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Abstract 

We study the effects of the deuteration of biradical polarizing agents on the efficiency of 

dynamic nuclear polarization (DNP) via the cross-effect.  To this end, we synthesized a series of 

bTbK and TOTAPol biradicals with systematically increased deuterium substitution. The 

deuteration increases the radical’s relaxation time, thus contributing to a higher saturation factor 

and larger DNP enhancement, and reduces the pool of protons within the so-called spin diffusion 

barrier.  Notably, we report that full or partial deuteration leads to improved DNP enhancement 

factors in standard samples, but also slows down the build-up of hyperpolarization.  

Improvements in DNP enhancements factors of up to 70% and time savings of up to 38% are 

obtained upon full deuteration.  It is foreseen that this approach may be applied to other DNP 

polarizing agents thus enabling further sensitivity improvements. 
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Dynamic nuclear polarization (DNP) is the most widely applicable hyperpolarization 

technique to enhance the sensitivity of nuclear magnetic resonance (NMR) experiments.  In most 

DNP solid-state (SS)NMR applications, a sample is placed in contact with a source for unpaired 

electrons (usually an exogenous radical polarization agent) and is irradiated, at low temperature 

(< 110 K), with high power microwaves near the electron Larmor frequency.1  Electron 

polarization can then be transferred to the nuclei by a series of mechanisms, the cross-effect 

generally being the most efficient.  The cross-effect is a process involving three coupled spins: 

two electrons and one nucleus.24 

Large strides have been made in recent years towards the improvement of DNP for solids. 

Specifically, the development of stable high-power microwave sources (gyrotrons), and advances 

in probe technology for low temperature magic angle spinning (MAS) have enabled the 

application of DNP SSNMR to high magnetic field strengths (> 9.4 T).512  Another important 

line of inquiry, of relevance here, concerns the development of polarization agents capable of 

generating larger NMR enhancement factors (ε) and operating at higher temperatures. A notable 

breakthrough was reached by Hu et al. who demonstrated that the cross-effect condition was 

easier to satisfy by tethering two nitroxide radicals together in a single biradical molecule.13,14  

Matsuki et al. then showed that further improvement could be obtained by using a rigid linker, 

thus fixing the relative orientation of the two electrons’ g tensors.15,16  Most recently, Zagdoun et 

al. demonstrated that even larger enhancements may be obtained by using a biradical with a high 

molecular weight.1719  It was hypothesized that the lessened molecular motions in these 

compounds slow the electrons’ relaxation, thus enabling a higher electron saturation factor, and a 

larger DNP enhancement.17,20  These breakthroughs may be combined, thus multiplying the 

improvements available from each approach, as is the case for the TEKPol biradical.19 Note that 
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such efforts may not be beneficial for DNP experiments performed at liquid helium 

temperatures, where the electron relaxation times can become much longer.21 

Instead of hindering the molecular motions that are responsible for the electrons’ relaxation, 

the size of the interactions contributing to relaxation may also be lessened.  Given that dipolar 

coupling to protons, particularly those in rapidly rotating methyl groups, is a leading cause of 

electron relaxation under the DNP conditions, these interactions may be reduced by a factor of 

6.5 by simply perdeuterating the polarizing agent.22,23 Perdeuteration also eliminates the 1H spins 

that are nearest to the radical. These nuclei possess short relaxation times and thus become a 

polarization sink. Since spin diffusion from these nuclei to the bulk is also slowed by the 

presence of pseudocontact shifts, they are said to be within the so-called spin diffusion barrier.24-

26  As a result of deuteration, less electron polarization will be spent repolarizing these rapidly 

relaxing 1H spins.  It is important to note that the use of deuterated solvent, or sample, is also 

known to lead to an increase in DNP enhancement factor.27-29 

We have prepared four versions of the benchmark organic-soluble polarizing agent bTbK15 

using reagents at natural abundance (bTbK-d0), a deuterated pentaerythritol linker (bTbK-d8), 

deuterated nitroxides (bTbK-d32), as well as perdeuterated reagents (bTbK-d40), see Fig. 1.   
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Fig. 1 Biradical polarizing agents used in this study. 

All isotopologues of bTbK were dissolved in a 96:4 tetrachloroethane (TCE):methanol-d4 

(CD3OD) solvent mixture to form a 16 mM solution, and 20 µL of this solution was pipetted into 

3.2-mm sapphire rotors.  The solutions were degassed by repeatedly inserting and ejecting the 

sample, as previously described,19 ,30 until the DNP enhancement reached a plateau.  As shown in 

Fig. 2 and Table 1, the maximum achievable DNP enhancements at 109 K, using a constant 

microwave power near 30 W, progressively increase with the level of deuteration, from 53 in the 

protonated bTbK to 91 in the fully perdeuterated version.  This corresponds to a 70% increase in 

DNP enhancement by simply deuterating the polarizing agent.  Surprisingly, the deuteration of 

the linker, containing only 8 hydrogen atoms, was particularly important, leading to a 

comparable improvement in enhancement per atom than the deuteration of the TEMPO moiety 

