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the introduction of anharmonic effects will enable both an im-
proved description of the intensities associated with a single ex-
citation of a particular normal mode as well as introduce the
leading-order contributions to intensities associated with transi-
tions corresponding to the simultaneous excitation of two or more
vibrational quanta, either involving only a single normal mode or
several of them, often referred to as overtone and combination
bands, respectively.

Calculations of anharmonic contributions for the purpose of
correcting vibrational frequencies have regularly been carried
out,17,23,39–41 requiring at least third-order geometric derivatives
of the molecular energy, from here on referred to as the cubic
force constants. We will refer to the corresponding fourth-order
derivatives as the quartic force constants. Calculations of the cu-
bic and quartic force constants have previously almost without
exception been done using numerical differentiation.23,41–43 The
only exception is the analytic calculation of cubic and quartic
force constants at the HF level reported by Handy and cowork-
ers.44,45. Recently, we presented an analytic implementation of
cubic and quartic force constants at the DFT level46 by the use of
a newly developed recursive code47 for the calculation of molec-
ular properties by response theory.48

For the IR and (regular) Raman spectroscopies, programs that
allow for the analytic calculation of the required first-order ge-
ometric derivatives of the dipole moment and polarizability, re-
spectively, have been available for some time49–51. The calcu-
lation of anharmonic corrections to the intensities in these spec-
troscopies requires both the development of the necessary vibra-
tional perturbation theory38 to obtain expressions for these cor-
rections and the possibility of calculating second- and third-order
geometric polarization property derivatives, as well as the cubic
and quartic force constants, that enter into these expressions. Pro-
grams that would allow for the analytic calculation of some of
these properties are available, but such calculations have mainly
been restricted to the HF level of theory, and for some of the prop-
erties (and more so if a DFT description is desired), the researcher
has had to resort to numerical differentiation. Analytic calcula-
tion offers several advantages over numerical methods such as
higher attainable accuracy and ease of computation51, as numer-
ical derivatives are sensitive to the finite perturbation/geometry
displacements employed, and this can have significant effects on
the results if not managed carefully.52–54 For these reasons, ana-
lytic methods are preferred over numerical ones.

In this work, we present the first application of our recursive
approach for the analytic calculation of the anharmonic vibra-
tional frequencies and infrared and Raman intensities of metha-
nimine as well as nitromethane and its mono- and di-deuterated
isotopomers. Methanimine has been shown to be very sensitive
to the numerical differentiation parameters52 and thus provides
a good illustration of the advantages of the analytic approach.
The nitromethane isotopomers have been selected because ex-
perimental spectra display a large number of combination and
overtone bands, for which calculation calls for the use of an an-
harmonic treatment. We remark that anharmonic effects have
also been found to contribute appreciably to the spectroscopic in-
tensities for several other molecules.38

The rest of the paper is organized as follows: In Section 2, we
outline the theoretical foundation for the analytic calculation of
anharmonic corrections to vibrational frequencies and IR and Ra-
man intensities. In Section 3, we provide details about the com-
putational setup used for the calculations on our chosen systems.
We present and discuss the results of our calculations in Section
4, and make some concluding remarks in Section 5.

2 Theory

We will begin in Section 2.1 by outlining how the high-order
molecular properties used in this work can be calculated ana-
lytically through the use of our recently developed recursive re-
sponse code and then in Section 2.2 proceed to show how these
properties can be used to determine anharmonic corrections to
vibrational frequencies and IR and Raman intensities. Although
the general framework has been described previously,46–48 this
work is the first report of fifth-order analytic derivatives involving
geometrical distortions.

2.1 Analytic calculation of response properties

A detailed presentation of the response theory which in our ap-
proach is fundamental for the analytic calculation of the cubic
and quartic force fields and the high-order geometric derivatives
of the dipole moment and polarizability that are needed in this
work is too long to show here, and we will therefore restrict our-
selves to the most salient features. We refer to the original work48

for a more thorough treatment, and to our recent work47 for a
description of the recursive implementation used in the present
work.

Our analytic scheme uses as a starting point that linear re-
sponse functions described by perturbations a and b can be for-
mulated as perturbation strength εi(i = a,b, . . .) derivatives of a
quasienergy Lagrangian gradient, expressed in a density-matrix
(D̃) formulation as48

〈〈A;B〉〉ωb
=

d{L̃a(D̃, t)}T

dεb

∣

∣

∣

∣

{ε}=0

= Lab ; ωa =−ωb, (1)

where the derivative is evaluated at zero perturbation strength
and where higher-order response functions can be found by fur-
ther differentiation of Eq. (1). A tilde is used to represent a quan-
tity considered at an arbitrary perturbation strength, and the ab-
sence of a tilde denotes evaluation at zero perturbation strength.
The quasienergy Lagrangian L̃a is given by

L̃a(D̃, t)
{Tr}T

= Ẽ
0,a − S̃

a
W̃, (2)

where we have introduced the atomic orbital (AO) overlap matrix
S̃ as

S̃µν = 〈χ̃µ |χ̃ν 〉, (3)

where χ̃ is an atomic orbital, and where the energy- and
frequency-weighted Fock matrix W̃ is defined as

W̃ = D̃F̃ D̃+ i
2

( ˙̃
DS̃D̃− D̃S̃

˙̃
D
)

, (4)
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where the generalized Kohn-Sham Fock matrix F̃ is given by

F̃ = F̃− i
2 T̃ = h̃+ G̃

γ (D̃)+ Ṽ
t + F̃xc −

i
2 T̃. (5)

We also introduced the generalized energy Ẽ as

Ẽ
{Tr}T

= Ẽ(D̃, t)− i
2 T̃D̃ (6)

{Tr}T

=
(

h̃+ Ṽ
t + 1

2 G̃
γ (D̃)− i

2 T̃
)

D̃+ Ẽxc[ρ̃(D̃)]+ h̃nuc. (7)

In eqns. (5)-(7), we introduced the half-time-differentiated over-
lap matrix T̃, the one-electron matrix h̃, the external field opera-
tor Ṽ

t and the two-electron matrix G̃
γ with γ-fractional exchange

as

T̃µν = 〈χ̃µ | ˙̃χν 〉−〈 ˙̃χµ |χ̃ν 〉, (8)

h̃µν =

〈

χ̃µ

∣

∣

∣

∣

− 1
2 ∇2 −∑

K

ZK

|RK − r|

∣

∣

∣

∣

χ̃ν

〉

, (9)

Ṽ t
µν = ∑

a

exp(−iωat)εâ〈χ̃µ |â|χ̃ν 〉, (10)

G̃
γ
µν (M) = ∑

αβ

Mβα (g̃µναβ − γ g̃µβαν ), (11)

and also the exchange-correlation contributions F̃xc and Ẽxc[ρ̃(D̃)]

in addition to a nuclear potential operator h̃nuc. Here and
throughout the paper, atomic units are used unless otherwise
stated. Molecular properties characterized by a perturbation
tuple abc . . . can therefore be formulated as derivatives of the
quasienergy Lagrangian gradient as

La
{Tr}T

= E
0,a −S

a
W, (12)

