
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

www.rsc.org/pccp

PCCP

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


 1 

 
 

        11 January 2016 (2nd Version) 
            ID: CP-ART-11-2015-006791  
         
 

PDF version : article published as an Accepted Manuscript (without highlighting) 
 
 
   
  

Macro and nano scale modelling of water-water 
interactions at ambient and low temperature: 
relaxation and residence times. 
   
 
                    

 
María Carmen Morón a,b,*, Diego Prada-Gracia c  and Fernando Falo b,d 

 
 
 

a Instituto de Ciencia de Materiales de Aragón (ICMA), Consejo Superior de 
Investigaciones Científicas-Universidad de Zaragoza, Pedro Cerbuna 12, E-50009 
Zaragoza, Spain. E-Mail: nina@unizar.es. 
 b Departamento de Física de la Materia Condensada, Facultad de Ciencias, 
Universidad de Zaragoza, Zaragoza, Spain. 
 c Freiburg Institute for Advanced Studies, School of Soft Matter Research, 
Albertstrasse 19, 79104 Freiburg im Breisgau, Germany. 
 d Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de 
Zaragoza, Zaragoza, Spain. 
 
 
 
 
 

 
* Corresponding author:  
María-Carmen Morón 
Instituto de Ciencia de Materiales de Aragón 
Universidad de Zaragoza 
Pedro Cerbuna 12 
E-50009 Zaragoza 
Spain 
E-mail: nina@unizar.es 
E-mail: oenola@gmail.com 

 
 
 

Page 1 of 38 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



 2 

 
 
 

Abstract  

The decay dynamics of ambient and low temperature liquid water has been 

investigated through all-atom molecular dynamics simulations, residence times 

calculations and time correlation functions from 300 K down to 243 K. Those 

simulations replicate the experimental value of the self-diffusion constant as a function 

of temperature by tuning the damping factor of the Langevin equation of motion. A 

stretched exponential function exp[ – ( t / τ ) β ] has been found to properly describe the 

relaxation of residence times calculated at different temperatures for solvent molecules 

in a nanodrop of free water modelled as a sphere of nanometric dimensions. As the 

temperature goes down the decay time τ increases showing a divergence at Ts = 227 ± 3 

K. The temperature independence of the dimensionless stretched exponent β = 0.59 ± 

0.01 suggests the presence of, not a characteristic relaxation time (since β ≠ 1), but a 

distribution of decay times that also holds at low temperature. An explanation for such 

heterogeneity can be found at the nanoscopic level. Moreover it can be concluded that 

the distribution of times already reported for the dynamics of water surrounding proteins 

(β ≤ 0.5) can not be exclusively due to the presence of the biomolecule itself since 

isolated water also exhibits such behaviour. The above reported Ts and β values 

quantitatively reproduce experimental data.  
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1. Introduction 

Water affects every aspect of our lives.  Being involved in nearly all processes it is 

the most common molecular substance. Although water is a very small molecule, its 

peculiar properties have a key role in many important physical, biological, chemical, 

and technical processes. Many of those unusual properties are attributable to the ability 

of its molecules to form hydrogen bonds with other water molecules forming extended 

three-dimensional networks.  As a result, the dynamics of water will be dominated by 

the behaviour of the three-dimensional hydrogen-bonded network, parts of which are 

continuously rebuilt.1-2 

Despite the relevance of liquid water in nature, many physical properties of this 

solvent are far from being fully understood. Macroscopic bulk water can remain liquid 

below its melting point down to approximately 232 - 235 K3-8 staying in a metastable 

phase9. This is possible because in the absence of a nuclei to induce crystallization that 

universal solvent can be cooled below its freezing temperature without crystallizing 

since the liquid-solid transition is first order.10 Experimental evidence has been also 

found for the existence of metastable bulk liquid water down to temperatures of 227 K 

in micrometre-sized droplets. 7,11-12. The dynamics of liquid water below 273.15 K 

attracts considerable interest since this particular type of water is present in nature in 

clouds and exhibits a relevant role in meteorological and atmospheric phenomena.13-15 

This special liquid is also of interest due to its technological importance in diverse areas 

as aviation10, commercial freeze-drying and lyophilisation16, cryopreservation17 or 

pharmaceutics18.  

Several thermodynamic (e.g. isothermal compressibility, thermal expansion 

coefficient, isobaric heat capacity) and dynamic (e.g. diffusivity, viscosity, structural 

relaxation) magnitudes of liquid water show an anomalous behaviour.19 As the 
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 4 

temperature decreases from 273.15 K the experimental values of these physical 

observables clearly diverge, with an extrapolated singular temperature Ts of 228 K at 

ambient pressure.20 This unexpected first observation has led to an intense curiosity and 

has promoted numerous experimental and theoretical studies. Both, experiments and 

computer simulations suggest that the singularity is a purely dynamical transition.21-22 

However despite the wide interest and the numerous research efforts on this subject, the 

nature of the phenomena remain unclear and lively debated.4,23-26 

Experiments in the proximities of Ts are extremely difficult due to ice formation 

processes.27 Since, as stated above, the singular temperature has been estimated to occur 

at Ts ≈ 228 K, the liquid must survive in its metastable state long enough to equilibrate, 

and the experimental observation time need to be smaller than the nucleation time.  

Moreover small sample techniques are required to perform measurements under 

conditions of metastability.  In principle those requirements are easier to meet in 

computer simulations of free water. The details of processes occurring at molecular 

length at different time scales can be studied using molecular dynamics simulations.  

