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The physical characterization of the singular interfacial behavior of heterogeneous fluid systems is a very important step in pre-
liminary process design stages, and also in the subsequent procedures as the determination of the optimal operating conditions.
Molar isopycnicity or molar density inversion is a special case of phase equilibrium behavior that directly affects the relative po-
sition of phases in heterogeneous mixtures, without being affected by gravitational fields. This work is dedicated to characterize
the impact of molar density inversions on the interfacial properties of Lennard-Jones binary mixtures. Results and specific trends
of the molar density inversion phenomena on the peculiar calculated composition profiles across the interface and interfacial ten-
sions are explored by using canonical Molecular Dynamics Simulations of the Lennard-Jones binary mixtures. Our results show
that the density inversion causes a drastic change in the density profile of the mixture. Specifically, symmetrical and equal-sized
Lennard-Jones mixtures always exhibit desorption along the interfacial zone, i.e. the interfacial concentration profiles show a
relative minimum at the interface of the total density profile, that increases when the dispersive energy parameter (εi j) between
unlike species decrease. However, as the asymmetry of the Lennard-Jones mixtures increases (σi ̸= σ j), the concentration pro-
files display a relative maximum at the interface, which implies the adsorption of the total density profile along the interfacial
zone.

1 Introduction

Phase density inversion phenomena are special cases of phase
equilibrium behavior which occur in response to changes in
variables that control the phase equilibrium (i.e. temperature
and pressure), producing a change in the concentration of the
phases, and subsequently also in phase density. As early as
1906, the physical phenomenon of density inversion was dis-
covered by Kamerlingh Onnes1 at the Leiden Physics Labo-
ratory, when liquefying the helium + hydrogen mixture at 20
K and after 50 atm, Kamerlingh Onnes noted that upon in-
creasing pressure, the gas phase mainly composed of helium
became heavier than the hydrogen-rich liquid phase, leaving
the first trapped in the bottom of the working cell. On one
hand, the change of the relative position of phases observed
in heterogeneous mixtures exposed to gravitational fields, is
denoted as Barotropy or mass density inversion1–6, and on the
other hand, Isopycnicity in the case of molar density inver-
sion7–9 occurs when two phases of a heterogeneous mixture
invert, independently of gravitational fields.
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A heterogeneous mixture is said to be in molar isopycnic
equilibrium when -at least- two of the constituent phases (i.e.
α- and β -phases) are characterized by the same molar vol-
ume (vα = vβ ) or, equivalently, by the same molar density
(ρα = ρβ ).8,9 As follows from the previous definition, and
considering that the density of the phases that compose a het-
erogeneous system become equivalent as critical states are ap-
proached, every critical point may be also defined as isopyc-
nic.9 However, in addition to these trivial cases -that can be
clearly described along critical phase transitions- sub-critical
isopycnic phase transitions are a case of anomalous equilib-
rium observed in heterogeneous mixtures, even including po-
tentially attractive fluids that are gaining continuous interest
in modern technological applications.

The behavior of heterogeneous mixtures at isopycnic phase
equilibrium has been described by Quiñones-Cisneros8 for
a subset of Type III systems which, on the one hand, are
composed by extremely asymmetric constituents and, on the
other hand, tend to exhibit high temperature fluid-fluid equi-
librium (a.k.a. gas-gas equilibrium3,10). The presence of
isopycnic phase equilibrium has been confirmed for sim-
ilar Type III mixtures by applying different Equation of
State (EoS) models11–15 to a set of key industrial mixtures,
namely: refrigerant-lubricant mixtures,16 mixtures composed
by extremely asymmetric normal alkanes17,18 or natural gas-
type mixtures, carbon dioxide + n-alkane mixtures19,20 -
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which comprise the backbone of oil reservoir engineering
operations-, mixtures of carbon dioxide + commercial lubri-
cants -which provide the technological basis of trans-critical
refrigeration cycles19 -, mixtures composed by water + hy-
drocarbons of large molecular weight21–23 and for the case of
perfluoroalkane + alkane mixtures.24
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Fig. 1 Schematic ρ − z projection of singular structures character-
ized at molar isopycnicity condition. (Open circles) represent the
bulk phases (ρα and ρβ ) at isopycnicity condition; (filled circles)
correspond a maximum (point A) and minimum (point B) observed
along the density profiles.

Interestingly, for each of the previously mentioned exam-
ples, isopycnic phase behavior is either observed in the vicin-
ity of a critical end point (CEP) of liquid-liquid-gas immis-
cibility or close to a vapor-liquid critical point. In addition,
barotropy4,6 can also be observed in the quoted isopycnic mix-
tures, suggesting a close link between the phenomena that di-
rectly influence the density of fluid mixtures and also the den-
sity gradient profiles in the case of liquid-liquid interfaces. In
this context, the characterization and analysis of the evolution
of the concentration profiles across the interfaces of binary
systems that exhibit density inversion is very important due to
the possible formation of special and unique interfacial struc-
tures directly related, that may represent a barrier to the mass
transport between both bulk phases.25–27 In spite of the impact
that density gradients have on phase equilibrium, interfacial
behavior and transport properties of heterogeneous mixtures
have received limited attention so far, in thermo-physical con-
ditions (i.e. temperature, pressure, composition) where den-
sity inversion phenomena becomes relevant in various tech-
nological applications. The analysis of isopycnicity has been
limited mainly to its detection in predicted fluid-fluid equilib-
rium. Few previous works9,28–30 have dealt with the charac-
terization of the relation between isopycnic phase transitions,
the Type of van Konynenburg and Scott31 phase behavior, and