Lab
{Tr}T

= E
0,ab +E

1,a
D

b −S
ab

W−S
a
W

b, (13)

Labc
{Tr}T

= E
0,abc +E

1,ac
D

b +E
1,ab

D
c +E

2,a
D

b
D

c

+ E
1,a

D
bc −S

abc
W−S

ab
W

c −S
ac

W
b −S

a
W

bc,(14)

where we have introduced a short-hand notation for differentia-
tion and tracing by

E
m,abc =

∂ m+3E

(∂DT)m∂εa∂εb∂εc
(15)

and

TrE
2,a

D
b
D

c = ∑
αβ µν

∂ 3E

∂DT
αβ

∂DT
µν ∂εa

Db
αβ Dc

µν , (16)

respectively. This theory is sufficient to define any response func-
tion using the so-called n+ 1 rule formulation,55 where the cal-
culation of a response property of order n+ 1 requires the calcu-
lation of the density matrix perturbed to order n. However, other
formulations placing other conditions on which perturbed den-
sity (and Fock) matrices must be calculated are possible.55 Let
us represent the idempotency of the density matrix and the time-
dependent self-consistent field (TDSCF) conditions as the matri-

ces Y and Z, respectively, so that

Y = D̃S̃D̃− D̃, (17)

and

Z =
[(

F̃ − i
2 S̃

d
dt

)

D̃S̃
]

⊖, (18)

where the notation
[M]⊖ = M−M

†, (19)

and
[M]⊕ = M+M

†, (20)

has been introduced, and where adjungation is defined to happen
before time differentiation. It can be shown that the ansatz

λ̃ a = [D̃a
S̃D̃]⊖, (21)

for the multiplier λ̃ a for Y leads to the definition of the multiplier
ζ̃ a for Z as

ζ̃ a =
[

F̃
a
(D̃S̃− 1

2
)− (F̃ D̃− i

2
˙̃
SD̃−iS̃ ˙̃

D)S̃a
]⊕. (22)

It is then possible to make a general expression for the quasi-
energy Lagrangian for the calculation of response properties as

〈〈A;B,C, . . .〉〉ωbc··· = L
abc···
k,n

{Tr}T

= E
abc···
k,n − (Sa

W)bc···
nW

− (Sa
W)bc···

kS,n′W

− (λ a
Y)bc···

kλ ,n
′
Y
− (ζ a

Z)bc···
kζ ,n

′
Z
,

(23)

where the values of k and n in the various terms denote, with
minor variations, to which orders perturbed Fock and density
matrices must be calculated in order to evaluate this expression:
The value of k determines to which order the perturbed matrices
must be calculated for perturbation tuples involving perturbation
a, whereas the value of n determines the same for perturbation
tuples not involving perturbation a. We have that k+ n = N − 1,
where N is the order of the property considered, and k must
be chosen as an integer in the interval k ∈ [0,(N − 1)/2], where
(N − 1)/2 is rounded down for even N. In this work, we do not
discuss how the necessary perturbed Fock and density matrices
can be calculated, as it is described in detail in Ref. 48. We re-
mark, however, that since the calculation of high-order properties
requires solving so-called response equation systems and since
this part of the calculation is computationally expensive, a ju-
dicious (k,n) rule choice may give a significant reduction in the
number of such systems to be solved, both compared to other
rule choices and to numerical differentiation schemes. For in-
stance, for the calculation of cubic force constants, the choice
(k,n) = (1,1) makes it necessary to solve M systems, where M

is the number of geometrical coordinates, whereas (k,n) = (0,2)

results in M2 such systems. Similarly, a scheme where an analyt-
ically calculated molecular Hessian is differentiated numerically
by nuclear displacements results in a number of such systems on
the order of M2. Similar savings can be achieved for other prop-
erties.

With the recursive program developed by our group,47 it is
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possible to evaluate Eq. (23) for any response property, includ-
ing the calculation of the required perturbed Fock and density
matrices, as long as external routines are available that can pro-
vide the necessary (un)perturbed one- and two-electron integral
contributions56–58, exchange–correlation contributions59,60 and
perturbed nuclear potential contributions, and solve the response
equations61,62 that arise during the evaluation of perturbed Fock
and density matrices. More information about the external mod-
ules used in this work is given in Section 3. All such modules used
in the present work have been parallelized; see e.g. Ref. 63.

2.2 Anharmonic corrections to vibrational frequencies and

spectroscopic intensities

Having determined the harmonic vibrational frequencies and nor-
mal modes of vibration from the well-established eigenanalysis of
the molecular Hessian20, it is possible to make anharmonic cor-
rections to fundamental vibrational frequencies and frequencies
corresponding to combination or overtone excitations of the nor-
mal modes by a second-order perturbational approach, where the
resulting expressions involve the cubic and quartic force constants
and Coriolis vibration–rotation coupling constants. In the VPT2
approach23,35,36, the corrected fundamental vibrational frequen-
cies νi1 , first overtone frequencies νi2 and first combination fre-
quencies νi1 j1 are given as, respectively

νi1 = ωi +2Xii +∑
j 6=i

Xi j

2
, (24)

νi2 = 2νi1 +2Xii, (25)

νi1 j1 = νi1 +ν j1 +Xi j, (26)

where the diagonal and off-diagonal correction terms Xii and Xi j

are given by

Xii =
φiiii

16
−∑

k

φ 2
iik

(

8ω2
i −3ω2

k

)

16ωk

(

4ω2
i −ω2

k

) (27)

and

Xi j =
φii j j

4
−∑

k

φiikφ j jk

4ωk

−∑
k

φ 2
i jk

ωk

(

ω2
i +ω2

j −ω2
k

)

2Ωi jk

+∑
α

Bα (ζ
α
i j )

2

(

ωi

ω j
+

ω j

ωi

)

,

(28)

where Ωi jk is defined as

Ωi jk =
(

ωi +ω j +ωk

)

·
(

−ωi +ω j +ωk

)

·
(

ωi −ω j +ωk

)

·
(

ωi +ω j −ωk

)

.
(29)

In the above expressions, ωi denotes a harmonic fundamental fre-
quency, φi jk and φi jkl are cubic and quartic force constants, respec-
tively, Bα is the rotational constant for axis α, and ζ α

i j is a Coriolis
coupling constant.

The method chosen in the present work is the so-called general-
ized vibrational second-order perturbation (GVPT2) model38,41.
In this method, a VPT2 treatment of the molecular vibrations is
used, except for the cases where Fermi resonances are considered
to have occurred. In these cases, the terms in the VPT2 treatment

that are affected by the Fermi resonance are not included23, and
the affected frequencies are instead resolved in a variational ap-
proach.