Those analyses provide information that is often difficult to obtain experimentally. In 

this aspect the decay dynamics of liquid water has received significant attention from 

that particular scientific community. Thus magnitudes as the self intermediate scattering 

function, which can be measured by neutron scattering experiments, have been 

calculated.28-30 Molecular dynamics simulations of the Kerr effect31 or hydrogen bond 

dynamics32 have been also performed to obtain decay data from time correlation 

functions.  However all those computer approximations fail to quantitatively reproduce 

the experimental value Ts ≈ 228 K mentioned above. 

Page 4 of 38Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



 5 

On the other hand the water molecules located within the solvation shell in the 

immediate vicinity of a biomolecule were termed as ‘biological water’ by Nandi and 

Bagchi.33 Two kind of water can be differentiated: bound and free. Bound water is 

attached to the biomolecule (charged or polar amino acid groups) by strong hydrogen 

bonds. Free water defines solvent molecules that exchange with bound water. Beyond 

that special solvation shell molecules would behave as regular water. Biological water 

often exhibits longer lifetimes than the bulk.33-40 If macroscopic data are considered (i.e. 

relaxation times), the dynamics of biological water is affected only to a small extent (2-

4-fold slowdown) when compared with neat water.41-42 However if microscopic data are 

taken into account, that hydration water dynamics exhibits a slow component neatly 

smaller than that of bulk water (2-3 orders of magnitude).38,43  The residence times of 

water molecules located in the first hydration shell of commonly studied proteins have 

been recently shown to exhibit multiple time scales with a significant temporal disorder 

in the system.43-45  The question is if that particular dynamics of biological water is 

solely due to the presence of the protein or, by the contrary, the dynamics of residence 

times in free water would also exhibit such heterogeneity of relaxation processes. 

The paper is organized as follows. Section 2 presents the details of the all-atom 

molecular dynamics simulations carried out for free water at ambient and low 

temperature down to 243 K.  We have performed those simulations taking into account 

that the self-diffusion constant of the solvent molecules decreases with temperature. In 

Section 3 the presence of multiple time scales in water is analysed through time 

correlation functions (macroscopic view) and residence times (nanoscopic view) at 

different temperatures. Those results are discussed in Section 4 and compared with 

previously reported experimental and simulated data as well as theoretical models. The 

main conclusions are summarised in Section 5. 
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2.  Computational details  

Classical all-atom molecular dynamics simulations were conducted at 300 K on free 

water using a double precision version of the GROMACS software package.46-47 The 

simulated cubic box of 6.2 × 6.2 × 6.2 nm3, with periodic boundary condition to prevent 

boundary effects, contains 7918 water molecules. The simulations were conducted 

integrating the equations of motion employing Langevin dynamics with a time step 

(resolution) of 2 fs (0.002 ps). The cutoff length for the Lenard-Jones and Coulomb 

potentials was set at 1.4 nm. The three site simple point charge model (SPC) was used 

for modelling water.48 In order to follow the dynamics of the solvent at that temperature, 

a trajectory of 10 nanoseconds was simulated. It was performed in the canonical 

ensemble, i.e. at constant N, V and T. In order to reach a correct stabilization of the 

simulated system, we waited 3 ns before starting to collect data. The production run, 

which amounts 7 ns, was saved every 0.1 ps for later analysis. 

With the aim of capturing the dynamics of liquid water at low temperature, 

equivalent simulations were performed at various temperatures below 300 K down to 

243 K. The length of the trajectories was increased at the lower temperatures. As a 

result, the dynamics of the total 7918 water molecules was monitored during 10 ns for 

simulations at 288 K and 273 K, 16 ns at 258 K, 25 ns at 248 K and 30 ns at 243 K. As 

stated above, in order to reach a correct stabilization of the simulated systems, we 

waited various nanoseconds before starting to collect data: as an example, 3 ns at 288 K 

but 18 ns at 243 K.  Finally, the production runs amount 7 ns for 288 K and 273 K, but 

9 ns, 10 ns or 12 ns for, respectively, 258, 248 and 243 K. The root mean square 

deviation for all the temperatures considered in this work is 1 K. 

Since the present work refers to the dynamics of residence times calculated for water 

molecules as temperature is decreased, the above simulations should replicate, as close 
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 7 

as possible, the experimental value of the self-diffusion constant (Dexp) at each 

temperature. The replication has been done tuning the coupling constant time taut in the 

damping factor γ= m/taut of the Langevin equation of motion m(d2r/dt2) = F - γ(dr/dt) + 

η(t), where m, r and F are, respectively, the mass, the position and the force field acting 

on the atom under consideration in the dynamics. η(t) is a noise term with correlation 

function < ηi(t) .ηj(t’) > = 2kBT(m/taut)δi,jδ(t-t’).46-47 The quality in the reproduction of 

Dexp is shown by obtaining the corresponding calculated self-diffusion constant Dcalc. 

The values of taut together with Dexp and Dcalc are shown in Table 1 as a function of the 

temperature.  

 

3.  Results  

The dynamics of ambient and low temperature water is analysed in this section 

through residence times and correlation functions also including a nanoscopic 

approximation to the problem. 

