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Abstract

We investigate the potential energy curves of rare-gas dimers with various ranges and strengths

of interparticle interactions (nuclear-electron, electron-electron, and nuclear-nuclear interactions).

Our investigation is based on the highly accurate coupled-cluster theory associated with those inter-

particle interactions. For comparison, the performance of the corresponding Hartree-Fock theory,

second-order Møller-Plesset perturbation theory, and density functional theory is also investigated.

Our results reveal that when the interparticle interactions retain the long-range Coulomb tails, the

nature of van der Waals interactions in the rare-gas dimers remains similar. By contrast, when the

interparticle interactions are sufficiently short-range, the conventional van der Waals interactions

in the rare-gas dimers completely disappear, yielding purely repulsive potential energy curves.

∗ Author to whom correspondence should be addressed. Electronic mail: jdchai@phys.ntu.edu.tw
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I. INTRODUCTION

Van der Waals (vdW) interactions [1–5] are omnipresent in materials and biological sys-

tems. These interactions are of fundamental importance in numerous fields, involving molec-

ular and condensed matter physics, supramolecular chemistry, structural biology, surface

science, and nanoscience. While vdW interactions are individually weak (e.g., compared to

covalent bonds or electrostatic interactions between permanent charges, dipoles, etc.), they

are collectively important in the determination of the structure, stability, and function of a

vast variety of systems, such as the interaction between graphene layers, the self-assembly

of functional nanomaterials, the structure of biomacromolecules (e.g., DNA, RNA, and pro-

teins), and the molecular recognition of proteins [6].

In particular, the potential energy curve of a rare-gas dimer is predominantly determined

by the interplay between the exchange-repulsion energy at short internuclear distances and

the attractive vdW interaction at large internuclear distances, exhibiting a potential mini-

mum (the vdW minimum) at an intermediate internuclear distance. The exchange-repulsion

energy arises from the overlap of the electron densities of the two atoms. On the other hand,

the vdW interaction, also known as London dispersion interaction or induced dipole-induced

dipole interaction, arises from the Coulomb correlation of electron density fluctuations in

the two well-separated atoms. The potential energy curve can be conveniently approximated

by the Lennard-Jones (LJ) potential [4]

VLJ(R) = 4ǫ

[(

σ

R

)12

−
(

σ

R

)6]

, (1)

where R is the internuclear distance, σ is the distance at which the potential is zero, and −ǫ
is the minimum of the potential, which is reached at R = 21/6σ. Here the R−12 term models

the exchange-repulsion energy, dominant at short internuclear distances, while the R−6 term

models the attractive vdW interaction, dominant at large internuclear distances. Whereas

the attractive term is physically based, the repulsive term has no theoretical justification

(i.e., chosen for computational efficiency). Note that the exchange-repulsion energy should

decay almost exponentially with the internuclear distance. Nevertheless, due to its com-

putational simplicity, the LJ potential is widely used in computer simulations even though

more accurate potentials exist.

However, the R−6 dependence of the vdW interaction may not be applied to macroscopic
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systems like colloids and biological membranes. In these systems, the vdW interaction

between two objects immersed in a medium is strongly influenced by the dielectric properties

of the objects and the medium. Accordingly, the resulting vdW interaction can be very

different from the conventional R−6 expression [2, 7, 8], and can be completely repulsive

under certain conditions [2, 9, 10]. Several fascinating phenomena have been discovered in

these non-R−6 macroscopic vdW systems [9–12].

Is it possible to create non-R−6 vdW interactions between rare-gas atoms in vacuum?

Conceptually, the types of interparticle interactions (nuclear-electron, electron-electron, and

nuclear-nuclear interactions), traditionally given by the Coulomb interactions, should play

a fundamental role in determining the properties of atoms and molecules. Hence, we expect

that non-R−6 vdW interactions can appear by tuning the effective interparticle interactions

of rare-gas atoms in vacuum. As a proof of concept, in this work, we address how the nature

of vdW interactions in rare-gas dimers (i.e., the simplest vdW systems) changes with varying

interparticle interactions, using the highly accurate coupled-cluster theory associated with

those interparticle interactions. The rest of this paper is organized as follows. In Section II,

we describe our model systems and computational details. We compare the results obtained

from the coupled-cluster theory with those obtained from different computational methods,

and give our comments on the connection between this study and a popular scheme in

density functional theory in Section III. Our conclusions are given in Section IV.