(1.4-2.1% vs. 1.5-1.7% higher enhancement per hydrogen atom).  As shown in Table 1, this 

increase in DNP enhancement is also accompanied by an increase in the DNP buildup time 

(TDNP) from 3.5 s in the nonlabeled compound to 7.8 s in the perdeuterated compound. Because 

the signal to noise increases linearly as a function of the square of the number of scans, the 
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relative sensitivity per unit of time (ε2/TDNP) is still 30% higher when using the perdeuterated 

radical.  13C and 29Si DNP-enhanced NMR experiments performed on 3-(3-phenylureido)propyl-

functionalized mesoporous silica nanoparticles (PUP-MSNs) in fact demonstrate that larger 

enhancement factors are also be obtained on solid samples of interest (see Supporting 

Information), although in PUP-MSN the relative sensitivity per unit of time remains 

approximately the same. As can be seen in Figs. 2b and 3b, the extent of the signal loss, thought 

to be related to both blanking and MAS-induced depolarization, does not increase by a 

measurable amount for the deuterated biradicals.31   

 

Fig. 2 (a) DNP enhancement of 16 mM 96:4 TCE:CD3OD solutions of bTbK-dn radicals.  The 

‘MW off’ spectrum is shown on the bottom along with this same spectrum scaled by the 

enhancement factor listed in Table 1.  The ‘MW on’ spectrum is shown on the top of the Figure 

and dashed lines highlight the relative intensities of the spectra acquired using bTbK-d0 and 

bTbK-d40.  A comparison of ‘MW off’ spectra of equal-volume solutions of the non- (black) and 

per-deuterated (red) biradicals is shown in (b) highlighting the minute difference of 

depolarization for both radicals. 

To confirm that this is indeed a generally applicable strategy for improving the effectiveness 

of other DNP polarization agents we have also synthesized and tested deuterated versions of the 
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hydrophilic TOTAPol biradical.1b  Natural abundance (TOTAPol-d0), perdeuterated (TOTAPol-

d40), as well as a biradical with deuterium labeling on only the amine-terminated nitroxide 

(TOTAPol-d17) were prepared, see Fig. 1.  These radicals were then dissolved in 60:30:10 

glycerol-d8:D2O:H2O (the so-called ‘DNP juice’) at a concentration of 10 mM as well as in a 

deuterium-free 60:40 mixture of glycerol and H2O.32  The DNP enhancement measurements on 

these solutions were performed following the protocol described for the bTbK radicals. 

As shown in Fig. 3a and Table 1, the DNP enhancement increases upon deuteration of 

TOTAPol from 67 to 85 for the d0 and d17 derivatives, respectively, when using DNP juice. The 

fully deuterated biradicals, TOTAPol-d40, yields the same enhancement as partly-deuterated 

TOTAPol-d17, within uncertainty in the estimates (±5%).  Since the DNP build-up time 

increases from 8.5 to 11.0 and 23.5 s upon deuteration, the sensitivity per time is affected 

accordingly; the reason for this will be expanded later in the text.  As was expected, however, the 

enhancement increases steadily from 39 to 51 and 59 for the d0, d17, and d40 derivatives, 

respectively, when using the fully protonated solvent. The enhancement factor for TOTAPol then 

increases by 50% upon perdeuteration and the sensitivity per unit of time increases by 38%. 
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Fig. 3 DNP enhancement of 10 mM 60:30:10 glycerol-d8:D2O:H2O (a) and 60:40 glycerol:H2O 

(c) solutions of various TOTAPol radicals.  The ‘MW off’ spectrum is shown on the bottom 

along with this same spectrum scaled by the enhancement factor listed in Table 1.  The ‘MW on’ 

spectrum is shown on the top of the Figure and dashed lines highlight the relative intensities of 

the spectra acquired using TOTAPol-d0 and TOTAPol-d40.  A comparison of ‘MW off’ spectra 

of equal-volume solutions of the non- (black) and per-deuterated (red) biradicals is shown in 

(b,d) highlighting the minute difference of depolarization for both radicals. 

Table 1. DNP performance of various deuterated biradicals 

Polarizing agenta solventb εC,CP
c 

TDNP / sd ε2/TDNP / s-1 T1e / µse 

bTbK 96:4 TCE : CD3OD 53 3.5 800 35 

bTbK-d8  59 3.9 890 62 

bTbK-d32  78 5.8 1050 87 

bTbK-d40  91 7.8 1060 121 

TOTAPol-d0 60:30:10 glycerol-d8 : D2O : H2O 67 8.5 530 120 
TOTAPol-d17  85 11.0 660 131 
TOTAPol-d40  83 23.5 290 153 
TOTAPol-d0 60:40 glycerol : H2O 39 6.1 250 124 
TOTAPol-d17  51 8.6 300 128 
TOTAPol-d40  59 10.1 344 153 

[a] Note that the true deuteration level of the TOTAPol biradicals in solution will differ as there 

are 2 exchangeable protons. [b] The concentrations used were of 16 mM and 10 mM for the 

bTbK and TOTAPol radicals, respectively. [c] To reduce unnecessary human errors, the 

enhancement factors were measured by integrating the 13C CPMAS signals with the microwaves 

turned on and off.  The uncertainties of the enhancement factors are then on the order of ±5%. 