the drastic distortion of the mixtures density profiles in this
kind of systems. Indeed, less attention has been devoted to the
adsorption of fluid mixtures, where the phenomenon of prefer-
ential adsorption forms the basis of such practical applications
as adsorptive separation of hydrocarbons. Experimental stud-
ies indicate that under appropriate thermodynamic conditions
one can achieve a high degree of selectivity in the adsorption
of a given component from the fluid mixture (for further de-
tails, the reader is referred for instance to Refs. 32–34). Fol-
lowing the thermodynamic conditions involved in phase den-
sity inversion (a.k.a. ρα = ρβ ) we can distinguish in Fig. 1
five possibilities of how density inversion phenomena may af-
fect the interfacial structure, modifying the behavior patterns
of interfacial density profiles, without preferential adsorption
and/or desorption. In this context, it is also important to men-
tion that the interfacial behavior in Fig. 1 is based on the pro-
file of the mixture and not in the partial density profiles of
the components. On one hand, Fig. 1(a) shows the simplest
case of a binary mixture without interfacial activity, where a
completely flat profile between the bulk ρα - and ρβ -phases is
observed, case in which is likely that density gradients have
no impact on transport properties.35 On the other hand, as
shown in Figs. 1(b) and 1(c) the maximum (point A) and min-
imum (point B) observed along the interfacial length clearly
demonstrate that the total profile in the mixture is distorted
with respect at the bulk phases (α and β ). Finally, the other
two possibles cases show either adsorption or desorption pro-
cesses within the interface, represented by points of maximum
and minimum activity (Fig. 1(d)) or systems with minimum
and maximum activity (Fig. 1(e)) simultaneously, and they
may represent an obstacle to mass transport through the phase
boundary. In fact, the mass flow is lower when interfacial
strength increases.36 Therefore, the importance of analyzing
the interfacial structure is emphasized by the related ability
to identify sites and barriers to solute transport across the in-
terface37,38. The resistance at the interface is determined by
two effects39,40: (1) the decrease in hydrodynamic mobility
and therefore diffusion in the vicinity of a fluid-fluid interface
and (2) the existence of molecular interactions that produce
the special interfacial properties, given by the distance of in-
teraction between molecules.

The general objective of this contribution is discussing
a two-way approach methodology for effectively guiding
molecular simulations of an ideal potential force field -as in
the case of Lennard-Jones fluids-, which is based on an accu-
rate EoS model11 of the potential and its wide ability to pre-
dict reliable interfacial behavior of heterogeneous mixtures at
isopycnic phase equilibrium. We test the physical significance
and coherency of the density profiles obtained from molecular
simulation calculations in terms of state variables (i.e. temper-
ature, pressure, composition) and conformational parameters
(i.e. mixing rules, intermolecular interactions, etc).
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The work is organized as follows. First, the principal details
of Global Phase Diagrams for binary mixtures at isopycnic
condition are described. Then, a brief recall of the simulation
details follows. Results and Discussion are presented in the
next section, and finally conclusions are summarized.

2 Theory and Molecular Methods

2.1 Isopycnicity in Binary Mixtures

A Global Phase Diagram (GPD) is a parametric plot that maps
regions where EoSs predict mixtures characterized by similar
equilibrium behavior.31 Thus, constraining our attention to the
specific features observed in phase diagrams over a wide range
of temperature and pressure (namely: presence or absence of
azeotropy and/or liquid phase miscibility, overall geometric
characteristics of critical lines, etc), the equilibrium behavior
of mixtures may be classified in terms the Types41 found in
the different regions of the GPD.
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Fig. 2 Partial view of the Global Phase Diagram for Lennard-Jones
mixtures composed by molecules of equal size (ξ = 0), as calcu-
lated from the JZG EOS. 11 (continuous black line) Tricritical line,
(continuous grey line) Shield boundary region (Sh-r), (dash-dot line)
Critical-Pressure Step Point (CPSP), (dashed line) III-A-H boundary.
(grey circles) tricritical end points for the shield region, (black dia-
mond) low pressure tricritical endpoint. Red points (a), (b), (c) and
(d) represent the coordinates for the analysis performed in this work.

The different types of phase behavior can be unequivocally
delimited by means of parametrical boundaries described by
rigorous mathematical relationships (or transitional mecha-
nisms), that have been well established either on the basis of
mathematical bifurcations42 of the Gibbs energy function or
in terms of the theory of displacements.9,43,44 Consequently,
once the GPD is available - as in the case of Lennard-Jones flu-
ids - force field potential parameters can be unequivocally de-

termined, for performing strategically guided molecular sim-
ulations45–53.

Table 1 GPD coordinates, molecular parameter for pure fluids, and
interaction parameters.

System Type ξ ζ λ σ∗
22 ε∗22 k12

(a) II 0.0 0.0 0.2 1.0 1.0 0.2
(b) III (Sh-r) 0.0 0.0 0.3 1.0 1.0 0.3
(c) III-H 0.0 0.0 0.4 1.0 1.0 0.4
(d) III-H 0.0 0.0 0.5 1.0 1.0 0.5

Specifically, Table 1 reports the global coordinates, molec-
ular parameters of the pure components (σ∗

22 = σ22/σ11 and
ε∗22 = ε22/ε11), and the interaction parameters k12 for a set of
selected Lennard-Jones mixtures selected. In addition, Fig.
2 shows a partial view of the GPD for mixtures composed
by Lennard-Jones spherical monomers of equivalent diame-
ter that clearly indicates the global coordinates (λ ,ζ ,ξ = 0)
for which the example mixtures have been drawn (e.g. point
a, b, c and d in Fig. 2).