II. MODEL SYSTEMS AND COMPUTATIONAL DETAILS

For a system consisting of M nuclei and N electrons in the Born-Oppenheimer approx-

imation (as the nuclei are much heavier than the electrons), the electronic Hamiltonian

[4]

He =− ~
2

2me

N
∑

i=1

∇2
i −

e2

4πǫ0

N
∑

i=1

M
∑

A=1

ZAf(riA)

+
e2

4πǫ0

N
∑

i=1

N
∑

j>i

f(rij)

(2)

is the sum of the kinetic energy of electrons, the nuclear-electron attraction energy, and the

electron-electron repulsion energy, respectively. Here ZA is the atomic number of nucleus A,

me is the mass of an electron, −e is the charge of an electron, riA = |ri−RA| is the distance
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between electron i and nucleus A, rij = |ri − rj| is the distance between electrons i and

j, and f(r) is the interparticle interaction operator with r being the interparticle distance.

The electronic Schrödinger equation

HeΨe = EeΨe (3)

is solved for the electronic energy Ee and electronic wavefunction Ψe, which describes the

motion of the electrons for fixed nuclear positions. The total energy

Etotal = Ee +
e2

4πǫ0

M
∑

A=1

M
∑

B>A

ZAZBf(RAB) (4)

is obtained by adding the nuclear-nuclear repulsion energy to the electronic energy, where

RAB = |RA−RB| is the distance between nuclei A and B. One can obtain Etotal as a function

of the nuclear positions, commonly known as the potential energy curve (or surface).

Traditionally, f(r) is given by the Coulomb interaction 1/r. However, in this work, we

consider two types of f(r): erf(ωr)/r and erfc(ωr)/r, which are generated by splitting the

Coulomb interaction into two components [13, 14]. The former (the erf interaction) retains

the long-range Coulomb tail without the singularity at r = 0, while the latter (the erfc

interaction) is a short-range interaction with a singularity at r = 0. Physically, 1/ω spec-

ifies the distance beyond which erf(ωr)/r approaches 1/r and the distance beyond which

erfc(ωr)/r becomes insignificant (see Figure 1). Similar to the Coulomb case [15, 16], the

nuclear-attraction and two-electron repulsion integrals modified for the erf and erfc inter-

action operators can be evaluated analytically over Gaussian basis functions [16–18], facil-

itating an efficient evaluation of the integrals needed for solving Eq. (3) and the equations

associated with related approximate methods (see below). In principle, other types of f(r)

can also be adopted [17, 19–22].

Similar to the Coulomb case, solving Eq. (3) for a given f(r) is, however, extremely

difficult even for the ground-state energy and wavefunction of a very small system, due to

the prohibitively expensive computational cost. Practically, one searches for approximate

solutions to Eq. (3), obtained from ab initio wavefunction methods [4, 13, 14, 23], such as the

Hartree-Fock (HF) theory, second-order Møller-Plesset perturbation theory (MP2), coupled-

cluster theory with iterative singles and doubles (CCSD), and CCSD with a perturbative

treatment of triple substitutions (CCSD(T)). Among them, the CCSD(T) method with a

4
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sufficiently large basis set is generally expected to provide highly accurate results for a variety

of small- to medium-sized systems.

Alternatively, Kohn-Sham density functional theory (KS-DFT) [24], a popular method

for the study of the ground-state properties of large systems, can also be employed. Similar

to the Coulomb case, density functional approximations (DFAs), such as the local density

approximation (LDA) and generalized-gradient approximations (GGAs), to the exchange-

correlation (XC) energy functional for a given f(r) are needed in the corresponding KS-DFT

[25, 26]. Here, the LDA exchange energy functional for the erf interaction is obtained by

subtracting the LDA exchange energy functional for the erfc interaction [27] from the LDA

exchange energy functional for the Coulomb interaction [28], whereas the LDA correlation

energy functional for the erfc interaction is obtained by subtracting the LDA correlation

energy functional for the erf interaction [29] from the LDA correlation energy functional for

the Coulomb interaction [30]. In addition, as the Perdew-Burke-Ernzerhof (PBE) XC energy

functional (i.e., a popular GGA) for the Coulomb interaction [31] and its variant for the erfc

interaction [32] are both available, their difference gives the PBE XC energy functional for

the erf interaction.

To illustrate how the nature of vdW interactions in rare-gas dimers changes with vary-

ing interparticle interactions, we calculate the potential energy curves of the He-He dimer

associated with the interparticle interactions erf(ωr)/r (ω = ∞, 10.00, 2.00, 1.70, 1.40, and

1.10 bohr−1) and erfc(ωr)/r (ω = 0.00, 0.10, 0.20, 0.25, 0.30, and 0.40 bohr−1), using the

corresponding CCSD(T), CCSD, MP2, HF, and KS-DFT employing the PBE and LDA XC

energy functionals for the associated interactions [4, 13, 14, 23].

All calculations are performed with a development version of Q-Chem 4.0 [33]. Results

are computed using a large aug-cc-pVQZ basis set [34] with a high-quality EML(250,590)

grid, consisting of 250 Euler-Maclaurin radial grid points [35] and 590 Lebedev angular grid

points [36]. The counterpoise correction [37] is employed to reduce basis set superposition

error (BSSE).