3.1. Relaxation at room temperature  

The dynamics of water can be described by evaluating, as a function of time, the 

occupation of the water molecules on a given spatial arrangement (i.e. a spherical 

region).  That occupancy is related to the mobility (diffusion coefficient) of the water 

molecules through the region considered.  Indeed, the dynamical properties of a fluid 

can be obtained from time correlation functions.49-53 Thus we have considered a 

normalized occupation function defined as 

 

   C(t) =
Oi (t0 )Oi (t0 + t)
Oi (t0 )Oi (t0 )i=1

N

∑                                         (1) 
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where Oi(to+t) takes the value of 1 (unity) if the water molecule i, which is within the 

region of interest at the time origin to, still exists in that region at time to + t .  Otherwise 

Oi(to + t) equals 0.  N is the total number of water molecules within the region 

considered at to. The angular brackets denote averaging over various time origins with 

the aim of improving statistics as well as taking into account different areas of the 

trajectory.  Therefore C(t) gives the average number of water molecules that still remain 

in the region of interest after a time t. In our case such a region is a nanodrop of free 

water that has been modelled as a sphere with a radius of 2.0 nm in order to improve 

statistics.  This sphere has been centred in the simulation box.  The choice of that cutoff 

is adequate because we are also interested in comparing the dynamics of water in the 

first hydration shell of proteins with that of free water. A radius of 2.0 nm approximates 

half the diameter of some small proteins of interest plus its first hydration shell.43,54 

Thus, the function C(t) was calculated following equation (1) with a resolution of 0.1 

ps, using the data obtained from all-atom molecular dynamics simulations at 300 K 

(Fig. 1, inset).  The tendency of the curve consists of a fast initial decay followed by a 

slower one.  This trend cannot be described using a single exponential law.  In fact the 

referred relaxation curve C(t) can be accurately modelled using a stretched exponential 

function exp[ – ( t / τ ) β ] (see Fig. 1, inset).55-56 This function, which contains just two 

free parameters: the effective relaxation time τ and the stretching exponent β ( 0 < β ≤ 

1), was proposed empirically more than 150 years ago for its accuracy and simplicity in 

describing decay data. The stretched exponential, also known as the KWW (Kohlraush-

Williams-Watts) function, is often observed in several phenomena in complex 

condensed matter systems and supercooled liquids.57 The fit of our data to that 

expression supplies parameter values τ	
  = 312 ± 3 ps and β = 0.58  ± 0.01.  As expected, 
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 9 

the relaxation time τ decreases with the radius r of the sphere considered down to, for 

example, 75.3  ± 0. 5  ps  for r = 1.0 nm.   

The time constant τ gives an estimation of the permanence time of water molecules 

in the solvent region under study, providing the overall time scale over which the 

process develops. The exponent of the KWW function also provides interesting 

information as for example how large is the deviation of the relaxation curve from a 

classical exponential since for β = 1 the mathematical expression of a simple 

exponential is restored.  In our case, the large stretching effect (β ≈ 0.6) indicates a 

considerable large deviation from a classical exponential decay showing that water 

dynamics is characterized by, not a unique relaxation time (since β ≠ 1), but a 

distribution of different time scales.  That finding suggests the presence of significant 

temporal disorder in the system.21,57 Stretched exponentials are frequently employed for 

modelling phenomena characterized by multiple relaxation rates.58 As an example 

KWW exponents different from 1 were described for the hydration water of various 

proteins43-45,59 and for diffusion-controlled processes in molecular luminescence60. 

Therefore the heterogeneity of decay times reported for the dynamics of water located 

in the first hydration shell of those proteins, with a stretched exponent of β ≤ 0.5, is not 

exclusively due to the presence of the biomolecule itself since isolated water also 

exhibits a distribution of different relaxation times as shown by the large departure from 

β = 1 it exhibits (β = 0.58 ± 0.01).  A particular case is that of water clusters partially or 

largely confined inside proteins and in the interior of reverse micelles. For that special 

kind of solvent molecules the dynamics of water-biomolecule hydrogen bonds has been 

reported to be slower than that of hydration water.61-63 Generally clusters of water 

confined in proteins exhibit even smaller β values than those reported for hydration 
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 10 

water,61-62 indicating a more heterogeneous hydrogen bonding of those particular kind of 

solvent with the biomolecule, when compared with hydration and bulk water.   

Moreover we have also calculated the value of the β parameter for spheres of bulk 

water with a radius of 1.5 and 1.0 nm.  A departure from β = 1 is always found with a 

constant value β = 0.58 ± 0.01.  The fact that β is not affected by the radius of the 

sphere confirms the independence of the temporal disorder of the system versus the 

dimensions of that sphere.  That finding lets to calculate β independently of the radius in 

consideration.  We will exploit this useful result in the following. 

3.2. Relaxation at low temperature  

What is going to happen with those findings if the temperature is decreased from 

room temperature? In a macroscopic bulk sample several experimental difficulties limit 

the minimum reachable temperature for liquid water at about an effective 243 K.23  As 

reported in the introduction section, the dynamics of liquid water in this temperature 

regime is of considerable importance due to its technological relevance (atmospheric 

phenomena13, cryopreservation17, commercial freeze-drying and lyophilisation16, 

aviation6, pharmaceutics18 etc). With the aim of answering the above question, we have 

carried out molecular dynamics simulations for free water below 300 K down to 243 K.  

The oxygen-oxygen radial distribution functions, gOO(r), have been calculated for 

pure water at the above temperatures (see Fig. 2).  These atom-atom pair correlation 

functions are one of the principal structural descriptors for water. As expected, the three 

characteristic peaks of liquid water appear as the temperature goes down, in agreement 

with both experimental and simulated results.22,64-65 The sharpness of the peaks with the 

temperature reduction illustrates the progressive ordering of the liquid. 

Concerning relaxation curves calculated from time correlation functions, we do not 

report here the stretched parameters corresponding to a sphere of radius 2.0 nm due to 
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the rapid increase of the relaxation time τ	
   as the temperature decreases.  Much longer 

simulation times would be required in order to obtain reliable stretched parameters. 