Global coordinate can be directly related with the reduced
Lennard-Jones parameters as follows:

ξ =
σ3

22 −σ3
11

σ3
22 +σ3

11
= 0

ζ =
ε22/σ3

22 − ε11/σ3
11

ε22/σ3
22 + ε11/σ3

11
(1)

λ =
ε22/σ2

22 −2
√

ε11ε22(1− k12)/
√

σ11σ22 + ε11/σ2
11

ε22/σ3
22 + ε11/σ3

11

It has been previously reported that the EoS model used11

exhibits pitfalls in the low and high temperature ranges due
to the prediction of unphysical critical points45,54,55. In or-
der to avoid the effects of these pitfalls in the predicted phase
equilibrium and interfacial properties, the EoS model has been
carefully treated to produce pitfall-free Types in adequate tem-
perature ranges. Thus, the regions drawn represent the ranges
shown in Fig. 2, which correspond to a combination of pure
fluids molecular parameters and interaction parameters where
the EoS predicts genuine Types of behavior over the interpo-
lation range, where it was derived from molecular simulation
data11,56.

One of the most interesting phenomena found is the abil-
ity of simple models to predict four-phase equilibrium inside
the shield region (Sh-r)57,58. As shown in Fig. 2, the Sh-r for
mixtures of molecules of equal size (ξ = 0) is an almost tri-
angular symmetric region where three tricritical (TC) bound-
aries, a critical-pressure step point (CPSP) boundary, and a
limiting azeotropic-heteroazeotropic boundary (III-A-H line)
converge. Boshkov and co-workers59,60 published two papers
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Fig. 3 Pressure (P∗ = Pσ3
11/ε11) vs temperature (T ∗ = T kB/ε11) projection of the phase diagram for symmetrical and equal-sized Lennard-

Jones mixtures, with molecular parameters taken from Table 1 and obtained from the JZG EoS 11 predictions. (a) type-II-A mixture (ε∗12 =
0.8ε∗11); (b) type-III (Sh-r) mixture (ε∗12 = 0.7ε∗11), (c) type-III-H mixture (ε∗12 = 0.6ε∗11), (d) type-III-H mixture (ε∗12 = 0.5ε∗11). (Continuous
black lines) vapor pressure of the pure components (1 & 2), (dash-dot green line) LLV three-phase line, (dashed red line) vapor-liquid (VL)
critical line, (dashed line) liquid-liquid (LL) critical line, (dash-dot magenta line) azeotropic line. TC, QP, CEP and CAzEP denotes the
Tricritical Point, the Quadruple Point, the Critical End Point and Critical Azeotropic End Point of the mixtures, respectively. Inset: close-up of
the region around QP.
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concerning GPD calculations for binary Lennard-Jones fluids.
Although the coordinates of the shield region were presented
in the predicted GPDs, no calculation was reported for depict-
ing the coordinates of the CPSP transition, so far. This is the
first time, that a complete shield region is presented for binary
Lennard-Jones fluids using the JZG-EoS11 model. A CPSP
transition61 bounds the behavior of multiple pressure station-
ary points along a critical line in a P∗ − T ∗ projection. In
addition, the III-A-H line masks the azeotropic behavior in-
side a range of immiscibility. Finally, a tricritical transition
breaks the continuity of a critical line in a critical end point
(CEP). Due to all these transitional mechanisms, the systems
that may be found inside the Sh-r are hybrids of types II and III
that may present stationary pressure points and/or azeotropic
behavior. In order to describe and characterize the phase and
interface topologies for different Lennard-Jones mixtures, we
have selected four GPD coordinates that represent symmetri-
cal and equal-sized Lennard-Jones mixtures in Fig. 2. Table 1
summarizes the GPD coordinates, the molecular parameters
of pure components, and the interaction parameters for these
mixtures and in Fig. 3 we show the critical projection in wide
range of pressure and temperature. Along the ζ = ξ = 0 and
λ ≥ 0, mixtures essentially classify as size and energy sym-
metric Type II-III systems, and molar isopycnic behavior9,28

is observed between immiscible liquid phases over the whole
range of immiscibility above the pressure of the three-phase
line, from zero temperature up to the CEP (or, alternatively,
up to the temperature of the quadruple point in the case of
mixtures that belong to the shield region).

Briefly, as depicted in Fig. 3(a), the quoted type-II-A mix-
ture is characterized by a Vapor-Liquid (VL) critical line that
continuously joins the critical points of the pure constituents
(CP 1 & 2) with Critical Azeotropic End Point (CAzEP). An
additional critical line related to Liquid-Liquid (LL) immis-
cibility connects a three-phase line in an Critical End Point
(CEP) from which it diverges to the high pressure range. The
liquid-liquid-vapor (LLV) three-phase line is originated in the
low temperature range and ending in the CEP, and finally, the
Azeotropic line connects the CEP with the CAzEP. Figure 3(c)
and 3(d) they are characterized by the same global behavior,
where a LLV three-phase line is located at pressures above the
vapor pressure curves of pure components and running from
the low pressure and temperature range and ending at a Tri-
critical Point (TC). In addition to that, the mixture has two
critical lines with different characters. The first one is a VL
critical line, running from the critical point of pure compo-
nents 1 and 2 to a TC. The second one is a LL critical line,
running from the TC of the mixture towards high pressures
and temperatures. Probably the most interesting system is cal-
culated for the first time in Fig. 3b using the EoS model11 for
Lennard-Jones mixtures, where a particular P∗−T ∗ projection
may be found inside the Sh-r. Due to the previously mentioned

transitional mechanisms, the general trend and connectivity
of the main critical lines may vary as the ζ , λ coordinates
change.62 As can be seen in the inset of Fig. 3b, the QP ap-
pears below the critical temperature of the constituents of the
mixture, connecting a low-temperature three-phase line with
three high-temperature three-phase lines. However, it is im-
portant to recall that, given the symmetry of the system, two
three phase lines are overlapping. Also, we can observe that
the pressure of the QP is larger than the vapor pressure of the
pure components, and at the QP, three phases have liquid-type
densities and the remaining phase has vapor-type density. This
particular system exhibits three different critical lines, one VL
critical line connects the critical points of the pure constituents
with CAzEP, another VL critical line running from the CEP
and ending at a TC of the mixture, and finally, the third one is
a LL critical line, running from the TC towards high pressures
and temperatures.