Expressions for corrections to spectroscopic intensities can also
be identified by a perturbation-theory approach. In a recent work
by Bloino and Barone38, GVPT2 expressions for IR and Raman in-
tensities have been derived. The expression for the IR intensities
is

IIR,νi
=

8π3NAνi

3000ln(10)hc(4πε0)
∑
a

〈µa〉
2
0i (30)

and in classical Raman spectroscopic measurements, the unpolar-
ized (as well as polarized) scattering intensity at a temperature
T , related to the Raman cross section, is given by

IRaman,νi
=

h(ν0 −νi)
4

8π2cνi

(

1− exp(− hcνi

kT )
) (45a′i

2
+7b′2i ), (31)

where
a′i =

1

3
∑
a

〈αaa〉0i (32)

and

b′2i =
1

2
∑
a

∑
b6=a

(

1

2
(〈αaa〉0i −〈αbb〉0i)

2 +3(〈αab〉0i)
2

)

, (33)

where νi = ωi in the harmonic approximation and is given by
Eqs. (24)-(26) in the anharmonic GVPT2 treatment, ν0 is the
frequency of the incident laser in the Raman experiment, and
〈 〉0i represents the transition moment of the relevant polarization
property from the vibrational ground state to the ith vibrational
excited state. In the double-harmonic treatment, these transition
moments are determined by first-order geometric derivatives of
the polarization property (〈P〉0i1 = ∂P/∂qi), whereas the anhar-
monic expressions also involve the second- and third-order geo-
metric derivatives of the polarization property and the cubic and
quartic force constants. The resulting expressions in the anhar-
monic case are large and we refer to the work of Bloino and
Barone38 where the complete expressions are reported.

Altogether, the expressions used in the complete VPT2 treat-
ment involve the first-, second-, and third-order geometric deriva-
tives of the molecular electric dipole moment and polarizability
in the IR and Raman case, respectively, in addition to the cubic
and quartic force constants, meaning that the highest-order prop-
erty that must be calculated, i.e. the cubic force constants of the
frequency-dependent polarizability, is a fifth-order energy deriva-
tive. The contributions to this property can be identified from eqn.
(23) and are shown here in order to demonstrate the complexity
involved in the analytic calculations performed in this work and
to justify the use of a recursive approach.

The third-order geometric derivative of the polarizability can
be defined from a perturbation tuple (a,b,c,d,e), where pertur-
bations a,b and c correspond to differentiation with respect to
geometrical displacements, and d and e to differentiation with re-
spect to a frequency-dependent electric dipole perturbation. De-
noting a geometric perturbation as g and the two electric dipole
perturbations as fω and f−ω , where, respectively, each perturba-
tion is associated with a positive or negative frequency ω, eqn.
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(23) takes the form

L
ggg fω f−ω

2,2

{Tr}T

= E
ggg fω f−ω

2,2 − (Sg
W)

gg fω f−ω

2W
− (Sg

W)
gg fω f−ω

2S,2′W

− (λ g
Y)

gg fω f−ω

2λ ,2
′
Y

− (ζ g
Z)

gg fω f−ω

2ζ ,2
′
Z

,

(34)

where the rule choice (k,n) = (2,2) is used because this will give
the lowest computational cost. Omitting terms that must be zero
straightforwardly or because, in the differentiation carried out,
there was lack of dependence on the perturbation operators and,
for the sake of brevity, writing contributions that are permutations
of identical operators only once, the terms in eqn. (34) can be
written as

E
ggg fω f−ω

2,2

{Tr}T

= E
1,ggg

D
fω f−ω +E

1,ggg f−ω D
fω +E

1,ggg fω D
f−ω+

E
1,gg f−ω D

g fω +E
1,gg fω D

g f−ω +E
2,g

D
gg

D
fω f−ω+

E
2,g

D
g f−ω D

g fω +E
2,gg

D
g
D

fω f−ω +E
2,gg

D
g f−ω D

fω+

E
2,gg

D
g fω D

f−ω +E
2,ggg

D
f−ω D

fω +E
ggg fω f−ω
xc ,

(35)

(Sg
W)

gg fω f−ω

2W

{Tr}T

= S
ggg

W
fω f−ω , (36)

(Sg
W)

gg fω f−ω

2S,2′W

{Tr}T

= S
g
W

gg fω f−ω

2′ +S
gg

W
g fω f−ω

2′ , (37)

(λ g
Y)

gg fω f−ω

2λ ,2
′
Y

{Tr}T

= λ gY
gg fω f−ω

2′ +λ g
gY

g fω f−ω

2′ +λ fω
g Y

gg f−ω

2′ +λ f−ω
g Y

gg fω

2′ ,
(38)

and

(ζ g
Z)

gg fω f−ω

2ζ ,2
′
Z

{Tr}T

= ζ gZ
gg fω f−ω

2′ +ζ g
gZ

g fω f−ω

2′ +ζ fω
g Z

gg f−ω

2′ +ζ f−ω
g Z

gg fω

2′ ,

(39)
where, for example, W

g fω f−ω

2′ from eqn. (37) is

W
g fω f−ω

2′ =
ω

2

[

DS
fω D

g f−ω +D
fω SD

g f−ω +D
g fω SD

f−ω +D
g fω S

f−ω D+

DS
g fω D

f−ω +D
g
S

fω D
f−ω +D

g fω SD
f−ω +D

fω S
g
D

f−ω+

D
fω SD

g f−ω +D
fω S

g
D

f−ω +D
fω S

g f−ω D+D
fω S

f−ω D
g
]

⊖

+

[

DF
g
D

fω f−ω +DF
g f−ω D

fω +DF
g fω D

f−ω +DF
f−ω D

g fω+

DF
fω D

g f−ω +DF
fω f−ω D

g +D
g
FD

fω f−ω +D
g
F

f−ω D
fω+

D
g
F

fω D
f−ω +D

g f−ω FD
fω +D

g fω FD
f−ω +D

f−ω F
g
D

fω

]⊕
,

(40)

and where the other differentiated W, Y, and Z terms are of a
similar complexity. We consider the length of these expressions,

in particular eqn. (40), and the corresponding complexity in
treating them, as strongly supporting the use of a recursive ap-
proach for calculations of the high-order properties required for
the GVPT2 treatment, and in a similar manner, automated ap-
proaches based on automatic differentiation are needed in order
to evaluate the differentiated exchange–correlation energy and
kernel E

ggg fω f−ω
xc .59

3 Computational details

To compute the cubic and quartic force constants and the first-,
second- and third-order geometric derivative tensors of the elec-
tric dipole and of the electric dipole polarizability, the recursive
implementation47 of the open-ended response theory framework
of Thorvaldsen et al.48 has been used. This formalism has been
implemented in a development version of the DALTON2013 pro-
gram package64,65. The linear response solver of Jørgensen et

al.61 has been used for the solution of the response equations.
Differentiated one- and two-electron integrals were computed us-
ing the GEN1INT 56,57 and CGTO-DIFF-ERI 58,66 programs, respec-
tively, except for some of the lower-order two-electron geomet-
ric derivatives which were computed using existing functionality
in DALTON. The differentiated exchange–correlation (XC) energy
and potential contributions up to fifth order needed in the DFT
calculations were computed using the XCFUN library59,60, where
the integrator XCINT has been used for the integration of the XC
contributions. The calculation of the Coriolis coupling constants
is not done in a response theory framework, but have been calcu-
lated in the manner outlined in Ref. 67.