[d] The proton T1 values were approximately equal to TDNP. [e] The T1e values were measured at 

9 GHz. 

Using a model spin system consisting of two electrons and one nucleus, Thurber and Tycko 

have shown theoretically that long T1e values prevent the loss of magnetization between the 
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MAS-induced frequency crossing events that lead to cross-effect polarization transfer.26  The 

subsequent investigation of a series of functionalized nitroxide biradicals by Zagdoun et al.19 

confirmed that electron relaxation properties were highly correlated with the DNP enhancements.  

Thus, both theoretical and experimental studies of the cross effect under MAS demonstrate that 

longer T1e relaxation times of the electrons generally lead to higher enhancement factors;17,33,34 as 

was mentioned earlier, this was the main motivation for the synthesis of the perdeuterated 

biradicals by the present authors.  The results of T1e measurements performed using the very 

same solutions used to measure the DNP enhancements, as explained in the Supporting 

Information, are presented in Tables 1 and S1.  As can be seen from the plots shown in Fig. 4, 

the T1e and ε values indeed increase linearly as the biradical polarizing agents are progressively 

deuterated.  The deuteration of the solvent, on the other hand, does not lead to an increase of 

T1e.
35  We also note that, for bTbK, the observed increase in DNP enhancement is in agreement 

with the numerical calculations of Mance et al. for the increase in T1e that we observed.33  

However, for TOTAPol, the modest increase in T1e does not appear to fully explain the observed 

50% increase in DNP enhancement factor.33 This may be the result of the use of a much lower 

magnetic field for the EPR measurements (9 vs 263 GHz). Another plausible mechanism 

contributing to an increase in ε values would be that, as mentioned earlier, there is a diminished 

loss of polarization within the so-called spin diffusion barrier when perdeuterated radicals are 

used.24 The elimination of 1H spins within the spin diffusion barrier also, unfortunately, has the 

effect of increasing the 1H DNP build-up time due to the reduced efficiency of DNP-assisted spin 

diffusion (see Table 1).36 Hovav and coworkers demonstrated that the rate at which 

hyperpolarization is transferred to the bulk nuclei depends on the strength of the dipolar coupling 

between the core nuclei and the electron and depends very little on the dipolar coupling between 
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the bulk nuclei. The deuteration of the radicals then reduces the dipolar coupling between the 

core nuclei and the electrons and essentially slows down the spin diffusion of hyperpolarization 

to the bulk. In extreme cases when deuterated solvents are used this can lead to particularly long 

TDNP values and a loss of sensitivity.  

 

Fig. 4  (a) The DNP enhancement factors of various bTbK and TOTAPol radicals are plotted as a 

function of the deuteration level of the molecule.  The linear fits correspond to ε = 52.1 + 0.36*D 

for bTbK and ε = 40.2 + 0.21*D, where D corresponds to the % deuteration of the molecule.  

The correlation between the deuteration levels of a biradical and the T1e values are plotted in (b) 

and (c) for bTbK and TOTAPol, respectively.  In (c) the black circles correspond to the use of 

fully protonated solvent whereas the red squares correspond to the data acquired when using a 

90% deuterated solvent. 

In conclusion, we have explored a simple approach for improving the DNP enhancement 

afforded by biradical polarizing agents.  Indeed, using the bTbK and TOTAPol biradicals, an 

increase in DNP enhancement factors of up to 70%, and an improved sensitivity per unit of time 

of up to 38% can be obtained by simply perdeuterating the polarizing agent.  The deuteration of 
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biradicals increases their T1e values, thus improving the saturation factors upon continuous wave 

microwave irradiation, and consequently contributing to higher enhancement factors.  The use of 

deuterated polarizing agents also reduces the number of 1H spins within the spin diffusion 

barrier, which has the effects of reducing the polarization loss, but also leads to slower DNP-

assisted spin diffusion and longer build-up times.36 The perdeuteration, or partial deuteration, of 

the current state-of-the-art polarizing agents (AMUPol18 and TEKPol19), which can already yield 

enhancement factors over 200 at 105 K, is likely to yield the next generation of biradicals giving 

enhancement factors well over 300; we are actively exploring this avenue. The results of this 

study may also help in understanding the mechanisms of the cross effect in DNP of solids, 

particularly with respect to the polarization of remote spins.   

Notes 

 During the preparation of this manuscript a paper was published by Kubicki and co-

workers describing the performance of three methyl-deuterated biradicals, PyPol-diMe, bTurea-

diMe and bTbK, where increased enhancement factors and build-up times were also observed.37  
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