2.2 Simulation Details

We have also considered Molecular Dynamics (MD) simula-
tions63,64 in a NPzA T ensemble65, instead of the traditional
NV T ensemble, owe to the ability of the former to explicitly
describe the interface. In the NPzA T ensemble, the num-
ber of molecules (N), the normal pressure (Pz), the interfa-
cial area (A ) and the temperature (T ) are pre-imposed simu-
lation conditions that reflect the actual thermo-physical prop-
erties, whereas the dimensions of the simulation cell fluctu-
ate in order to match the appropriate volume of the molec-
ular system. Following the original work of the ensemble
under consideration (for further details, the reader is referred
for instance to Zhang et al.65), as well as some recent results
that clearly illustrate its performance, the NPzA T ensemble
is one of the most effective ensembles for simulating molecu-
lar systems in liquid-liquid and liquid-supercritical fluid equi-
librium conditions.65–72 Its effectiveness may be attributed
to the flexibility of the approach in calculating the appropri-
ate dimensions of the simulation box. Molecular Dynamics
simulations for binary mixtures were conducted considering
more than 14000 Lennard-Jones spheres at conditions where
the LL interface is present in an NPzA T ensemble, using
the GROMACS (version 4.6.1 in double precision) simulation
open source suite73. The simulation cell corresponds to an
Lx ×Ly ×Lz parallelepiped with periodic boundary conditions
in all three directions. Specifically, Lx and Ly were oriented
parallel to the interfacial area, whereas Lz acted normal to the
interface. The simulation cell dimensions have been selected
large enough to accommodate the different liquid phases with
enough molecules, thus ensuring representative bulk phases
appropriately separated by a sharp interfacial region.This ex-
plicit interface simulation technique has the advantage of pro-
viding direct access to the structure of the interface, allowing
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the simultaneous determination of bulk coexistence properties
(densities of the present phases), different interfacial proper-
ties (i.e. interfacial tension, adsorption phenomena), and mi-
croscopic properties as density profiles across the interface,
interface thickness, radial distribution functions, etc.

The procedure used to simulate the biphasic interfaces is
the following. In the case where equilibrium between hardly
immiscible phases is analyzed, the first step entails the equi-
libration of two independent simulation boxes. Both boxes
were equilibrated in the NPzA T ensemble at the pressure and
temperature conditions of interest. The dimensions of the par-
allelepiped simulation box, Lx, Ly, and Lz, were adjusted to
facilitate the subsequent assembly of a biphasic box, and thus
the dimensions Lx and Ly were kept constant with a value
Lx = Ly = 14σ11. This way, the volume variations of the sim-
ulation box at constant temperature and pressure were per-
formed by variations in the Lz distance, setting as an initial
value Lz = 2Lx. The distribution of molecules N1 and N2 was
set according to the mole fractions calculated from the JZG
EoS11. The molecular sites N1 and N2 interact to each other
by means of a truncated Lennard-Jones potential. The force
field constant, ε12, and the molecular diameter, σ12, were cal-
culated from pure parameters according to the modified ver-
sion of Lorentz-Berthelot mixing rules74,75.

ε12 =
√

ε11ε22 (1− k12) ; σ12 =
1
2
(σ11 +σ22) (2)

In order to reduce the truncation and system size effects in-
volved in the phase equilibrium and interfacial properties cal-
culations, the cut-off radius (rc) has been taken equal to a large
value of 7σii. It has been shown by several authors52,76–78

that a cut-off above six segment diameters provides a reliable
description for the pressure and interfacial properties of the
Lennard-Jones fluid. Once both boxes were equilibrated, a
slab composed of the N1 simulation box in the middle and
two replicas of the N2 box at both ends in the z direction was
assembled, by simply displacing the appropriate value of the
z coordinate for both N2 boxes. This yielded an inhomoge-
neous simulation box containing two explicit interfaces be-
tween both fluids. Once the biphasic box was constructed,
it was allowed to evolve under NV T conditions until the in-
terface was equilibrated, which usually took an average of 5
ns. After that the simulations so-prepared were then run in the
NPzA T ensemble during 20 ns (including an equilibration pe-
riod of 10 ns), where a specifying Verlet leapfrog79 algorithm
with a time step of 0.002 ps has been used. Following rec-
ommendations of Herdes et al.46, the Berendsen thermostat
and barostat80 were selected as the coupling algorithms for
the NPzA T simulations.