Thus below room temperature, and taking advantage of the independence of β  with the 

radius of the sphere considered (see Section 3.1), we have calculated the stretched 

exponent for a radius equal to 1.0 nm.  If the radius of the sphere is decreased the decay 

time τ goes down, as expected, and the calculation of reliable enough stretched 

parameters is possible.  Thus for r = 1.0 nm, the fit of the autocorrelation functions (eqn 

(1) ) to a KWW exponential gives parameters τ  and β which are shown in Table 2 for 

various temperatures (as an example see Fig. 1, for the fit at 243 K).  The relaxation 

time τ increases with temperature reduction, as already reported for the temperature 

dependence of the relaxation times obtained for the hydrogen bond dynamics of bulk 

water8.  A particular behaviour arises from the stretched exponent since the value of that 

parameter nicely keeps constant from 300 to 243 K (β = 0.59 ± 0.01) indicating an 

independence of the KWW exponent β  with temperature (see Table 2 and Fig. 3).  

The evolution of the effective decay time τ with the temperature is shown in Fig. 4 

(inset).  It was first noted by Speedy and Angell20 that many dynamic magnitudes of 

water (such a isothermal compressibility, viscosity or proton and oxygen spin-lattice 

relaxation times) change with temperature following a power-law divergence 

proportional to negative powers of (T – Ts).  By extrapolation at low temperatures, those 

dynamic magnitudes of water would become infinitely large at the ‘singular 

temperature’ Ts with an extrapolated experimental value of 228 K.  In order to check if 

that is the case for the relaxation times τ of Table 2, their temperature evolution has 

been fitted to the expression τ  ~  (T – Ts)-γ.  The result is showed in Fig. 4 where a nice 
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linear dependence is found for the evolution of τ - (1/γ) with temperature.  The best fit 

corresponds to Ts = 227 ± 3 K and γ = 1.71 ± 0.1. 

The exponent γ = 1.71 ± 0.1 is in agreement with that one governing the power-law 

vanishing of the experimental diffusion constant with temperature.  Thus the fit to the 

expression Dexp ~ (T – Ts)
γ gives the parameters Ts = 227 K ± 1 K and γ = 1.64 ± 0.10 

(see Fig. 5) . The experimental singular temperature Ts has been reported to exhibit the 

same value for different magnitudes measured on water20,23,66-68, as it happens in our 

case for τ and D (Ts = 227 ± 3 K and Ts = 227 ± 1 K, respectively).   Gallo et al 69 have 

also found coincidence in the singular temperature Ts extracted from both diffusion 

coefficient and intermediate scattering function calculated from molecular dynamics 

simulations data. However their reported Ts value is more than 30 K smaller than the 

Speedy and Angell experimental temperature of 228 K20.  Those simulations were 

performed for water close to the centre of a silica pore with an average diameter of 4 

nm. 

3.3 Nanoscopic view at room temperature  

To gain a microscopic understanding of the heterogeneity of decay times reported for 

bulk water, the time that 7918 solvent molecules spend at a distance smaller than 0.40 

nm from a given solvent molecule, taken as a reference, has been calculated along the 

whole room temperature simulation (several molecules of reference were considered). 

The results are shown in Fig. 6. The cutoff of 0.40 nm is also judged as appropriate to 

compare with water located at the first hydration shell of a biomolecule.43 The atomic 

level analysis, depicted in Fig. 6, shows a wide distribution of residence times, 

rt(r=0.40nm), ranging from hundreds of femtoseconds to tens of picoseconds (see also 

Fig. 7, upper part). Please, keep in mind that although the resolution of the simulation is 
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2 femtoseconds (time step), that value increases up to 100 femtoseconds (0.1 ps) in the 

case of the collected data.  That wide distribution of times at a nanoscopic level explain 

the temporal heterogeneity already detected by the macroscopic results presented in this 

work (decay process, Section 3.1), that is the large departure from 1 of the stretched 

exponent β.  

As in the case of relaxation (Section 3.1), a similar heterogeneity of residence times 

has also been reported for the first hydration shell of the inhibitor Barstar.43 That 

temporal disorder cannot be solely due to the presence of the protein since, as shown 

above, bulk water also presents a wide distribution of times itself. However water 

molecules around proteins like for example Insulin45 and Barstar43 exhibit residence 

times in the range of 400-700 ps or even higher. The big difference between the two 

type of water, biological and bulk, is that such ultra long residence times are not 

detected for bulk water (see Fig. 6 and 7 upper part). The question is why such 

remarkable difference?  When recently studying the dynamics of hydration water 

around the protein Insulin, Bagchi and Roy45 have revealed that the kinetics of the 

hydrogen bonds for molecules exhibiting higher residence times are lower than those 

presenting smaller residence times. Moreover we have found that the water molecules 

that stay longer periods of time near the inhibitor Barstar present more hydrogen bonds 

with atoms of the biomolecule than with the rest of the solvent, and vice versa.43 It is 

significant to remember that a water-protein hydrogen bond is stronger than a water-

water one.33,70 Evidently in the case of bulk water there is no biomolecule present.  Slow 

hydration water is interesting for several reasons.  It retards charge transfer processes,34-

35 prevents dehydration,34 increases friction on the surface involved71 etc. Moreover 

slow confined clusters of water molecules also play a central role in protein function, 

including allosteric regulation and charge transfer.61-62 
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3.4 Nanoscopic view at low temperature 

In order to explore if the temporal disorder, reported in Section 3.2, is also observed 

at low temperature, the time that 7918 solvent molecules spend at a distance smaller 

than 0.40 nm from a given water molecule taken as a reference has been also calculated 

at 243 K (see Fig. 8).  Several molecules of reference were considered.  A heterogeneity 

of residence times is also detected when comparing with the data at room temperature 