III. RESULTS AND DISCUSSION

The potential energy curves of the He-He dimer associated with the long-range interpar-

ticle interactions erf(ωr)/r, calculated using the corresponding CCSD(T), are presented in

5
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Figure 2. Similar to the Coulomb case (i.e., the ω = ∞ case of the erf interaction), all the

potential energy curves resemble the LJ potentials. For a smaller ω, the strength of the erf

interaction is weaker. Consequently, the electrons are more loosely bound to the nucleus,

and the atoms are more polarizable, yielding larger values of σ and ǫ, respectively (see Eq.

(1)) [4]. Owing to the long-range nature of the erf interaction, the attractive vdW interac-

tion is shown to have the [erf(ωR)]2R−6 asymptote (essentially retaining the R−6 asymptote

of conventional vdW interactions) at sufficiently large internuclear distances R, based on a

second-order perturbation theory (see the Appendix).

In comparison with the highly accurate CCSD(T) results, the He-He potential energy

curves associated with the erf interactions, calculated using the corresponding CCSD, MP2,

HF, PBE, and LDA are presented in Figure 3. As shown, CCSD performs similarly to

CCSD(T), and slightly outperforms MP2. Besides, CCSD(T), CCSD, and MP2 exhibit

the correct R−6 vdW asymptotes. By contrast, due to the lack of electron correlation,

HF completely fails to describe the attractive vdW interactions, yielding purely repulsive

potential energy curves for all the ω values studied. Within the framework of KS-DFT,

PBE consistently outperforms LDA. However, in view of the large errors associated with the

vdW minima and the incorrect vdW asymptotes (decaying much faster than R−6) [38, 39],

LDA, PBE, and possibly other semilocal density functionals [40] cannot accurately describe

long-range vdW interactions [41], wherein a fully nonlocal XC energy functional should be

essential [25, 26, 38].

On the other hand, the potential energy curves of the He-He dimer associated with

the short-range interparticle interactions erfc(ωr)/r, calculated using the corresponding

CCSD(T), are shown in Figure 4. In contrast to the Coulomb case (i.e., the ω = 0 case of the

erfc interaction), the potential energy curves show strong ω-dependence. It resembles the

LJ potential only for a vanishingly small ω, displays a metastable state for an intermediate

ω (around 0.25 bohr−1 or smaller), and becomes purely repulsive for a ω larger than 0.30

bohr−1 (see the Appendix).

For comparison, the He-He potential energy curves associated with the erfc interactions,

calculated using the corresponding CCSD, MP2, HF, PBE, and LDA are shown in Figure 5.

With the increase of ω, the potential energy curves obtained from all the computational

methods become very similar. As would be expected on physical grounds, semilocal density

functionals can be surprisingly accurate for short-range XC effects [40]. PBE is shown to

6
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consistently perform better than LDA. Besides, due to the dominance of exchange-repulsion

energy for a sufficiently large ω, even the HF theory can be reliably accurate.

Similar to the Coulomb case, the overall trends of LDA and PBE are opposite to those

of HF and MP2, implying that a combination of the HF exchange, MP2 correlation, and

DFAs (e.g., LDA or GGAs) in KS-DFT (i.e., hybrid DFT [42] or double-hybrid DFT [43])

may achieve a more favorable balance between cost and performance than CCSD(T) for the

vdW interactions in large rare-gas dimers under the erf and erfc interactions.

In addition, we calculate the potential energy curves of the He-Ne and Ne-Ne dimers

associated with the erf and erfc interactions, using the corresponding CCSD(T), as shown

in Figures 6 to 9. For the Coulomb case, the values of σ for the He-Ne and Ne-Ne dimers

are larger than that for the He-He dimer. Nevertheless, similar trends are also found for the

potential energy curves of the He-Ne, Ne-Ne, and possibly other rare-gas dimers.

To test the transferability of the above observed trends for other vdW systems, we calcu-

late the potential energy curves for the lowest triplet states of H2 (a simple vdW system) [44]

associated with the erf and erfc interactions, using the corresponding CCSD (i.e., an exact

theory for any two-electron system). As shown in Figures 10 and 11, the major features of

the potential energy curves remain very similar to those found for rare-gas dimers.