Interfacial properties, such as concentration along the in-
terfacial region (ρi(z)) and interfacial tension (γ), can be di-

rectly calculated from MD simulations. Concentration pro-
files, ρi(z), were calculated by dividing the system in 250 slabs
along the z direction, assigning the position of each Lennard-
Jones center, zi, to the corresponding slab and constructing
then the molecular concentration from a mass conservation
constraint. The interfacial tension, γ , is obtained using the
mechanical route34,81–83 given by:

γ =
Lz

2

[
Pzz −

Pxx +Pyy

2

]
(3)

where Pαα is an element of the pressure tensor in the x-, y-,
z-direction. Particularly, Pzz is the normal component of the
pressure tensor (or the equilibrium pressure, Pzz = Pz), the ad-
ditional factor 1/2 comes from having two interfaces in the
system, and Lz is the size of the simulation box in the z di-
rection, defined along the longitudinal dimension across the
interface. In order to estimate errors on the variables com-
puted, the sub-blocks average method has been applied80. In
that approach, the production period is divided into n inde-
pendent blocks. The statistical error is then deduced from the
standard deviation of the average σ̄/

√
M, where σ̄ is the vari-

ance of the block averages and M has been fixed, in this work
to M=10. All the quantities in our paper are expressed in con-
ventional reduced units of component 1, with σ11 and ε11 be-
ing the length and energy scaling units, respectively. Thus,
T ∗ = T kB/ε11, P∗ = Pσ3

11/ε11, ρ∗ = ρσ 3
11, γ∗ = γσ 2

11/ε11 and
z∗ = z/σ11.

3 Results

In this section, we present, analyze, and discuss the main re-
sults from the simulations for the liquid-liquid interface of the
symmetrical mixture of equal-sized LJ spherical molecules,
which exhibit phase density inversion. We focus on the inter-
facial properties such as density profiles, and surface tension.
In particular, we examine the pressure, P∗ and mixture dis-
persive energy, ε∗12 dependence of these properties. In addi-
tion, we also analyze the interfacial structure of asymmetrical
Lennard-Jones mixtures, with the same density inversion phe-
nomena.

Let us focus now our attention to the characteristics of the
interfacial behavior, namely density profiles and interfacial
tensions, which were calculated from MD using the NPzA T
ensemble. In this case, the depicted results for density profiles
have been taken from half of the simulation box, in order to
avoid unnecessary repetitions. Also for convenience, all den-
sity profiles have been shifted along z axis to place z0 at the
origin. The equilibrium density profiles of each of the mix-
ture components, as well as the total density, are computed
from averages of the histogram of densities along the z∗ di-
rection over the production stage. The two bulk liquid den-
sities of both components and the total density are obtained
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Fig. 4 Simulated equilibrium density profiles for the mixture (continuous curves), component 1 (dotted curves), and component 2 (dashed
curves), across the liquid-liquid interface of the symmetrical mixture of equal-sized LJ spherical molecules, at T ∗ = 0.9 and different equi-
librium pressures. (a) type-II-A mixture (ε∗12 = 0.8ε∗11); (b) type-III Sh-r mixture (ε∗12 = 0.7ε∗11), (c) type-III-H mixture (ε∗12 = 0.6ε∗11), (d)
type-III-H mixture (ε∗12 = 0.5ε∗11). Pressure of the system increases from bottom up in the total density profile (P∗ = 0.3,0.6,0.9,1.2). Note
that curves with the same color correspond to the same pressure value. Inset: Details of simulated total density profiles.
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Table 2 Density of component 1 at liquid L1, ρ∗L1
1 , density of component 2 at liquid L1, ρ∗L1

2 , molar composition of component 1 at liquid L1,
xL1

1 , density of component 1 at liquid L2, ρ∗L2
1 , density of component 2 at liquid L2, ρ∗L2

2 , molar composition of component 1 at liquid L2, xL2
1

and interfacial tension, γ∗, calculated from mechanical route given by eqn (3) at T ∗ = 0.9, different pressures of the system, P∗, and different
dispersive energy between unlike species, ε∗i j = (1− ki j)ε∗ii for the symmetrical mixture of equal-sized LJ spherical molecules. As defined in
Section 2.2 all quantities are expressed in reduced units and the errors are estimated as explained in the text.

P∗ ρ∗L1
1 ρ∗L1

2 xL1
1 ρ∗L2

1 ρ∗L2
2 xL2

1 γ∗

ε∗12 = 0.8ε∗11
0.3 0.5291(9) 0.2282(2) 0.699(1) 0.2193(9) 0.5193(2) 0.297(6) 0.027(7)
0.6 0.6144(4) 0.1851(2) 0.769(4) 0.1664(4) 0.5941(2) 0.218(4) 0.039(9)
0.9 0.6581(4) 0.1612(2) 0.805(3) 0.1516(3) 0.6483(3) 0.188(1) 0.063(7)
1.2 0.6822(6) 0.1557(2) 0.814(8) 0.1461(5) 0.6721(2) 0.1789(11) 0.075(8)

ε∗12 = 0.7ε∗11
0.3 0.7416(1) 0.0315(7) 0.959(8) 0.0303(6) 0.7401(2) 0.039(9) 0.397(1)
0.6 0.7666(12) 0.0290(8) 0.964(1) 0.7687(1) 0.0308(8) 0.038(1) 0.450(11)
0.9 0.7938(15) 0.0259(5) 0.968(2) 0.0253(5) 0.7930(11) 0.031(7) 0.519(1)
1.2 0.8122(2) 0.0237(6) 0.972(7) 0.0247(9) 0.8132(14) 0.029(5) 0.550(9)

ε∗12 = 0.6ε∗11
0.3 0.7653(23) 0.0103(6) 0.980(4) 0.0163(21) 0.7662(1) 0.020(8) 0.752(2)
0.6 0.7943(12) 0.008(6) 0.989(2) 0.007(3) 0.7926(1) 0.009(1) 0.842(4)
0.9 0.8149(13) 0.0064(3) 0.992(2) 0.0068(2) 0.8155(13) 0.008(3) 0.912(1)
1.2 0.8326(1) 0.0066(2) 0.992(1) 0.0064(3) 0.8324(11) 0.007(6) 0.965(3)