All calculations have been performed at the DFT level of the-
ory using the B3LYP hybrid functional68–70. This functional
has already been shown to give good results for the calcu-
lation of higher-order properties in earlier work46,71. Dun-
ning’s correlation-consistent polarized triple-ζ (cc-pVTZ) basis
set72 has been used. The study was conducted for metha-
nimine (CH2NH), and nitromethane (CH3NO2) and its mono-
(CH2DNO2) and di-deuterated (CHD2NO2) isotopomers. Two
conformations (eclipsed and staggered) have been considered for
the non-deuterated isotopomer and four (H-eclipsed, D-eclipsed,
H-staggered and D-staggered) for each deuterated isotopomer (cf.
Figure 1).

For each system, the geometry was optimized and the molecu-
lar Hessian and the rotational constants were computed using the
DALTON2013 program package64,65. The other relevant molec-
ular properties were computed at the optimized geometry using
the recursive response property implementation, and the Corio-
lis coupling constants have been implemented in a development
version of DALTON2013. The molecular Hessian was then used
in a vibrational analysis to find the harmonic vibrational frequen-
cies and to transform the geometric differentiation in the property
tensors from a Cartesian basis to a reduced normal coordinate ba-
sis73 to calculate anharmonic frequencies and spectral intensities.

Anharmonic corrections to the fundamental frequencies, as
well as first overtones and combination band frequencies were
calculated from the cubic and quartic force constants, the ro-
tational constants and the Coriolis coupling constants using
a scheme based on vibrational second-order perturbation the-
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CH3NO2

H H

H

O

O

eclipsed

H H

H

OO

staggered

CH2DNO2

H H

D

O

O

D-eclipsed

D H

H

O

O

H-eclipsed

H H

D

OO

D-staggered

D H

H

OO

H-staggered

CHD2NO2

D D

H

O

O

H-eclipsed

H D

D

O

O

D-eclipsed

D D

H

OO

H-staggered

H D

D

OO

D-staggered

1

Fig. 1 Newmann projection of the different conformations of
nitromethane considered.

ory35,36 as described in Section 2.2, where terms found to be
affected by Fermi resonances are taken out of the perturba-
tional treatment23 and resolved variationally41 using the GVPT2
model38.

First-order geometric derivatives of the electric dipole and elec-
tric dipole polarizability in reduced normal coordinate basis were
used for the evaluation of the harmonic IR intensities and Raman
scattering cross-sections, respectively. Anharmonic corrections to
the spectral intensities were calculated by considering the second
and third geometric derivatives of the corresponding properties
and the cubic and quartic force constants, in a reduced normal
coordinate basis, using the GVPT2 model, resulting in features
associated with corrections to the fundamental bands and the ap-
pearance of the first overtone and combination bands.

For methanimine, the cubic and quartic force fields have also
been evaluated by numerical differentiation from the molecular
Hessians calculated for Cartesian displacements δx of 10−2 and
10−3 Å with DALTON2013 using the expressions

Exix jxk =
Exix j (x0

k +δx)−Exix j (x0
k −δx)

2δx
, (41)

Exix jxkxl =
1

(2δx)2

(

Exix j (x0
k +δx,x0

l +δx)−Exix j (x0
k +δx,x0

l −δx)

−Exix j (x0
k −δx,x0

l +δx)+Exix j (x0
k −δx,x0

l −δx)
)

,(42)

where Exix j , Exix jxk and Exix jxkxl represent, respectively, the
second-, third- and fourth-order derivatives of the energy with re-
spect to the Cartesian components in superscript, and using con-
vergence thresholds of 10−8 for both the molecular orbital (MO)
coefficients and relative to the norm of the perturbed MO coef-
ficients when solving the response equations. The same conver-
gence criteria have been applied to all fully analytic calculations.
We remark that the errors in the calculated properties resulting

from these strict thresholds are negligible.
The first, second and third geometry derivatives of the electric

dipole moment and polarizability have also been evaluated this
way and with the same convergence thresholds, but using the
expressions

Pxi =
P(xi +δx)−P(xi −δx)

2δx
, (43)

Pxix j =
1

(2δx)2

(

P(x0
i +δx,x0

j +δx)−P(x0
i +δx,x0

j −δx)

−P(x0
i −δx,x0

j +δx)+P(x0
i −δx,x0

j −δx)
)

, (44)

Pxix jxk =
1

(2δx)3

(

P(x0
i +δx,x0

j +δx,x0
k +δx)

−P(x0
i +δx,x0

j +δx,x0
k −δx)

−P(x0
i +δx,x0

j −δx,x0
k +δx)

+P(x0
i +δx,x0

j −δx,x0
k −δx)

−P(x0
i −δx,x0

j +δx,x0
k +δx)

+P(x0
i −δx,x0

j +δx,x0
k −δx)

−P(x0
i −δx,x0

j −δx,x0
k +δx)

+P(x0
i −δx,x0

j −δx,x0
k −δx)

)

, (45)

where P denotes either the electric dipole moment or the elec-
tric polarizability, and Pxi , Pxix j and Pxix jxk represent respectively
the first, second and third derivatives with respect to geometry
distortions.

The spectral bands have been modeled using Lorentzian func-
tions for the band shape with a 10 cm−1 full width at half max-
imum. A 1 cm−1 resolution was used to plot all spectra. Raman
spectra have been evaluated considering an incident laser wave-
length of 514 nm, corresponding to an Ar+ laser at 298.15 K.

4 Results and discussion

4.1 Reliability of the approach: Methanimine

In this section, we will illustrate the need for analytic differentia-
tion techniques by calculating the infrared and Raman spectra of
methanimine (CH2NH), comparing the analytic approach to the
results obtained by numerical differentiation using different step
lengths. The sensitivity of methanimine to numerical differentia-
tion parameters52 makes it a suitable system for illustrating the
advantages of using an analytic approach.

The theoretical vibrational frequencies obtained using the dif-
ferent approaches are compiled in Table 1. Experimental val-
ues74,75 are also presented for comparison.

In the case of numerical differentiation using a step length of
δx= 10−3 Å, the difference in Hessian values between some of the
displaced systems was smaller than the numerical precision,thus
illustrating one of the problems of this approach. This can be illus-
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Table 1 Calculated (harmonic, numerical anharmonic and analytic
anharmonic) and experimental normal vibrational frequencies of CH2NH

(in cm−1).

mode ωi
νnum.

i νnum.
i νanal.

i ν
expt
i(10−2Å) (10−3Å)

1 ν(NH) 3424 3251 3250 3240 3263
2 νa(CH2) 3100 2932 2922 2923 3024
3 νs(CH2) 3007 2844 2827 2839 2914
4 ν(CN) 1712 1681 1685 1677 1638
5 δ (CH2) 1492 1465 1450 1463 1452
6 δ (HNC) 1373 1336 1303 1332 1344
7 τ(CH2) 1169 1138 1100 1135 1127
8 ω(CH2) 1101 1081 999 1078 1061
9 ρ(CH2) 1075 1063 1087 1062 1058

a Experimental data from References 74,75.

trated by the anharmonic correction to the vibrational frequency
of the 91 mode which is positive, whereas anharmonic corrections
are generally expected to be negative, as is obtained in the ana-
lytic approach and when a step length of δx = 10−2 Å is used in
the numerical differentiation approach. The anharmonic correc-
tions to the vibrational frequencies of the high-frequency modes
appear less sensitive to this problem. The analytic approach does
not depend on the energy difference between slightly displaced
systems and is therefore free from this source of numerical error.