Here we comment on the connection between this study and long-range corrected (LC)

hybrid functionals for systems with Coulomb interactions [45–56]. These functionals model

the short-range interaction (e.g., the erfc interaction) by a DFA in KS-DFT and the comple-

mentary long-range interaction (e.g., the erf interaction) by HF exchange or a fully nonlocal

(i.e., orbital-dependent) XC energy component from ab initio wavefunction methods. In

Figures 3 and 5, compared to the highly accurate CCSD(T) results, LDA and PBE perform

reasonably well for sufficiently short-range interparticle interactions, whereas they perform

poorly for long-range interparticle interactions. Accordingly, our findings are also in sup-

port of the key feature of the LC hybrid functionals for systems with Coulomb interactions,

which have recently been found to provide supreme performance for a very wide range of

applications [57, 58], especially for problems related to the asymptote of the XC potential

[59–66], self-interaction errors [67, 68], fundamental gaps [69–82], and charge-transfer excita-

tions [83–89]. Besides, empirical atom-atom dispersion potentials [51, 55, 56, 90–92] or MP2

correlation energy [43, 53, 93–95] can be added to the KS-DFT energy in order to improve

the description of noncovalent interactions (e.g., vdW interactions). Alternatively, KS-DFT

7
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may also be combined with symmetry-adapted perturbation theory (SAPT) [96–104] to

yield accurate results for noncovalent interactions [105–111]. In addition, to properly de-

scribe strong static correlation, it could be essential to develop a combined LC hybrid scheme

with random phase approximations (RPAs) [25, 112–114] for small- to medium-sized systems

or with thermally-assisted-occupation density functional theory (TAO-DFT) [115–117] for

large-sized systems.

IV. CONCLUSIONS

In conclusion, we have developed a comprehensive understanding of the physics involved

in controlling the vdW interactions in rare-gas dimers. Specifically, we have examined the

potential energy curves of the rare-gas dimers associated with a variety of interparticle

interactions, using the highly accurate CCSD(T) method as well as other computational

methods. The long-range interparticle interactions are shown to be essential for retaining the

main features of conventional vdW interactions, which cannot be properly described by LDA,

PBE, and possibly other semilocal density functionals in KS-DFT, but can be accurately

described by MP2, CCSD, and possibly other fully nonlocal XC energy components from ab

initio wavefunction methods. On the other hand, the nature of vdW interactions is shown

to change drastically with the short-range interparticle interactions, wherein LDA, PBE,

and possibly other semilocal density functionals in KS-DFT perform reasonably well for

sufficiently short-range interparticle interactions (e.g., erfc(ωr)/r with ω = 0.30 bohr−1 or

larger). Therefore, our findings also support the main feature of the LC hybrid functionals

for systems with Coulomb interactions. Although only the vdW interactions in rare-gas

dimers and the triplet H2 molecule are studied and discussed in this work, our conclusion

may remain appropriate for other vdW-dominated systems.
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APPENDIX: ASYMPTOTE OF THE INTERACTION ENERGY CURVE BE-

TWEEN TWO WELL-SEPARATED RARE-GAS ATOMS ASSOCIATED WITH

THE LONG-RANGE (ERF) INTERPARTICLE INTERACTIONS

Similar to the derivation for the Coulomb case (e.g., see Chapter 3 of Ref. [5]), we de-

rive an analytical expression for the asymptote of the interaction energy curve between two

well-separated rare-gas atoms associated with the long-range interparticle (nuclear-electron,

electron-electron, and nuclear-nuclear) interaction operator f(r): erf(ωr)/r (the erf inter-

action), based on a second-order perturbation theory [118]. Since in the Coulomb case, a

rare-gas atom has no permanent multipole moments in its nondegenerate ground state [3],

presumably this remains correct for the erf interaction with a sufficiently large ω or for the

erfc interaction [f(r): erfc(ωr)/r] with a sufficiently small ω. Note also that the finite speed

of propagation of electromagnetic signals is not taken into account in our derivation [5]. For

brevity, the Einstein summation convention [119] is adopted here. Based on this convention,

when an index variable appears twice in a term, it implies a summation of that term over

all possible values of the index.

Consider a rare-gas atom A, composed of a nucleus situated at rα=0 and NA electrons

situated at rα (α = 1, 2, ..., NA) with respect to the nucleus of A. The electric potential at

a point r, due to the charge distribution, is

VA(r) =
1

4πǫ0

NA
∑

α=0

eAαf(|r− rα|), (5)

where eAα=0 = NAe is the nuclear charge of A, and eAα = −e (α = 1, 2, ..., NA) is the charge

of an electron. The Taylor series expansion of VA(r) around the nucleus of A gives

VA(r) =
1

4πǫ0

[

∑

α

eAαf(r)−
∑

α

eAαriα∇if(r) +
1

2!

∑

α

eAαriαrjα∇i∇jf(r) + · · ·
]

=
1

4πǫ0

[

eAtot − µA
i ∇i +QA

ij∇i∇j + · · ·
]

f(r),

(6)

where the first term is from an electric monopole eAtot =
∑

α

eAα , the second term is from an

electric dipole, whose ith Cartesian component µA
i =

∑

α

eAαriα, the third term is from an

electric quadrupole source, QA
ij =

1
2!