(see Fig. 6).  However the dynamics at this atomic level clearly became slower as the 

temperature is going down. As an example, the difference between the residence times 

at room and low temperature (243 K) is one order of magnitude.  Thus the longest 

residence times found at 300 K amounts some tens of picoseconds while those at 243 K 

increase up to some hundreds of picoseconds (see also Fig. 7).  Same calculations 

performed for the intermediated temperatures reported above (300 - 243 K) agree with 

the nanoscopic slowing of the dynamics of bulk water as temperature decreases.  On the 

other hand as temperature goes down the dynamics of bulk water approximates that of 

water molecules in the vicinity of biomolecules in the sense that, as the temperature 

decreases the residence times of bulk water increase, thus moving through the values 

reported for biological water (nanoseconds time scale).43,45 

At this point a question arises: if a water molecule success in being located at the 

smallest distance of a solvent molecule of reference, would it stay at that particular 

position during a longer period of time?  In other words would those special water 

molecules be responsible for the long residence times of tens and hundreds of 

picoseconds detected for bulk water at room and low temperature respectively (see Figs. 

6, 7 and 8)?  With the aim of answering this question, the time that 7918 molecules of 

bulk water spend at the smallest distance of a given solvent molecule of reference has 

been calculated.  Several molecules of reference were considered.  These results are 
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shown at T= 243 K in Fig. 9 where it is possible to observe that, at a given time, if a 

particular water molecule success in being located at the smallest distance of the solvent 

molecule of reference, that fact does not necessarily implies that this water molecule is 

going to stay at such a minimum distance during a long period of time. In fact, a 

distribution of times can be detected (Fig. 9).  The same phenomenon of temporal 

disorder at atomic level can be observed at room temperature but this time the 

maximum residence time amounts just some tens of picoseconds while at T= 243 K this 

value increases up to some hundreds of picoseconds.  

 

4. Discussion 

In the following the results obtained in Section 3 are compared with previous data in 

the literature and discussed in the frame of different theoretical approximations as the 

diffusion-trap model57, the mode coupling theory72-74 or the cage effect75-76. Special 

attention is paid to the singular temperature Ts and the stretched exponent β as well as 

the presence of ‘defects’ within the hydrogen bond network. 

4.1. Relaxation and singular temperature Ts 

The singular temperature Ts, extrapolated from experimental data and predicted for 

liquid water as it is cooled down, throws values as 228 K20,66, 227 K23,67 , 226 K68, 221 

K ± 521 or 220 ± 10 K77.  Previous molecular dynamics simulations failed to 

quantitatively reproduce those experimental in character results, since they supplied Ts 

= 198.3 K31 (optical Kerr effect), Ts = 191 K28 and 202 K30 (intermediate scattering 

function), Ts = 197.5 ± 1 K32 (hydrogen-bond dynamics) or Ts = 185.3 K69 (diffusion 

coefficient).  From the relaxation times τ depicted in Table 2, we have calculated a 

singular temperature Ts = 227 ± 3 K, as shown in Section 3.2. This value is in 
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quantitative agreement with the experimental results listed above for Ts. Please mind 

that the molecular dynamics simulations this work presents, quantitatively reproduce the 

experimental self-diffusion constant of liquid water as the temperature is decreased (see 

Section 2 and Table 1). 

The mode coupling theory72-74 provides a mathematically well-defined model for 

describing the slow dynamics in low temperature glass forming simple liquids or in 

molecular liquids with spherical-symmetric interactions between the molecules. On the 

basis of that theory, the slowing down of residence times showed in Fig. 4 as the 

temperature decreases (see inset), could be described as a purely dynamic process. Thus 

that theory, through a dynamical model, predicts the asymptotic power-law divergence 

of correlation times and also power-law vanishing of the diffusion constant D as the 

temperature decreases.  

4.2. Relaxation and stretched exponent β  

In the following we will refer to the dimensionless stretched parameter β = 0.59 ± 

0.01 and its constant value throughout the entire temperature range considered (see 

Table 2 and Fig. 3). These two results are in excellent agreement with that reported 

from experimental determinations for ambient and low temperature liquid water that 

provides β = 0.6 with independence of the temperature considered.21,49,77 Previously 

reported molecular dynamics simulations of the intermediate scattering function for the 

system under consideration, have failed to quantitatively reproduce the experimental 

value of β and their constant evolution with temperature (β moves from 0.7 to 

0.95).28,69,78 However Skaf and Sonoda, performing molecular dynamics simulations of 

the optical Kerr effect for ambient and low temperature liquid water, have obtained 

values for the stretched exponent within the range 0.56 - 0.68.31 Interestingly a high 

degree of reproducibility has been reported for the values of β measured by different 
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methods on the same material.57 A β value of 0.6  has been also revealed for systems as 

different as metallic and oxide glasses, polymers or polar organic alcohols.57,79  

A physical origin for the stretched exponent β = 0.59 ± 0.01 (Section 3.1 and 3.2) 

can be found in the ‘diffusion-trap’ model in which β has an inherently topological 

origin.57 The model considers a uniform distribution of excitations that diffuse to traps 

where the excitations are annihilate.  The excitations that are closest to the traps 

disappear first and those that are further away take longer times to reach the traps. It is 

this kind of memory effect that produces the stretched exponential relaxation. The 

diffusion-trap model was originally developed to describe not molecular but electronic 

relaxation in amorphous semiconductors, where excitons diffuse to network defects, but 

paradoxically it describes the latter much more accurately than the former. That theory 

predicts β = 3/5 for short-range forces but β = 3/7 for relaxation when long-range forces 

are present. Therefore the values of the stretched parameter shown in Table 2, β = 3/5, 

would indicate that the relaxation process that takes place in ambient and low 

temperature liquid water is dominated by short-range molecular decay channels 

dismissing longer-range interactions.  