Using a step length of δx = 10−2 Å for the numerical differ-
entiation, numerical noise is largely avoided and the anharmonic
frequencies are in better agreement with experimental fundamen-
tal frequencies. This is also observed for the anharmonic fre-
quencies obtained by analytic differentiation. Nevertheless, the
numeric anharmonic corrections are still on average in error by
about 10% compared to the analytic corrections, the latter being
always larger than the former.

Figures 2 and 3 show, respectively, the calculated infrared and
Raman spectra of methanimine for the analytical and numerical
approaches. In the calculated infrared spectrum, using a step
length of δx = 10−3 Å in the numeric differentiation, not only are
the anharmonic corrections to the frequencies in poor agreement
with the analytic ones, but so are also the corrections to the in-
tensities, most strikingly so for the low-frequency peaks. In this
case, for the IR spectrum, the δx = 10−3 Å, numerical differenti-
ation reproduces the analytic anharmonic spectral intensities al-
most perfectly for the peaks of frequency above 2900 cm−1 but
overstimates (in absolute value) drastically the intensity for the
other peaks, the lower the frequency the larger the overestima-
tion.

Numerical (δx = 10−2 Å) and analytic anharmonic corrections
to the spectral intensities both go in the same direction for each
individual peak, but the magnitude of the corrections differs. The
difference in the intensity of the anharmonic corrections to the
infrared intensities between the numerical and analytic values
varies from 10 to 230 % of the analytic correction depending on
the peak considered, with the majority of the corrections being in
error by 35-85%, the only exceptions being the low-energy modes
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Fig. 2 Theoretical infrared spectrum of CH2NH comparing different
derivation approaches.
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81 and 91. However, there is no trend as to whether the numerical
corrections under- or overestimate the analytic results. As the an-
harmonic corrections to the total intensity of the peaks is small,
these differences are not easily visible from the spectra plotted in
Figure 2.

For the Raman spectra, numerical noise does not affect the
derivatives of the electronic polarizability when using a step
length of δx = 10−3 Å. The numerical anharmonic corrections to
the spectral intensities are thus in better agreement with the ana-
lytic ones than in the infrared case, but the corrections to the vi-
brational frequencies remain wrong. Considering the intensities,
the numerical spectrum obtained using a step length of δx = 10−3

Å shows differences of less than 10% compared to the analytic
spectrum, and is thus in better agreement than the spectrum ob-
tained using a step length of δx = 10−2 Å, where these differences
may be as large as 20% . The only exception is the 81 mode, for
which both step lengths give corrections that are far from the an-
alytic one. As for the IR spectra, the calculated corrections can be
both larger and smaller than the analytic result and whether the
corrections are over- or underestimated also depends on the step
length. It should also be noted that, depending on the step length
used, the ordering of the intensity of the peaks can differ. For ex-
ample, in the case of δx = 10−2 Å, 11 is slightly more intense than
21, whereas with δx = 10−3 Å, the 21 peak is more intense than
11, in agreement with the analytic differentiation results.

This example illustrates that even if the use of numerical differ-
entiation can lead to qualitatively sound results, it still depends
strongly on the step length used. While methanimine is still a
rather small molecule, it could still be expected that these diffi-
culties will be present in larger systems. On this note, we now
turn our attention to using the analytic approach to calculate an-
harmonic vibrational spectra and compare these with available
experimental observations.

4.2 Comparison with experiment: Nitromethane

In Section 4.2.1, we will present and discuss the computed vibra-
tional frequencies, before we in Sections 4.2.2 and 4.2.3 turn to a
discussion of the theoretical IR and Raman spectra, respectively,
comparing our theoretical results to available experimental data.

All experimental and theoretical studies76–79 on the geometry
of nitromethane agree that the barrier (∆E = 9.6 µEh

76) for the
rotation of the methyl group around the CN axis is very small,
with the staggered conformation being slightly more stable. Our
results reproduce quantitatively the barrier height (∆EB3LYP =

10 µEh). Such a low barrier makes it necessary to consider sev-
eral rotamers when modeling the theoretical spectra, and for this
reason all the geometries corresponding to the extrema of the en-
ergy along the rotation of the methyl group are considered in this
study (cf. Figure 1). A Boltzmann averaging at room tempera-
ture of these rotamers would give a quasi-equal weight for each
of the conformers, and for this reason all rotamers will thus be
considered of equal weight in the averaging of the spectra from
the different rotamers. We note that such a treatment for the
low-frequency internal rotation of the methyl group has to be
considered approximate, and that this vibration mode probably

Table 2 Calculated (harmonic and anharmonic) and experimental
normal vibrational frequencies of CH3NO2 (in cm−1).

eclipsed staggered expt.a

mode ωi νi ωi νi νi

1 νa(CH3) 3194 3039 3193 3038 3080
2 ν ′

s(CH3) 3161 3005 3161 3006 3045
3 νs(CH3) 3076 2956 3074 2953 2974
4 νa(NO2) 1632 1583 1632 1584 1583
5 δ ′

s(CH3) 1477 1427 1478 1427 1434
6 δa(CH3) 1466 1416 1464 1414 1410
7 νs(NO2) 1427 1388 1427 1388 1397
8 δs(CH3) 1398 1356 1399 1358 1380
9 ρ⊥(CH3) 1136 1107 1136 1106 1131

10 ρ‖(CH3) 1109 1081 1109 1084 1096
11 ν(CN) 925 898 924 898 918
12 δ (NO2) 657 640 662 645 657
13 ω(NO2) 624 614 616 605 603
14 ρ(NO2) 482 475 481 475 475

a Experimental data from References 79,80.

should be treated by a non-local representation going beyond the
normal-mode approximation. For this reason, we will in the fol-
lowing not include this mode in the anharmonic treatment.

4.2.1 Vibrational frequencies

For all rotamers of each isotopomer, the frequency corresponding
to the rotation of the methyl group is found to be quite small at
the harmonic level and negative at the anharmonic level, which
is consistent with what can be expected for a quasi-free rotating
methyl group76,77. The observed spectra should therefore come
from the average over all the rotamers. For this study, only the
extremum rotamers (staggered and eclipsed) have been consid-
ered (cf. Figure 1), and the system has been treated as having
only 14 normal modes (instead of 3N − 6 = 15) by not consider-
ing the derivatives with respect to the methyl rotation mode in
the anharmonic calculations.

Using partially deuterated isotopomers lowers the symmetry of
the system, thus allowing new rotamers to be spectroscopically
active and giving rise to band splittings77,78. Calculated (har-
monic and anharmonic) frequencies for the fundamentals of the
non-, mono- and di-deuterated isotopomers of nitromethane are
compiled in Tables 2, 3 and 4, respectively. Experimental frequen-
cies77,79–81 are also given for comparison.