∑

α

eAαriαrjα, and so on.

Consider a second rare-gas atom B, composed of a nucleus situated at rβ=0 and NB

electrons situated at rβ (β = 1, 2, ..., NB) with respect to the nucleus of B. Let R be the
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Page 10 of 28Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



separation distance vector pointing from the nucleus of A towards the nucleus of B. The

interaction energy between atoms A and B is

UAB =

NB
∑

β=0

eBβ VA(R+ rβ), (7)

where eBβ=0 = NBe is the nuclear charge of B, and eBβ = −e (β = 1, 2, ..., NB) is the charge

of an electron. The Taylor series expansion of VA(R+ rβ) around the nucleus of B gives

VA(R+ rβ) = VA(R) + riβ∇iVA(R) +
1

2!
riβrjβ∇i∇jVA(R) + · · ·

=

[

1 + riβ∇i +
1

2!
riβrjβ∇i∇j + · · ·

]

VA(R).
(8)

Substituting Eq. (6) and Eq. (8) into Eq. (7) produces

UAB =
∑

β

eBβ

[

1 + riβ∇i +
1

2!
riβrjβ∇i∇j + · · ·

]

VA(R)

=

[

eBtot + µB
i ∇i +QB

ij∇i∇j + · · ·
]

1

4πǫ0

[

eAtot − µA
i ∇i +QA

ij∇i∇j + · · ·
]

f(R)

=
1

4πǫ0

[

eAtote
B
tot +

(

eAtotµ
B
i ∇i − eBtotµ

A
i ∇i

)

− µA
i µ

B
j ∇i∇j +

(

eAtotQ
B
ij∇i∇j + eBtotQ

A
ij∇i∇j

)

−
(

µA
i Q

B
jk∇i∇j∇k − µB

i Q
A
jk∇i∇j∇k

)

+QA
ijQ

B
kl∇i∇j∇k∇l + · · ·

]

f(R).

(9)

Here eBtot =
∑

β

eBβ , µ
B
i =

∑

β

eBβ riβ, Q
B
ij =

1
2!

∑

β

eBβ riβrjβ, and so on. Since atoms A and B are

both neutral, eAtot = eBtot = 0. Accordingly,

UAB =
1

4πǫ0

[

−µA
i µ

B
j ∇i∇j−

(

µA
i Q

B
jk−µB

i Q
A
jk

)

∇i∇j∇k+Q
A
ijQ

B
kl∇i∇j∇k∇l+· · ·

]

f(R) (10)

can be expressed as a sum of dipole-dipole (dd), dipole-quadrupole (dq), quadrupole-

quadrupole (qq), and other contributions.

To evaluate the interaction energy between ground-state rare-gas atoms A and B, the

classical interaction energy given by Eq. (10) should be first converted into quantum mechan-

ical operator. Perturbation theory may then be adopted to obtain the various perturbation

contributions to the interaction energy at large R.

Let the Hamiltonian of an isolated rare-gas atom X (X = A, B) be HX . The Schrödinger

equation

HXψX
n = EX

n ψ
X
n (11)
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is solved for the nth excited-state energy EX
n and wavefunction ψX

n , where the n = 0 case

refers to the ground state. Accordingly, the full Hamiltonian of rare-gas atoms A and B can

be expressed as

H = HA +HB + UAB. (12)

The interaction energy between ground-state rare-gas atoms A and B can be calculated as

∆Eint = E0 − (EA
0 + EB

0 ), (13)

where E0 is the ground-state energy of H.

To circumvent the need for solving the Schrödinger equation with Hamiltonian H, E0

may be expressed in terms of {EA
n , ψ

A
n ;E

B
n , ψ

B
n }, based on perturbation theory [5, 118].

Since atoms A and B are well-separated, an appropriate unperturbed Hamiltonian is the

sum of the Hamiltonians of the isolated atoms A and B,

H0 = HA +HB. (14)

Consequently,

H = H0 + UAB, (15)

where UAB given by Eq. (10) is the perturbation.

A. Zeroth-Order Theory

H0Ψ
(0)
n = E

(0)
n Ψ

(0)
n . At large R, the effects of electron exchange are insignificant. Ac-

cordingly, for the nth excited state, Ψ
(0)
n = ψA

r ψ
B
s and E

(0)
n = EA

r + EB
s , where the isolated

atoms A and B are described by quantum numbers r and s, respectively. For the ground

state, Ψ
(0)
0 = ψA

0 ψ
B
0 and E

(0)
0 = EA

0 + EB
0 . Correspondingly, ∆Eint = E0 − (EA

0 + EB
0 ) ≈

(E
(0)
0 ) − (EA

0 + EB
0 ) = (EA

0 + EB
0 ) − (EA

0 + EB
0 ) = 0. Therefore, to obtain a nonvanishing

∆Eint, it is necessary to go beyond the zeroth-order theory.