ε∗12 = 0.5ε∗11
0.3 0.7751(1) 0.0031(2) 0.996(1) 0.0032(2) 0.7753(11) 0.004(1) 1.061(15)
0.6 0.8004(9) 0.0025(2) 0.996(9) 0.0024(1) 0.8001(11) 0.003(3) 1.152(2)
0.9 0.8207(14) 0.002(3) 0.997(4) 0.0018(1) 0.8205(10) 0.002(2) 1.251(1)
1.2 0.8381(12) 0.002(2) 0.997(9) 0.0018(1) 0.8381(1) 0.002(1) 1.319(3)

by averaging ρ∗
1 (z), ρ2∗(z), and ρ∗(z), respectively over ap-

propriate regions sufficiently removed from the interfacial re-
gion. The densities obtained are meaningful since the central
region of each liquid slab is thick enough at all pressures. The
other phase of bulk liquid densities is obtained after averaging
the corresponding density profiles on both sides of the central
slab. The statistical uncertainty of these values is estimated
from the standard deviation of the mean values. In order to
analyze the interfacial properties of mixtures with different
dispersive energy between unlike species (ε∗i j = (1− ki j)ε∗ii),
we have selected the same temperature for each system, fo-
cusing in the large liquid-liquid region observed on the VLLE
in Fig. 3 for each system. A detailed description of the evo-
lution of these symmetric systems is explained in the work of
Martinez-Ruiz et.al.28

The quoted Fig. 4 shows the evolution of the interfacial den-
sity profiles ρ∗

1 (z), ρ∗
2 (z), and ρ∗(z) at T ∗ = 0.9 in the range

of pressure conditions indicated in Table 2. It is important to
remark that, due to the symmetry of the mixtures, bulk liquid
total densities associated to both liquid phases are identical. In
fact, partial density profiles of both components, summarized
in Table 2, should be balanced in each of the phases, as can
be seen in Fig. 4, or in other words they are symmetrical with
each other. The interfacial behavior of the total density profile
for each mixture deserves special attention. It happens to be

nearly constant in the bulk region of the liquid phases, but ex-
hibits a local minimum at the interface, when passing from one
liquid phase to the other. This condition is obvious in this kind
of mixtures, because as explained previously in Fig. 1, for a
hypothetical binary mixture that exhibits density inversion, the
coordination of the equal bulk densities phases implies a dras-
tic distortion of the mixture density profiles. For the particular
case of these mixtures, we can also point out that there is no
interfacial adsorption of the lighter component of the mixture,
as the pure compound profiles show the classical tanh shape.
However, the total density profile along the interface shows
the development of a structure type of interfacial adsorption
(See Fig. 1(b)), due to the promotion of total desorption point
condition (dρ1/dρ2 = −1; dρ/dz = 0 and d2ρ1/dρ2

2 > 0 in
the interfacial region). A similar behavior has been previously
observed for liquid-liquid interfaces in partially miscible mix-
tures of LJ-like systems from MD simulation28,84–86, Density
Functional Theory86,87 and Square Gradient Theory88.

Focusing on the interfacial region in Fig. 4, we can see that
the total desorption increases when the interaction parameter
in mixture also increases, or the dispersive energy between
unlike species decreases (remember that ε12 = (1− k12)ε11).
From a thermodynamic point of view, when the dispersive en-
ergy parameter of the mixture decreases, the system becomes
more immiscible, which is clearly reflected in the partial den-
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0 0.3 0.6 0.9 1.2 1.5
P*

0.0

0.3

0.6

0.9

1.2

1.5

γ∗

Fig. 5 Liquid-liquid interfacial tension as a function of pressure for
symmetrical mixture of equal-sized LJ spherical molecules with dif-
ferent dispersive energy between unlike species, ε∗i j = (1 − ki j)ε∗ii
at T = 0.9. Different symbols and colors represent the interfacial
tension obtained from NPzA T MD simulations using the mechan-
ical route given by eqn (3). (open circles) ε∗12 = 0.8ε∗11; (open
squares) ε∗12 = 0.7ε∗11, (open diamonds) ε∗12 = 0.6ε∗11, (open trian-
gles) ε∗12 = 0.5ε∗11. The curves are included as guide.

sities profiles. The inset in Fig. 4 highlights the layer of des-
orbed molecules in the total density profiles. The enhanced
desorption is clear from these figures. It is expected also that
desorption decreases with increasing pressure, however Fig.
4(a) displays a different effect in the interfacial behavior. In
fact, when pressure increases desorption increases generating
a completely flat profile at very low pressures. We think that
this phenomenon is directly related to the global phase tran-
sition when the selection of dispersive interactions between
unlike species of the symmetrical binary mixture crosses the
shield region. It is important to point out that this reasoning is
based on the results obtained by Mejı́a and Segura62 by com-
bining Square Gradient Theory with the van der Waals equa-
tion of state. The quoted authors show that an evolution in
the shield region, taken ζ = 0 and varying λ produces a shape
transition point on density profiles and yields a singularity for
the ∂ρ1/∂ρ2 derivative. As an additional comparison, Figs.
4(b)-(d) show that the desorption in the total density profile
decreases as pressure increases, as shown also by the results
of Martinez-Ruiz et.al.28 in other thermodynamics conditions
for liquid-liquid systems.