The computed harmonic fundamental frequencies are, in line
with previous findings,79 found to be overestimated compared to
experiment. The anharmonic corrections are in many cases over-
estimated compared to the experimental data, but lead to a sig-
nificantly better agreement with experiment. The differences in
the calculated vibrational frequencies for the different rotamers
are in general very small. Indeed, very similar vibration frequen-
cies are found for the two rotamers of CH3NO2 at both the har-
monic and anharmonic level of calculation, the largest difference
being 9 cm−1. The calculated vibrational frequencies are also in
very good agreement with the experimental assignments of the
modes80–83.
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Table 3 Calculated (harmonic and anharmonic) and experimental normal vibrational frequencies of CH2DNO2 (in cm−1).

D-eclipsed H-eclipsed D-staggered H-staggered expt.a

mode ωi νi ωi νi ωi νi ωi νi νi

1 νa(CH2) 3160 3003 3188 3033 3193 3037 3173 3018 3071
2 νs(CH2) 3108 2971 3113 2975 3121 2985 3104 2965 3002
3 ν‖(CD) 2321 2249 2313 2244 2276
3 νm(CD) 2294 2197 2283 2191 2266
4 νa(NO2) 1626 1578 1630 1581 1631 1581 1627 1579 1578
5 δ (CH2) 1452 1407 1459 1413 1462 1413 1454 1408 1426
6 νs(NO2) 1415 1372 1421 1377 1420 1376 1418 1375 1387
7 ω(CH2) 1318 1286 1311 1280 1310 1271 1315 1283 1288
8 ρ(CH2) 1303 1267 1287 1250 1285 1249 1296 1260 1258
9 δ⊥(CD) 1084 1054 1082 1055 1080 1054 1084 1055 1068

10 δ‖(CD) 945 918 976 951 988 963 955 929 957
11 ν(CN) 900 881 911 889 916 892 904 883 898
12 δ (NO2) 645 628 651 635 661 645 645 629 651
13 ω(NO2) 616 605 586 576 561 551 607 596 579
14 ρ(NO2) 455 449 466 460 476 470 456 450 454

a Experimental data from References 77,79,80.

Table 4 Calculated (harmonic and anharmonic) and experimental normal vibrational frequencies of CHD2NO3 (in cm−1).

D-eclipsed H-eclipsed D-staggered H-staggered expt.a

mode ωi νi ωi νi ωi νi ωi νi νi

1 νm(CH) 3170 3020 3159 3010 3029
1 ν⊥(CH) 3135 2986 3120 2970 3014
2 νa(CD2) 2368 2279 2344 2256 2353 2265 2375 2284 2300
3 νs(CD2) 2251 2175 2248 2170 2246 2171 2256 2185 2194
4 νa(NO2) 1624 1575 1628 1580 1626 1578 1622 1574 1574
5 νs(NO2) 1421 1377 1420 1375 1420 1375 1421 1378 1388
6 δ‖(CH) 1313 1277 1316 1277 1315 1276 1304 1271 1283
7 δ⊥(CH) 1294 1258 1298 1266 1297 1267 1297 1258 1264
8 δ (CD2) 1076 1046 1060 1031 1065 1036 1080 1051 1057
9 w(CD2) 997 972 984 957 992 966 999 973 988

10 ν(CN) 912 890 957 937 937 916 908 886 895
11 r(CD2) 896 878 902 881 902 881 886 868 888
12 δ (NO2) 639 623 634 618 642 626 634 618 640
13 w(NO2) 578 568 560 551 556 547 591 581 559
14 r(NO2) 444 439 452 446 450 444 437 432 443

a Experimental data from References 79,81.
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Table 5 Calculated (harmonic and anharmonic) infrared spectral
intensities of CH3NO2 (in km ·mol−1).

eclipsed staggered
mode IIR

harm IIR
anharm IIR

harm IIR
anharm

1 νa(CH3) 2.15 3.94 0.57 1.29
2 ν ′

s(CH3) 1.78 2.63 2.25 3.14
3 νs(CH3) 2.36 2.65 0.71 1.07
4 νa(NO2) 580.62 550.36 298.07 251.14
5 δ ′

s(CH3) 94.00 92.23 11.30 11.33
6 δa(CH3) 9.70 9.50 41.14 38.85
7 νs(NO2) 38.31 40.69 54.95 41.37
8 δs(CH3) 2.24 0.47 52.25 68.51
9 ρ⊥(CH3) 1.26 1.34 1.22 1.43

10 ρ‖(CH3) 30.97 30.22 11.83 8.53
11 ν(CN) 5.10 6.34 15.56 18.63
12 δ (NO2) 39.17 37.49 17.19 14.45
13 ω(NO2) 7.44 6.84 5.37 5.08
14 ρ(NO2) 1.76 1.90 0.82 0.97

Experimentally, two peaks are assigned, in the infrared spec-
trum, to the stretching mode of the C−D bond in CH2DNO2: A
strong mode at 2266 cm−1 corresponding to the stretching per-
pendicular to the plane of the nitro group, and a weak one at
2276 cm−1 corresponding to the stretching parallel to the same
plane79. We find that the maximum frequency for the ν(CD)

mode is found for the D-eclipsed geometry in both the harmonic
and anharmonic treatment, and the frequency decreases the fur-
ther away the deuterium atom is from the NO2 plane.

A similar behaviour is also observed for the stretching of the CH

bond in CHD2NO2, with a strong band at 3029 cm−1 correspond-
ing to stretching perpendicular to the plane of the nitro group,
and a weak band at 3014 cm−1 corresponding to stretching par-
allel to the same plane79. The maximum frequency for the ν(CH)

mode is found for the H-eclipsed geometry in both the harmonic
and anharmonic treatment, and the frequency then decreases the
further away the hydrogen atom is from the NO2 plane, in anal-
ogy to the observations for CH2DNO2.

4.2.2 Infrared spectra

The infrared spectrum is calculated by summing the calculated
spectra of the three rotamers. The harmonic and anharmonic
calculated infrared spectra for non-, mono- and di-deuterated
isotopomers are shown in Figures 4, 5 and 6, respectively. Ta-
bles 5, 6 and 7 show the calculated infrared spectral intensities
(before Lorentzian normalization) for the normal modes of the
non-, mono- and di-deuterated isotopomers.

For the three isotopomers considered in this study, the anhar-
monic corrections do not substantially change the relative inten-
sities of the different fundamental bands below 2000 cm−1. In
this region, the main improvements arising from the anharmonic
treatment is in the calculated vibrational frequencies, as discussed
in the previous section. This observation is in agreement with the
findings of Bloino and Barone38 using the GVPT2 approach with
numerical calculation of the anharmonic IR spectra for a series of
molecules.

Fig. 4 Infrared spectrum of CH3NO2 : (top) harmonic; (middle)
anharmonic; (bottom) experimental gas phase 84.
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Fig. 5 Infrared spectrum of CH2DNO2 : (top) harmonic; (bottom)
anharmonic.
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Table 6 Calculated (harmonic and anharmonic) infrared spectral intensities of CH2DNO2 (in km·mol−1).