B. First-Order Theory

E
(1)
n = 〈Ψ(0)

n |UAB|Ψ(0)
n 〉. Since in the Coulomb case, the isolated rare-gas atom X (X = A,

B) has no permanent multipole moments in its nondegenerate ground state [3], presumably

this holds true for the erf interaction with a sufficiently large ω or for the erfc interaction
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with a sufficiently small ω. Accordingly, the dipole terms are vanished 〈ψX
0 |µX

i |ψX
0 〉 = 0,

the quadrupole terms are vanished 〈ψX
0 |QX

ij |ψX
0 〉 = 0, and so on. Therefore, the first-order

correction to the ground-state energy is

E
(1)
0 = 〈Ψ(0)

0 |UAB|Ψ(0)
0 〉

= 〈Ψ(0)
0 | 1

4πǫ0

[

− µA
i µ

B
j ∇i∇j −

(

µA
i Q

B
jk − µB

i Q
A
jk

)

∇i∇j∇k +QA
ijQ

B
kl∇i∇j∇k∇l + · · ·

]

f(R)|Ψ(0)
0 〉

= − 1

4πǫ0

[

∇i∇jf(R)〈Ψ(0)
0 |µA

i µ
B
j |Ψ

(0)
0 〉+∇i∇j∇kf(R)〈Ψ(0)

0 |
(

µA
i Q

B
jk − µB

i Q
A
jk

)

|Ψ(0)
0 〉

− ∇i∇j∇k∇lf(R)〈Ψ(0)
0 |QA

ijQ
B
kl|Ψ

(0)
0 〉+ · · ·

]

= − 1

4πǫ0

[

∇i∇jf(R)〈ψA
0 ψ

B
0 |µA

i µ
B
j |ψA

0 ψ
B
0 〉+∇i∇j∇kf(R)〈ψA

0 ψ
B
0 |
(

µA
i Q

B
jk − µB

i Q
A
jk

)

|ψA
0 ψ

B
0 〉

− ∇i∇j∇k∇lf(R)〈ψA
0 ψ

B
0 |QA

ijQ
B
kl|ψA

0 ψ
B
0 〉+ · · ·

]

= − 1

4πǫ0

[

∇i∇jf(R)〈ψA
0 |µA

i |ψA
0 〉〈ψB

0 |µB
j |ψB

0 〉

+∇i∇j∇kf(R)

(

〈ψA
0 |µA

i |ψA
0 〉〈ψB

0 |QB
jk|ψB

0 〉 − 〈ψB
0 |µB

i |ψB
0 〉〈ψA

0 |QA
jk|ψA

0 〉
)

−∇i∇j∇k∇lf(R)〈ψA
0 |QA

ij|ψA
0 〉〈ψB

0 |QB
kl|ψB

0 〉+ · · ·
]

= 0.

(16)

Accordingly, ∆Eint = E0 − (EA
0 +EB

0 ) ≈ (E
(0)
0 +E

(1)
0 )− (EA

0 +EB
0 ) = E

(1)
0 = 0. Therefore,

to obtain a nonvanishing ∆Eint, it is also necessary to go beyond the first-order theory.

C. Second-Order Theory

E
(2)
n = − ∑

m 6=n

|〈Ψ
(0)
m |UAB |Ψ

(0)
n 〉|2

E
(0)
m −E

(0)
n

. The second-order correction to the ground-state energy is

E
(2)
0 = −

∑

m 6=0

|〈Ψ(0)
m |UAB|Ψ(0)

0 〉|2

E
(0)
m − E

(0)
0

, (17)

which is always nonpositive.

From Eq. (10), if only the dipole-dipole contribution is retained, we have

Udd
AB = − 1

4πǫ0
µA
i µ

B
j ∇i∇jf(R). (18)

13
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Accordingly, the second-order correction to the ground-state energy due to the dipole-dipole

contribution is

E
(2),dd
0 = −

∑

m 6=0

|〈Ψ(0)
m |Udd

AB|Ψ
(0)
0 〉|2

E
(0)
m − E

(0)
0

= −
∑

m 6=0

|〈Ψ(0)
m |(− 1

4πǫ0
)µA

i µ
B
j ∇i∇jf(R)|Ψ(0)