The pressure dependence of the interfacial tension for mix-
tures of LJ molecules interacting with different dispersive en-
ergy parameters between unlike species, ε12, is shown in Fig.
5. At any given pressure, the interfacial tension is larger

Table 3 Molecular properties and interaction parameter for the asy-
metrical Lennard-Jones mixture depicted in Fig. 6

Type σ3
22/σ3

11 ε22/ε11 k12
III 2.000 2.000 0.1818

for smaller dispersive energy parameter. Once again, this is
consistent with the larger interaction parameters in systems
consisting of symmetrical mixture of equal-sized LJ spherical
molecules. As can be seen from Fig. 5, an essentially linear
behavior is found for the range of pressures considered. We
can conclude that this effect on the interfacial tension is con-
sistent with the larger dispersive energy parameter in systems
with liquid-liquid equilibrium.

1 1.5 2 2.5 3
T*

0

0.5

1

1.5

2

P
*

1.25 1.3 1.35 1.4 1.45 1.5
0

0.05

0.1

0.15

0.2

0.25

CEP

CP 2

CP 1

A

B

Fig. 6 P∗ −T ∗ critical projection for a Lennard-Jones binary mix-
ture with properties indicated in Table 3. (Continuous black lines)
vapor pressure of the pure components (1 & 2), (dash-dot green line)
LLV three-phase line, (dashed red line) vapor-liquid (VL) critical
line, (dashed line) liquid-liquid (LL) critical line, (dash-dot-dot in-
digo line) density inversion line. Inset: close-up of the region around
the Critical End Point (CEP).

In the results previously shown, we demonstrated the pre-
dictive ability of molecular simulation on the characterization
of phase and interface behavior in mixtures that exhibit the
phenomenon of phase inversion. In particular the effect of
dispersive energy parameters to generate different local mini-
mum values at the interface has been demonstrated. However,
structures with adsorption on the interface probably can not
exist for symmetric and equal-size systems. In order to find
some evidence of adsorption in the total profiles, we have de-
cided to focus again on the interfacial properties that, on the
basis of statistical mechanics considerations given by the EoS
model and MD simulations, turn out to be the most affected
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by conformational parameters.
Let us consider then the binary mixture with the molec-

ular properties and interaction parameters indicated in Table
39, whose equilibrium conditions have been illustrated in the
P∗ − T ∗ projection shown in Fig. 6. This selected mix-
ture exhibits Type III-m behavior from the classification of
van Konynenburg and Scott.31, case in which one of the VL
critical branches emerges from the most volatile component
(component 1 in this case) and then evolves to a critical end
point (CEP), where it connects the critical point of a three-
phase line. A second critical line begins at the critical point
of the heavier component (component 2), and then diverges
to the high pressure range. Besides the details concerning
the connectivity of critical lines, Type-III mixtures present a
three-phase line characterized by a VLLE running from the
low pressure and temperature range and ending at a critical
end point (CEP). A density inversion line between two liquid
phases appears along the three phase line, thus constraining
the stability of the liquid-liquid equilibrium (Point A) to a crit-
ical end point (point B). This confirms unequivocally a range
of molar isopycnicity for the case under consideration, while
in symmetric systems the isopycnic behavior is observed be-
tween immiscible liquid phases over the whole immiscibility
range above the pressure of the three-phase line, from low
temperature up to the CEP. In this particular system it is inter-
esting to explore how the characteristics of density inversion
may affect the interfacial structure, because molar isopycnic-
ity annihilates the differences between bulk phase densities (as
it happens at the immediacy of any critical point). As observed
in Fig. 7, the density envelopes in a (T ∗ − ρ∗) projection at
P∗ = 0.25 reveal that both phases present the same molar den-
sity in non-critical conditions.

Table 4 Total density at liquid L1, ρ∗L1 , total density at liquid L2,
ρ∗L2 , and interfacial tension, γ∗, calculated from mechanical route
given by eqn (3) at P∗ = 0.25 and different temperatures T ∗. As
defined in Section 2.2 all quantities are expressed in the reduced units
and the errors are estimated as explained in the text.

T∗ ρ∗L1 ρ∗L2 γ∗
1.4 0.488(3) 0.506(8) 0.0174(11)

1.44 0.482(6) 0.482(1) 0.0228(15)
1.5 0.478(9) 0.416(7) 0.0347(21)

Certainly, along the phase envelope the total density pro-
files should show a temperature driven abrupt change in their
configuration, to generate a state of equal density. According
to Fig. 7, we have selected three thermodynamic conditions
allowing to characterize a phase density inversion. As in sym-
metrical mixtures, NPzA T MD simulation has been used. Fig.
8 collects the MD results for the z∗−ρ∗ profiles at the three
equilibrium conditions described previously in Fig. 7. This
Figure shows the evolution of the interfacial density profiles

of the components and the mixture for the temperatures listed
in Table 4. Results from the phase densities and interfacial
tensions are presented in Table 4.

0.4 0.425 0.45 0.475 0.5 0.525 0.55
ρ∗

1.35

1.40

1.45

1.50

1.55

T
*

ρ α < ρβ

ρ α = ρβ
Density Inversion Point

ρ α > ρβ

Fig. 7 T ∗−ρ∗ projection for a Lennard-Jones binary mixture with
properties indicated in Table 3 at P∗ = 0.25. (continuous lines) JZG
EoS11 prediction

A detailed inspection of density profiles diagram reveals
clear evidence of density inversion upon increasing temper-
ature at constant pressure, a condition that is confirmed by
MD calculations. By comparing the interfacial structures in
pre (Fig. 8(a)) and post (Fig. 8(c)) density inversion condi-
tion, we deduce that density inversion point implies a drastic
distortion of the mixture density profiles, as we had assumed
in cases shown in Fig. 1. It is interesting to note that the pro-
files of both components are represented roughly by the tradi-
tional shape of the hyperbolic tangent function, case in which
no selective adsorption is observed, but nevertheless the total
density profile exhibits a -subtle but clear,- maximum at the
interface, highlighted in the inset of Fig. 8(b). To our knowl-
edge, this is the first time that mixtures with accumulation at
the interface (total density profiles) are calculated by molec-
ular simulation. Finally, as complementary MD simulations
results, we can see from Table 4, that interfacial tension in-
creases as temperature increases.