In the diffusion-trap model the stretched parameter is calculated as β = deff /( deff + 2 ) 

where deff is the effective dimensionality of the pathways involved in the excitations 

decay and can be expressed as deff = f × d, where d is the dimensionality of the system 

under study, i.e. d = 3 for structural glasses, and f is the fraction of channels activated 

for the particular decay process.57,80 Since in our case β = 0.59 ± 0.01, therefore deff = 

2.88 (2.9 ± 0.1).  Thus an effective dimensionality of nearly 3 could be assigned to the 

relaxation process of residence times calculated for solvent molecules in a nanodrop of 

water at ambient and low temperatures. Since for water d = 3 it can be deduced that 

nearly 100% of the channels are activated (f = 0.96). From those considerations it can be 

Page 17 of 38 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



 18 

deduced that the independence of β with temperature, depicted in Fig. 3, would indicate 

that the nature of the relaxation process, reflected in deff, does not change when liquid 

water is cooled down from ambient to 243 K.  

4.3. Diffusion-trap model, residence times and cage effect in the case of water: 

hydrogen bond network                                                    

Taking the diffusion-trap model as a point of departure and inspiration a question 

arises: what kind of entities would act as excitons and traps in the case of water?  Of 

significant interest for water is the network of hydrogen bonds it presents. Ab initio 

investigations of hydrogen bonding in bulk water detect water molecules with two, 

three, four, and five hydrogen bonds.81 Moreover experimental evidences suggest that 

the ideal tetrahedral network is not perfect but contains ‘defects’ such an extra (fifth) 

molecule in the first coordination shell.82-83 The two alone non-bonding pairs of 

electrons interact not with two, as expected from a perfect tetrahedral coordination, but 

with three protons from three different molecules. These ‘defects’ would be caused by 

an increase/reduction of molecules in that shell with respect to a tetrahedral 

coordination.  Therefore it seems to be reasonable that in the case of water, molecules 

with a coordination number higher than 4 could act as excitons while solvent molecules 

with a coordination number lower than 4 could behave as traps.  

We should test if our simulations can detect the presence of such defects.  Thus we 

have calculated the number of hydrogen bonds that, as a function of time and at atomic 

level, a given water molecule taken as a reference can establish with their neighbours at 

room temperature (several molecules of reference were considered).  The results are 

presented in Fig. 10, upper part, where it is shown that the first hydration shell contains 

different kind of ‘defects’ as a function of time (up to six hydrogen bonds per water 

molecule). As probably expected, the extreme configurations are much less visited. 
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Moreover investigations considering water reorientation at room temperature, found that 

in the vast majority of H-bond breaking events, a new H-bond partner is unavailable and 

the reorientation of the solvent molecule is unsuccessful; successful reorientation would 

require this availability.84-87 

On those basis, a water molecule exhibiting a tetrahedral coordination of hydrogen 

bonds and surrounded by solvent molecules also possessing such a coordination would 

be a good candidate to high residence times (see nanoscopic view, Section 3.3) because 

of its lower mobility due to i) a more tetrahedral first hydration shell and ii) less 

available H-bond partners.  By the contrary a water molecule with a high local deviation 

from tetrahedrality (‘defects’) and attached to solvent molecules also exhibiting that 

situation would be a good candidate to low residence times (see nanoscopic view, 

Section 3.3) because of its higher mobility due to i) a less tetrahedral first hydration 

shell and ii) more available H-bond ‘defects’ from the surrounded solvent molecules.  

In addition the increase of the decay time τ  as the temperature 

decreases (Table 2, Fig. 4 inset) could be also interpreted considering the dependence of 

the ‘defects’ with temperature together with the cage effect75-76,  i.e. the confinement of 

molecules due to the interactions with neighbouring molecules. Considering a tagged 

particle, if the other liquid particles were fixed, the tagged one could not move very far.  

It would be confined in a cage formed by its neighbours. It can migrate only through 

rearrangement of the particles surrounding it. The neighbours can move because their 

neighbours move and so on. On the other hand the local structure of hydrogen bonds 

evolves more tetrahedral as the temperature goes down, moving through that of ice.88 

The structure of the liquid changes: a more perfect tetrahedral hydrogen bond network 

is approached. At this point we should test if our simulations can detect that particular 

behaviour.  Then we have calculated the number of hydrogen bonds that, as a function 
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of time and at atomic level, a given water molecule taken as a reference can establish 

with their neighbours at low temperature (several molecules of reference were 

considered).  The results are depicted in Fig. 10 (lower part). As at room temperature, 

the coordination of the first hydration shell as a function of time, shows up to six 

hydrogen bonds per water molecule. It has been reported for temperatures from 200 to 

450 K, that there is a non-vanishing but negligible probability of having six hydrogen-

bonded neighbours.89 Please compare the upper and lower parts of Fig. 10 where the 

decrease of ‘defects’ is evidenced at atomic level as the temperature moves from 

ambient to 243 K.  Therefore as the number of ‘defects’ decreases on cooling, a given 

water molecule will be longer confined in its cage due to a higher number of neighbours 

presenting tetrahedral, and then more stable, coordination. Since the relaxation time 

τ would be related to the lifetime of the cage, larger τ values would be expected for 

water as the temperature goes down due to a decrease on the number of ‘defects’. 