0 〉|2

E
(0)
m − E

(0)
0

= − 1

(4πǫ0)2

∑

r 6=0

∑

s 6=0

|〈ψA
r ψ

B
s |µA

i µ
B
j ∇i∇jf(R)|ψA

0 ψ
B
0 〉|2

EA
r + EB

s − EA
0 − EB

0

= − 1

(4πǫ0)2

∑

r 6=0

∑

s 6=0

〈ψA
r ψ

B
s |µA

i µ
B
j ∇i∇jf(R)|ψA

0 ψ
B
0 〉〈ψA

0 ψ
B
0 |µA

i′µ
B
j′∇i′∇j′f(R)|ψA

r ψ
B
s 〉

EA
r + EB

s − EA
0 − EB

0

= − 1

(4πǫ0)2
[∇i∇jf(R)][∇i′∇j′f(R)]

∑

r 6=0

∑

s 6=0

〈ψA
r ψ

B
s |µA

i µ
B
j |ψA

0 ψ
B
0 〉〈ψA

0 ψ
B
0 |µA

i′µ
B
j′ |ψA

r ψ
B
s 〉

EA
r + EB

s − EA
0 − EB

0

= − 1

(4πǫ0)2
[∇i∇jf(R)][∇i′∇j′f(R)]

×
∑

r 6=0

∑

s 6=0

〈ψA
r |µA

i |ψA
0 〉〈ψB

s |µB
j |ψB

0 〉〈ψA
0 |µA

i′ |ψA
r 〉〈ψB

0 |µB
j′ |ψB

s 〉
EA

r + EB
s − EA

0 − EB
0

.

(19)

In Eq. (19), the (r = 0, s 6= 0) and (r 6= 0, s = 0) terms are excluded in the summation, due

to the vanishing dipole terms, i.e., 〈ψX
0 |µX

i |ψX
0 〉 = 0 (X = A, B).

• For the erf interaction, f(R) = erf(ωR)
R

.

∇i∇jf(R) = ∇i∇j
erf(ωR)

R
= ∇i

[

1

R
∇j erf(ωR) + erf(ωR)∇j

1

R

]

= ∇i

[

1

R

∂ erf(ωR)

∂R
R̂j −

erf(ωR)

R2
R̂j

]

= ∇i

[

1

R2

∂ erf(ωR)

∂R
Rj −

erf(ωR)

R3
Rj

]

=
∂

∂R

[

1

R2

∂ erf(ωR)

∂R

]

R̂iRj +
1

R2

∂ erf(ωR)

∂R
δij −

∂

∂R

[

erf(ωR)

R3

]

R̂iRj −
erf(ωR)

R3
δij

= R

{

∂

∂R

[

1

R2

∂ erf(ωR)

∂R
− erf(ωR)

R3

]}

R̂iR̂j +

[

1

R2

∂ erf(ωR)

∂R
− erf(ωR)

R3

]

δij

=

[

− 4ω√
π

1

R2
e−ω2R2 − 4ω3

√
π
e−ω2R2

+
3

R3
erf(ωR)− 1

R2

2ω√
π
e−ω2R2

]

R̂iR̂j

+

[

2ω√
π

1

R2
e−ω2R2 − erf(ωR)

R3

]

δij.

(20)

Since e−ω2R2
decays faster than polynomials when R is large,
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∇i∇jf(R) ≈ − erf(ωR)
R3 (δij − 3R̂iR̂j) at large R. Accordingly,

E
(2),dd
0 ≈ − 1

(4πǫ0)2
[erf(ωR)]2

R6
(δij − 3R̂iR̂j)(δi′j′ − 3R̂i′R̂j′)

×
∑

r 6=0

∑

s 6=0

〈ψA
r |µA

i |ψA
0 〉〈ψB

s |µB
j |ψB

0 〉〈ψA
0 |µA

i′ |ψA
r 〉〈ψB

0 |µB
j′ |ψB

s 〉
EA

r + EB
s − EA

0 − EB
0

.
(21)

Similar to the Coulomb case (e.g., see Chapter 3 of Ref. [5]), we adopt the rotational

average of 〈ψA
r |µA

i |ψA
0 〉〈ψA

0 |µA
i′ |ψA

r 〉 = 1
3
δii′ |〈ψA

r |µA|ψA
0 〉|2, and the rotational average of

〈ψB
s |µB

j |ψB
0 〉〈ψB

0 |µB
j′ |ψB

s 〉 = 1
3
δjj′ |〈ψB

s |µB|ψB
0 〉|2, where µA =

∑

α

eAαrα and µB =
∑

β

eBβ rβ.