D-eclipsed H-eclipsed D-staggered H-staggered
mode IIR

harm IIR
anharm IIR

harm IIR
anharm IIR

harm IIR
anharm IIR

harm IIR
anharm

1 νa(CH2) 0.78 1.45 1.68 3.33 0.52 1.26 0.73 1.19
2 νs(CH2) 0.27 0.71 1.13 1.85 2.55 3.50 2.06 2.36
3 ν‖(CD) 1.47 1.72 0.41 0.53
3 νm(CD) 0.48 0.61 0.46 0.48
4 νa(NO2) 313.97 294.68 313.42 267.47 311.69 274.00 5.07 3.64
5 δ (CH2) 30.95 32.68 11.91 11.03 8.97 7.29 15.32 16.77
6 νs(NO2) 100.44 89.24 99.15 97.13 98.87 96.26 86.22 66.26
7 ω(CH2) 4.65 3.47 7.35 8.87 11.06 13.08 8.14 7.37
8 ρ(CH2) 5.31 4.95 25.75 25.70 29.24 28.43 4.85 2.96
9 δ⊥(CD) 2.82 3.00 3.63 3.42 5.75 5.32 53.61 53.65

10 δ‖(CD) 11.45 12.49 5.27 5.23 0.84 0.75 14.51 15.02
11 ν(CN) 13.74 15.52 15.13 17.67 15.82 18.57 20.68 22.56
12 δ (NO2) 18.02 25.69 17.14 14.77 16.51 14.24 24.34 23.03
13 ω(NO2) 3.54 3.10 4.67 4.35 5.46 5.02 224.51 219.61
14 ρ(NO2) 0.32 0.39 0.85 0.95 0.74 0.88 4.88 4.97

Table 7 Calculated (harmonic and anharmonic) infrared spectral intensities of CHD2NO3 (in km·mol−1).

D-eclipsed H-eclipsed D-staggered H-staggered
mode IIR

harm IIR
anharm IIR

harm IIR
anharm IIR

harm IIR
anharm IIR

harm IIR
anharm

1 νm(CH) 2.26 3.29 1.45 0.55
1 ν⊥(CH) 0.51 1.02 0.54 0.90
2 νa(CD2) 1.29 1.47 0.79 0.75 1.38 0.73 0.71 1.07
3 νs(CD2) 0.69 0.84 0.20 0.26 0.22 0.08 1.30 1.50
4 νa(NO2) 325.55 304.44 318.48 290.41 320.01 291.90 328.88 310.06
5 νs(NO2) 99.23 95.96 102.52 98.65 101.11 94.76 98.24 96.09
6 δ‖(CH) 3.62 3.90 8.99 9.12 7.01 7.51 8.00 8.52
7 δ⊥(CH) 19.83 18.52 15.38 13.99 19.61 13.44 10.98 10.85
8 δ (CD2) 3.35 2.37 8.05 7.63 6.23 6.26 2.56 2.57
9 w(CD2) 2.57 2.58 6.58 6.86 2.17 2.39 4.39 4.47

10 ν(CN) 14.22 16.22 0.48 0.47 6.69 6.74 15.79 18.02
11 r(CD2) 10.16 9.93 16.70 18.73 15.41 13.84 9.37 9.34
12 δ (NO2) 16.18 14.03 16.61 14.59 15.94 15.59 16.83 14.69
13 w(NO2) 4.75 4.42 4.21 3.85 4.98 4.76 3.83 3.44
14 r(NO2) 0.29 0.34 0.65 0.73 0.35 0.45 0.16 0.21
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Fig. 6 Infrared spectrum of CHD2NO2 : (top) harmonic; (bottom)
anharmonic.
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For all three isotopomers, a weak feature appears in the anhar-
monic spectrum around 2940 cm−1 arising mainly from the com-
bination of the symmetric (mode 4 for all isotopomers) and asym-
metric (mode 7 for CH3NO2, mode 6 for CH2DNO2 and mode 5
for CHD2NO2) stretching modes of the NO2 fragment.

The experimental gas-phase spectrum of CH3NO2 from Refs. 84
is reproduced in Figure 4 for comparison. As already noted, a low-
intensity feature around 3000 cm−1, also appearing in the exper-
imental spectrum, is introduced with the anharmonic treatment.
The main peak of this feature, at 2955 cm−1, arises mainly from
the 4171 combination band and a minor contribution from the 31

fundamental band. Apart from the 11 and 21 fundamental bands
(3038 and 3005 cm−1, respectively), another low-intensity com-
bination band, 4181 at 2933 cm−1, appears from the anharmonic
treatment. Other low-intensity peaks, also present in the exper-
imental spectrum, appear due to the 41111 combination band at
2471 cm−1 and the 72 overtone band at 2768 cm−1.

In the CH2DNO2 spectrum, a small shoulder arising from the
101121 combination band of the H-eclipsed conformer and the
91131 combination band from the D-staggered conformer appears
as a shoulder on the most intense peak. These two bands are
combinations of an angular vibration of the NO2 fragment and
an angular motion of the CD fragment. A low-intensity band ap-
pears from the anharmonic treatment around 3000 cm−1. The
main peak of this band, around 2933 cm−1, corresponds to the
4161 combination band from all four conformers. The rest of
the features of this band arise from the 11 and 21 fundamental
bands of the four conformers. Other low-intensity peaks appear in
the anharmonic spectrum around 2738 cm−1 due to the 62 over-
tone band of the four conformers and around 2462 cm−1 due to
the 41111 combination band from the H-eclipsed and D-staggered
conformers.

In the CHD2NO2 spectrum, the anharmonic treatment gives
a modification in the shape of the (broad) band between 1230

Table 8 Calculated (harmonic and anharmonic) Raman spectral
intensities of CH3NO2 (in 10−7Å4·amu−1).

eclipsed staggered
mode IRaman

harm IRaman
anharm IRaman

harm IRaman
anharm

1 νa(CH3) 12.28 8.82 14.39 9.08
2 ν ′

s(CH3) 15.44 9.79 16.63 10.46
3 νs(CH3) 45.08 26.05 48.86 28.04
4 νa(NO2) 2.70 1.52 8.59 4.07
5 δ ′

s(CH3) 13.28 8.23 13.64 8.29
6 δa(CH3) 13.32 8.18 22.46 13.76
7 νs(NO2) 36.42 15.18 22.43 10.03
8 δs(CH3) 26.02 19.08 12.88 10.09
9 ρ⊥(CH3) 0.81 0.42 2.23 1.32

10 ρ‖(CH3) 8.16 4.78 13.38 5.70
11 ν(CN) 75.59 41.59 82.64 45.52
12 δ (NO2) 76.91 41.88 94.92 58.54
13 ω(NO2) 16.84 8.74 23.15 14.94
14 ρ(NO2) 39.01 20.90 44.62 23.87

and 1280 cm−1, mainly due to the 61 and 71 fundamental bands
and from the 122 overtone band. A weak band appears around
1505 cm−1, due to the 101121 and 111121 combination bands
from the four conformers. A low-intensity peak, corresponding
to the 4151 combination band, appears around 2930 cm−1 from
the anharmonic treatment. In addition to the peak at 3020 cm−1,
corresponding to the 11 fundamental band of the H-eclipsed con-
former, another low-intensity peak appears in the anharmonic
spectrum around 2740 cm−1 and is due to the 52 overtone band.

