatically and diabatic

transitions from |ϕA⟩ to |ϕB⟩ are favoured.

In the context of our simulation we deduce that as ∆t is decreased the charge is more

likely to undergo transitions between different ‘diabatic’ states and thus increase its mobility.

This expectation is confirmed by Fig. 5, which shows that the diffusion constant begins to

increase sharply at higher temperatures for very small time steps.

For the temperature ranges modelled in this work, our chosen time step of ∆t = 10−14 s is

in the window of time steps which is small enough to ensure accurate Brownian dynamics15,
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FIG. 5: The charge diffusion constant as a function of the simulation step size, ∆t, for different

temperatures.

i.e., γ∆t << 1 (where γ = 1012 s−1), but large enough to avoid the loss of phase coherence

and spurious diabatic transitions.
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