Also, note that

3
∑

i=1

3
∑

j=1

3
∑

i′=1

3
∑

j′=1

(δij − 3R̂iR̂j)(δi′j′ − 3R̂i′R̂j′)δii′δjj′ =
3

∑

i=1

3
∑

j=1

(δij − 3R̂iR̂j)
2 = 6. (22)

Therefore, from Eq. (21),

E
(2),dd
0 ≈ − 1

24π2ǫ20

[erf(ωR)]2

R6

∑

r 6=0

∑

s 6=0

|〈ψA
r |µA|ψA

0 〉|2|〈ψB
s |µB|ψB

0 〉|2
EA

r + EB
s − EA

0 − EB
0

. (23)

From Eq. (10), retaining also the dipole-quadrupole, quadrupole-quadrupole, and

other contributions will produce additional terms in Eq. (17), involving ∇i∇j∇kf(R),

∇i∇j∇k∇lf(R), and so on. For the erf interaction, it can be shown that ∇i∇jf(R)

decays more slowly than ∇i∇j∇kf(R), and ∇i∇j∇kf(R) decays more slowly than

∇i∇j∇k∇lf(R), and so on. Accordingly, E
(2)
0 ≈ E

(2),dd
0 at large R. Therefore, in the

second-order theory, the interaction energy between rare-gas atoms A and B at large

R is

∆Eint = E0 − (EA
0 + EB

0 ) ≈ (E
(0)
0 + E

(1)
0 + E

(2)
0 )− (EA

0 + EB
0 ) = E

(2)
0 ≈ E

(2),dd
0

≈ − 1

24π2ǫ20

[erf(ωR)]2

R6

∑

r 6=0

∑

s 6=0

|〈ψA
r |µA|ψA

0 〉|2|〈ψB
s |µB|ψB

0 〉|2
EA

r + EB
s − EA

0 − EB
0

,
(24)

which has the [erf(ωR)]2R−6 asymptote.

• For the erfc interaction, f(R) = erfc(ωR)
R

.

In the second-order theory, the interaction energy between rare-gas atoms A and B,

∆Eint = E0 − (EA
0 + EB

0 ) ≈ E
(2)
0 = −

∑

m 6=0

|〈Ψ
(0)
m |UAB |Ψ

(0)
0 〉|2

E
(0)
m −E

(0)
0

, is always nonpositive.

Therefore, it is necessary to go beyond the second-order theory to describe the repulsive

interaction energy at large R (as discussed in our paper), which is, however, beyond

the scope of our discussion here.
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FIG. 1. Interparticle interaction as a function of interparticle distance (in atomic units).
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FIG. 2. Potential energy curves of the He-He dimer associated with the long-range interparticle

interactions erf(ωr)/r, calculated using the corresponding CCSD(T). The ω = ∞ case is equivalent

to the Coulomb interaction 1/r.
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FIG. 3. Potential energy curves of the He-He dimer associated with the long-range interparticle

interactions erf(ωr)/r, calculated using the corresponding CCSD(T), CCSD, MP2, HF, PBE, and

LDA. The ω = ∞ case is equivalent to the Coulomb interaction 1/r.
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FIG. 4. Potential energy curves of the He-He dimer associated with the short-range interparticle

interactions erfc(ωr)/r, calculated using the corresponding CCSD(T). The ω = 0 case is equivalent

to the Coulomb interaction 1/r.
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FIG. 5. Potential energy curves of the He-He dimer associated with the short-range interparticle

interactions erfc(ωr)/r, calculated using the corresponding CCSD(T), CCSD, MP2, HF, PBE, and

LDA. The ω = 0 case is equivalent to the Coulomb interaction 1/r.
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FIG. 6. Potential energy curves of the He-Ne dimer associated with the long-range interparticle

interactions erf(ωr)/r, calculated using the corresponding CCSD(T). The ω = ∞ case is equivalent

to the Coulomb interaction 1/r.
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FIG. 7. Potential energy curves of the He-Ne dimer associated with the short-range interparticle

interactions erfc(ωr)/r, calculated using the corresponding CCSD(T). The ω = 0 case is equivalent

to the Coulomb interaction 1/r.
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FIG. 8. Potential energy curves of the Ne-Ne dimer associated with the long-range interparticle

interactions erf(ωr)/r, calculated using the corresponding CCSD(T). The ω = ∞ case is equivalent

to the Coulomb interaction 1/r.
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FIG. 9. Potential energy curves of the Ne-Ne dimer associated with the short-range interparticle

interactions erfc(ωr)/r, calculated using the corresponding CCSD(T). The ω = 0 case is equivalent

to the Coulomb interaction 1/r.
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FIG. 10. Potential energy curves for the lowest triplet states of H2 associated with the long-range

interparticle interactions erf(ωr)/r, calculated using the corresponding CCSD. The ω = ∞ case is

equivalent to the Coulomb interaction 1/r.
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FIG. 11. Potential energy curves for the lowest triplet states of H2 associated with the short-range

interparticle interactions erfc(ωr)/r, calculated using the corresponding CCSD. The ω = 0 case is

equivalent to the Coulomb interaction 1/r.
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