4.2.3 Raman spectra

As done for the IR spectra, the Raman spectra were obtained as
the sums of Raman spectra for the individual rotamers. The calcu-
lated harmonic and anharmonic Raman spectra for non-, mono-
and di-deuterated isotopomers are shown in Figures 7, 8 and 9,
respectively. Tables 8, 9 and 10 show the calculated infrared spec-
tral intensities (before Lorentzian normalization) for the normal
modes of the non-, mono- and di-deuterated isotopomers.

The relative intensities of the bands corresponding to CH or
CD vibrations compare rather well with the experimental data, as
well as the relative intensities of the bands corresponding to the
CN and NO2 motions. However, the agreement between theory
and experiment for the relative intensities of these two different
vibrations is poor. The anharmonic treatment gives slightly bet-
ter agreement with experiment, though the differences are very
small.

The major correction arising from the anharmonic treatment
occurs for the frequencies, as also noted for the IR spectra. Anhar-
monic corrections do not modify significantly the relative intensi-
ties of the fundamental bands, except for the band at 1380 cm−1

corresponding to the νs(NO2) mode that is weakened by the an-
harmonic treatment for all three isotopomers relative to the har-
monic model. However, for both of the deuterated isotopomers,
a slight improvement in the intensities of the band corresponding
to the 31 mode for the mono-deuterated and the 21 mode for the
bi-deuterated isotopomer (both corresponding to a stretching of
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Table 9 Calculated (harmonic and anharmonic) Raman spectral intensities of CH2DNO2 (in 10−7Å4·amu−1).

D-eclipsed H-eclipsed D-staggered H-staggered
mode IRaman

harm IRaman
anharm IRaman

harm IRaman
anharm IRaman

harm IRaman
anharm IRaman

harm IRaman
anharm

1 νa(CH2) 17.38 10.95 14.33 11.58 14.42 9.06 16.05 15.50
2 νs(CH2) 39.30 24.11 33.83 21.09 30.68 19.30 37.84 23.54
3 ν‖(CD) 26.10 10.35 26.62 15.74
3 νm(CD) 36.97 20.53 40.73 22.41
4 νa(NO2) 10.43 5.79 10.19 5.10 9.98 5.16 10.43 5.69
5 δ (CH2) 15.86 9.59 13.27 7.94 9.88 5.70 15.83 9.59
6 νs(NO2) 37.16 18.43 28.95 14.77 31.04 16.01 31.79 13.19
7 ω(CH2) 0.49 0.28 2.80 2.19 4.88 4.24 0.95 0.63
8 ρ(CH2) 17.36 10.27 26.72 16.03 26.15 15.76 20.80 9.88
9 δ⊥(CD) 0.62 0.41 5.40 3.08 7.33 3.82 2.25 1.42

10 δ‖(CD) 45.65 23.57 26.09 12.92 13.89 5.93 41.00 21.04
11 ν(CN) 55.33 32.47 64.80 37.43 72.07 40.31 56.78 33.44
12 δ (NO2) 110.63 69.01 97.53 60.92 93.14 49.61 109.35 68.26
13 ω(NO2) 14.64 7.61 29.55 16.98 33.24 19.38 16.41 9.04
14 ρ(NO2) 41.38 22.13 46.31 24.74 44.23 22.61 43.71 23.29

Table 10 Calculated (harmonic and anharmonic) Raman spectral intensities of CHD2NO3 (in 10−7Å4·amu−1).

D-eclipsed H-eclipsed D-staggered H-staggered
mode IRaman

harm IRaman
anharm IRaman

harm IRaman
anharm IRaman

harm IRaman
anharm IRaman

harm IRaman
anharm

1 νm(CH) 18.97 12.05 21.72 9.88
1 ν⊥(CH) 27.53 17.22 30.50 19.09
2 νa(CD2) 16.84 8.27 20.23 8.76 18.52 7.83 16.57 9.40
3 νs(CD2) 43.57 20.69 51.09 28.41 49.17 19.58 40.04 19.45
4 νa(NO2) 11.94 6.57 10.84 5.78 11.11 6.00 12.45 6.91
5 νs(NO2) 29.33 14.92 30.66 15.65 30.13 15.41 29.04 14.93
6 δ‖(CH) 9.31 4.98 12.67 7.63 11.60 6.43 9.89 5.89
7 δ⊥(CH) 17.97 10.90 10.29 5.95 13.27 6.31 15.56 9.40
8 δ (CD2) 15.39 5.97 13.87 8.04 13.67 7.65 16.12 8.39
9 w(CD2) 3.33 1.27 36.96 19.83 14.72 9.82 2.19 0.74

10 ν(CN) 57.75 32.21 1.66 1.02 22.31 11.96 70.13 39.80
11 r(CD2) 36.87 20.89 59.95 34.08 59.59 28.80 27.88 15.85
12 δ (NO2) 103.21 63.69 109.73 68.89 105.29 58.31 110.54 68.81
13 w(NO2) 30.03 17.50 24.79 13.01 28.92 14.78 20.69 11.26
14 r(NO2) 41.56 22.22 47.91 25.45 43.99 23.64 41.98 22.41
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ties involving frequency-dependent perturbations and perturba-
tion dependence in the basis set.47 The approach is applicable to
single-determinant self-consistent field models such as Hartree–
Fock theory and Kohn–Sham DFT, and being matrix-based, it can
also be extended to linear-scaling approaches,48,62 as well as to
the relativistic four-component level of theory.86 We have previ-
ously applied our approach to the calculation of anharmonic cor-
rections to vibrational frequencies using density functional the-
ory46 and to the analytic calculation of Raman optical activity87

and hyper-Raman scattering,71 and in this work, we have used
it to calculate anharmonic infrared and Raman spectra of ni-
tromethane and its partially deuterated isotopomers. We find that
anharmonic effects lead to an improvement in the quality of the
computed IR and Raman spectra. The major improvements aris-
ing from the anharmonic treatment occur for the vibrational fre-
quencies, while the effects of the anharmonic corrections on the
infrared and Raman intensities are smaller and show only minor
influences on the relative intensities of the fundamental bands,
which is in agreement with earlier observations.38 Nevertheless,
the anharmonic corrections are important in order to capture the
overtone and combination bands. The anharmonic corrections
are found to be somewhat more important for the Raman spec-
tra, even if very small, than for the infrared spectra. Overall, the
anharmonic spectra are in better agreement with experiment than
the corresponding harmonic spectra.

We have also shown that evaluating the energy and property
derivatives by numerical differentiation is prone to numerical in-
stabilities, as also noted elsewhere,51 so that obtaining reliable
numerical derivatives can prove difficult for general molecular
systems, and we have seen that the errors thus introduced can
significantly affect the calculated results, whereas analytic ap-
proaches would be free of these sources of error. Because of this,
we believe that analytical derivatives of high order is an important
step in making the inclusion of anharmonic corrections in calcu-
lated infrared and Raman spectra routine, leading to an improved
understanding of the importance and occurrence of anharmonic
effects in vibrational spectroscopies.

Finally, solvent effects are known to affect vibrational spectro-
scopies.88 It is therefore important that the scheme presented
here is extended to include solvent effects, either in the form
of polarizable continuum models or polarizable embedding ap-
proaches,89 and work in this direction is in progress.90
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