Recently Saito et al 8 have calculated the temperature dependence of tetrahedrality of 

water molecules and found a growth of the tetrahedral structure with temperature 

reduction down to temperatures as low as 205 K. They have correlated such a growth 

with the rapid increase in the simulated specific heat Cp down to ~ 220 K. 
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5. Main Conclusions 

The relaxation of residence times, calculated for solvent molecules located in a 

nanodrop of free water modelled as a sphere of nanometric dimensions, has been found 

to be well described by a stretched exponential function exp[ – ( t / τ ) β ] at both 

ambient and low temperature (300 – 243 K).  As this magnitude decreases τ increases 

showing a divergence at a singular temperature Ts = 227 ± 3 K. The value of the 

stretched exponent β = 0.59 ± 0.01 indicates the existence of multiple decay time scales 

and significant temporal disorder in the system. It also shows: i) that the relaxation 

process is dominated by short range molecular decay channels dismissing longer range 

interactions, ii) an effective dimensionality of the pathways involved in the excitations 

decay deff ≈ 3, and iii) a fraction of activated channels for the relaxation process f ≈ 1. 

The independence of β with temperature suggests that this mechanism applies not only 

at ambient but also at low temperature within the range considered (300 – 243 K). The 

presence of such a distribution of decay times for liquid water is explained on the basis 

of the existence of multiple residence times at the nanoscopic scale.  

Such a particular dynamics is maintained as the temperature decreases.  The 

existence of a distribution of residence times, at both room and low temperatures, has 

been related with the ‘cage effect’ and with the presence of local deviations from the 

tetrahedrality (‘defects’) in the hydrogen bond network. Within the diffusion-trap model 

scenario, water molecules exhibiting a number of hydrogen bonds higher than 4 are 

suggested to act as ‘excitons’ while if that number is lower than 4 they are regarded as 

‘traps’. The nanoscopic study performed in this work reveals that the residence times of 

water molecules, around one of them taken as a reference, reach values up to tens of 

picoseconds at room temperature.  However that value increases one order of magnitude 

up to hundreds of picoseconds at 243 K.  

Page 21 of 38 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



 22 

Thus bulk water cannot be judged as responsible for the long residence times 

reported for room temperature biological water (nanosecond scale) since the longer 

permanence times observed for neat water are two order of magnitude smaller (some 

tens of picoseconds). Moreover the existence of multiple time scales and significant 

temporal disorder in the dynamics of room temperature water placed in the first 

hydration shell of proteins (β ≤ 0.5) can not be solely due to the presence of the 

biomolecule itself since isolated water also shows a distribution of decay times (β = 3/5 

≠ 1) and multiple residence times at the nanometric view. Therefore it is possible to 

conclude that bulk water exhibits a distribution of relaxation and residence times as 

biological water does, but keeping in mind that a different range of time scales is 

applicable for each type of water (up to tens of picoseconds in the first case but up to 

some nanoseconds in the second one). 

Finally it is significant to remark that the values obtained in this work for the singular 

temperature Ts and the stretched exponent β are in quantitative agreement, both of them, 

with those obtained from different experiments performed in liquid water cooled from 

300 to 243 K. Our simulations reproduce the experimental value of the self-diffusion 

constant as a function of temperature. To do that we have tuned the coupling constant 

time taut in the damping factor γ= m/taut of the Langevin equation of motion  m(d2r/dt2) 

= F - γ(dr/dt) + η(t) where η(t) is a noise term while m, r and F are, respectively, the 

mass, the position and the force field acting on the atom under consideration in the 

dynamics (see Section 2 for details). That working-schema could be extended to 

determine different magnitudes depending on the self-diffusion constant of water but 

also of other liquids. 
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TABLES 

 
 
 
 
Table 1. Experimental (Dexp) and calculated (Dcalc) self-diffusion constants for liquid water at ambient and low 
temperature.  The temperature dependent parameter taut is the coupling constant time in the damping factor γ= 
m/taut of the Langevin equation of motion m(d2r/dt2) = F - γ(dr/dt) + η(t), where η(t) is a noise term while m, r 
and F are, respectively, the mass, the position and the force field acting on the atom under consideration in the 
dynamics (see Section 2 for details).46-47  
 
 
 T (K)    Dexp x 105 (cm2/s)        Dcalc x 105 (cm2/s)          taut (ps) 
 
 
300 ± 1   2.40a   2.38 ± 0.03        0.210 ± 0.002 
288 ± 1   1.77a   1.78 ± 0.01        0.154 ± 0.002 
273 ± 1   1.10a   1.08 ± 0.02        0.100 ± 0.002 
258 ± 1   0.53b             0.516 ± 0.007        0.052 ± 0.002 
248 ± 1   0.31b                        0.308 ± 0.007        0.036 ± 0.002 
243 ± 1   0.20b             0.199 ± 0.004        0.025 ± 0.002 
 
 
a) M. Holz, S. R. Heil and A. Sacco, Phys. Chem. Chem. Phys., 2000, 2, 4740-4742 
b) K. T. Gillen, D. C. Douglass and M. J. R. Hoch, J. Chem Phys., 1972, 57, 5117-5119 

 
 
 
 

Table 2.  Ambient and low temperature stretched exponential 
parameters for the relaxation of residence times in a nanodrop 
of liquid water modelled as a sphere of nanometric dimensions. 
See Sections 3.1 and 3.2 for details. 
 