4 Concluding Remarks

This work has been devoted to develop an accurate charac-
terization for describing the liquid-liquid interfacial behavior
in binary Lennard-Jones mixtures. Particular emphasis has
been placed on describing characteristics of the density pro-
files in thermodynamics condition were phase density inver-
sion is present, in direct relation with the properties of its
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Fig. 8 Simulated equilibrium density profiles of the mixture (con-
tinuous red curves), component 1 (dotted green curves), and compo-
nent 2 (dashed blue curves), across the liquid-liquid interface for a
Lennard-Jones binary mixture with properties indicated in Table 3 at
P∗ = 0.25. (a) T ∗ = 1.40, (b) T ∗ = 1.44 (c) T ∗ = 1.5. Inset: Detail
of simulated total density profiles

constituent binaries (i.e. σii, εii and ki j). The molecular pa-
rameters of the quoted binaries were chosen from the GPD
of Lennard-Jones fluids composed by molecules of equal size
which, in turn, were predicted by using the JZG EoS. The
complex behavior of phase density inversion is carried out
by exploiting the direct link with the underlying intermolec-
ular potential and the corresponding EoS model, using direct
MD simulation in the NPzA T ensemble. From our results,
we have demonstrated its clear influence of phase density in-
version phenomena on the interfacial structure. From an inter-
facial structure viewpoint, isopycnic mixtures -characterized
by the same molar density- introduce a drastic distortion on
the total density profile, an effect that may be controlled by
directly changing the thermo-mechanical conditions of the
phase equilibrium about the isopycnic condition. Particularly,
it has been found that density inversion produce a desorption
phenomena along the interfacial zone in binary systems com-
posed by equal-size molecules. Moreover, adsorption phe-
nomena appears when the asymmetry of the system increases.
Finally, it is interesting to note that the present mechanisms -
desorption/adsorption along the interfacial zone- may induced
only for the existence and persistence of density inversion be-
havior.
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52 A. Mejı́a, J. C. Pàmies, D. Duque, H. Segura and L. F. Vega, J. Chem.

Phys., 2005, 123, 034505–034514.
53 A. Mejı́a and L. F. Vega, J. Chem. Phys., 2006, 124, 244505–244512.
54 I. Polishuk, Fluid Phase Equilib., 2010, 298, 67–74.
55 H. Segura, T. Kraska, A. Mejı́a, J. Wisniak and I. Polishuk, Ind. Eng.

Chem. Res., 2003, 42, 5662–5673.
56 J. K. Johnson, E. A. Müller and K. E. Gubbins, J. Phys. Chem, 1994, 98,

6413–6419.
57 D. Furman and R. B. Griffiths, Phys. Rev. A, 1978, 17, 1139–1148.
58 I. C. Wei and R. L. Scott, J. Statist. Phys, 1988, 52, 1315–1324.
59 L. A. Boshkov and V. A. Mazur, Phys. Lett., 1984, 104, 415–418.
60 V. A. Mazur, L. Z. Boshkov and V. G. Murakhovsy, Russ. J. Phys. Chem.,

1986, 60, 29–33.
61 M. Flores, H. Segura, M. J. Tardón, J. Wisniak and I. Polishuk, J. Super-

crit. Fluids, 2009, 48, 108–119.
62 A. Mejı́a and H. Segura, Int. J. Thermophys., 2005, 26, 13–29.
63 D. Frenkel and B. Smit, Understanding Molecular Simulation, Academic

Press, New York, 2002.
64 M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford

University Press, New York, 1987.
65 Y. Zhang, S. E. Feller, B. R. Brooks and R. W. Pastor, J. Chem. Phys.,

1995, 103, 10252–10266.
66 J. C. Neyt, A. Wender, V. Lachet and P. Malfreyt, J. Phys. Chem. C, 2012,

116, 10563–10572.
67 J. C. Neyt, A. Wender, V. Lachet, A. Ghoufi and P. Malfreyt, J. Chem.

Phys., 2013, 139, 024701–024711.
68 J. C. Neyt, A. Wender, V. Lachet, A. Ghoufi and P. Malfreyt, J. Chem.

Theory Comput., 2014, 10, 1887–1899.
69 A. Ghoufi, F. Goujon, V. Lachet and P. Malfreyt, J. Chem. Phys., 2008,

128, 154716–154731.
70 F. Biscay, A. Ghoufi and P. Malfreyt, J. Chem. Phys., 2011, 134, 044709–

044718.
71 F. Biscay, A. Ghoufi, V. Lachet and P. Malfreyt, J. Chem. Phys., 2009,

131, 124707–124722.
72 J. M. Garrido, L. Cifuentes, M. Cartes, H. Segura and A. Mejı́a, J. Super-

crit. Fluids, 2014, 89, 78–88.
73 D. V. D. Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J.

Berendsen, J. Comput. Chem., 2005, 26, 1701–1718.
74 H. A. Lorentz, Ann. Phys. (Berlin), 1881, 12, 127–136.
75 D. Berthelot, R. Hebd, Seanc. Acad. Sci., 1898, 126, 1703–1855.
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