 
 T (K)                   τ (ps)                             β  
 
 
300 ± 1                 75.3 ± 1                 0.58 ±0.01    
288 ± 1               101.3 ± 1                 0.60 ±0.01 
273 ± 1               163.6 ± 1                 0.59 ±0.01 
258 ± 1                  334 ± 3                 0.58 ±0.01 
248 ± 1                  542 ± 5                 0.60 ±0.01 
243 ± 1                  998 ± 9                 0.59 ±0.01 
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Fig. 1.  Normalized residence time correlation functions for liquid water.  C(t) represents the 
number of water molecules that remain in the region of interest at a given time t with respect to 
that number at the initial time.  In this case the region of interest considered is a nanodrop of bulk 
water at 300 K (inset above) and 243 K (curve below). The symbols are data points obtained from 
molecular dynamics simulations performed on neat water using eqn (1) (see Section 3.1 and 3.2 
for details).  The continuous line represents the best fit using a stretched exponential function   

exp[ – ( t / τ ) 
β

 ] (see Table 2 for results). 
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Fig. 2.  Oxygen-Oxygen radial distribution functions (gOO) for bulk water at 300 K (+: red), 273 K 
(x: green) and 243 K (*: blue) showing the liquid character of the system at T ≤ 273 K. Data 
calculated using the GROMACS software package. 
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Fig. 3.  The temperature independence of the stretched exponent β is shown for a nanodrop of 
liquid water, modelled as a sphere of nanometric dimensions, cooled from 300 to 243 K.  See 
Fig. 1 and  Section 3.2 for details. 
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Fig. 4.  Decay dynamics for liquid water from 300 K down to 243 K.  The magnitude τ is the effective 
relaxation time obtained from the fit of the molecular dynamics simulations data to a stretched 

exponential function exp[ – ( t / τ ) 
β 

] (see Fig. 1 and Section 3.2 for details). The straight line 

illustrates the power-law divergence τ ~ ( T – Ts )
-γ with best fit for Ts = 227 ± 3 K and γ = 1.71 ± 

0.10. 
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Fig. 5.  Evolution of the experimental diffusion coefficient, Dexp, for liquid water in the 
temperature regime 300 – 243 K (see Table 1). The straight line illustrates the power-law 

vanishing Dcalc ~ ( T – Ts )
γ
 with best fit for Ts = 227 ± 1 K and γ = 1.64 ± 0.10 (see Section 3.2). 
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Fig. 6.  Map of residence times for water molecules located at a distance smaller than a cutoff of 
0.40 nm from a given solvent molecule taken as a reference ( rt(r=0.40nm) ). The data corresponds 
to room temperature bulk water at T= 300 K. If a given water molecule (y-coordinate), at a 
particular time of the simulation (x-coordinate), is located at a distance of the reference smaller 
than the cutoff, then a cross appears at the corresponding (x,y) location.  If the distance is higher or 
equal than the cutoff, a blank is settled instead. The length of the lines inside the figure provides 
the value of the resident time rt(r=0.40nm) for each water molecule. In some cases the lines reduce 
to a single point. Temporal resolution: 0.1 ps. The presence of multiple time scales can be clearly 
seen at this atomic level.  Please mind the x-axis scaling when comparing with low temperature 
data shown in Fig 8. Data calculated using the GROMACS software package. 
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Fig. 7. Residence times of water molecules located at a distance smaller than a cutoff of 0.40 nm 
from a given solvent molecule taken as a reference ( rt(r=0.40nm) ). Time units: picoseconds. The 
maximum value of those residence times increases one order of magnitude when water is cooled 
from 300 K (upper part of the figure) down to 243 K (lower part). Please mind the y-axis scaling in 
both cases (upper and lower representations). Data calculated using the GROMACS software 
package. 
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Fig. 8.  Map of residence times for water molecules located at a distance smaller than a cutoff of 
0.40 nm from a given solvent molecule taken as a reference ( rt(r=0.40nm) ). The data corresponds 
to low temperature bulk liquid water at T= 243 K. If a given water molecule (y-coordinate), at a 
particular time of the simulation (x-coordinate), is located at a distance of the reference smaller 
than the cutoff, then a cross appears at the corresponding (x,y) location.  If the distance is higher or 
equal than the cutoff, a blank is settled instead. The length of the lines inside the figure provides 
the value of the resident time rt(r=0.40nm) for each water molecule. In some cases the lines reduce 
to a single point. Temporal resolution: 0.1 ps. The presence of multiple time scales can be clearly 
seen at this atomic level. Please mind the x-axis scaling when comparing with room temperature 
data shown in Fig 6. Data calculated using the GROMACS software package. 
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Fig. 9.   Map of residence times for water molecules located at the smallest distance of a given 
solvent molecule taken as a reference.  If a given water molecule (y-coordinate), at a particular time 
of the simulation (x-coordinate), is located at the smallest distance of the solvent molecule of 
reference, then a cross appears at the corresponding (x,y) location.  On the contrary if it is not 
situated at that smallest distance, a blank is settled instead. The length of the lines inside the figure 
provides the value of the resident time for each water molecule. In some cases the lines reduce to a 
single point. Temporal resolution: 0.1 ps. This figure shows that, at a given time, success in being 
located at the smallest distance of the reference does not necessarily imply success in staying at such 
a minimum distance during a long period of time. Data calculated on bulk liquid water at T= 243 K 
using the GROMACS software package. 
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Fig. 10.  Number of hydrogen bonds (HB) that a given water molecule taken as a reference can 
establish with their neighbours at room and low temperature (300 and 243 K, respectively).  As 
shown, the coordination of the first hydration shell as a function of time presents up to six 
hydrogen bonds per water molecule.  Moreover, the number of ‘defects’ decreases with 
temperature: a more perfect tetrahedral hydrogen bond network is approached for low temperature 
data (list of percentages of hydrogen bonds at 300 K and 243 K, respectively: 1.3% and 0.3% (1 
HB), 10.7% and 5.2% (2 HB), 35.0% and 27.6% (3 HB), 45.5% and 59.8% (4 HB), 7.3% and 
7.0% (5 HB), 0.2% and 0.1% (6 HB) ).  Time resolution: 0.1 ps. See text for more information 
(Section 4.3). Data calculated using the GROMACS software package.  
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A method to predict magnitudes in quantitative agreement with experimental data has been 
devised and applied to model water-water interactions at low temperature. 
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