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Abstract 
We have investigated the photo- and electrochemical properties of five 

diketopyrrolopyrrole (DPP) derivatives both experimentally and theoretically. In 

the experimental study, we found that a blend of DPP derivative named D2 and 

phenyl-C61-butyric acid methyl ester (PCBM) exhibits the highest internal 

quantum efficiency (IQE) and power convergence efficiency (PCE) among the 

five derivatives investigated. In the theoretical study, we found that the open-

circuit voltage can be estimated from the difference between the energy gap of 

frontier orbitals and voltage loss and that the latter is suppressed when IQE is 

large. Then, to investigate the factors that influence IQE, investigations of charge 

recombination, hole transfer, and charge transfer induced by photoabsorption 

were conducted for the complexes of each DPP derivative and PCBM. It was 

found that D2/PCBM exhibits the largest charge-bridging upon photoabsorption, 

which leads to the highest IQE and PCE among the five DPP derivatives. 

 
Keywords 
Organic solar cells, charge transfer reaction, first principles calculations, 

diketopyrrolopyrrole derivatives,  
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Introduction 

The use of organic photovoltaics (OPVs) as alternative energy sources has attracted much 

interest in recent years. In particular, bulk heterojunction (BHJ) photovoltaic cells have many 

fascinating features such as high mass productivity and a lower energy requirement for 

production. Indeed, such devices can have very short energy payback times of as little as a few 

weeks.1 After the first report of BHJ-type photovoltaic devices consisting of poly[2-methoxy-5-

(3ʹ,7ʹ-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) and phenyl-C61-butyric acid 

methyl ester (PCBM) by Shaheen et al. in 2001,2 various π-conjugated polymers have been 

synthesized and used to fabricate photovoltaic devices,3–5 of which the power convergence 

efficiency (PCE) has recently reached more than 10%.6 

 To reveal the mechanism of generation of the photocurrent and to enhance the PCE, a 

range of experimental and theoretical studies have been undertaken; these investigations have 

examined aspects such as cool processes7 vs hot processes8,9 in charge separation, charge 

recombination,10–13 free energy differences, 14 delocalization of the molecular orbitals,15 

molecular miscibility,16 effects of thermal annealing,17,18 and inverted structure cell 

architectures. 19 Reaction rates of the charge transfer and recombination reactions at the 

interface were studied in detail theoretically in the early days.20–23 Electronic structure 

calculations have also been frequently adopted to reveal the charge-transfer states and effects of 

charge delocalization.15,24 With regard to dynamics, structural packing between electron-donor 

and electron-acceptor molecules on the atomic scale are known to strongly affect the charge-

transfer dynamics at the interface.25 More recently, theoreticians have begun to reveal the 

energy landscape on the nanometer scale26 and quantum dynamics calculations have also been 

performed in an attempt to devise ways to overcome the Coulomb interaction between electrons 

and holes effectively.27–30 In general, these analyses have been performed to understand the 

mechanism of generation of photocurrent in the mixture of polymeric donor molecules and 

fullerene derivatives. 

 In addition to the traditional polymers, solution-processable narrow-bandgap small 

molecules are also attracting attention because they offer advantages such as well-defined 

molecular structure, intrinsic monodispersity, high purity, negligible batch-to-batch variations, 
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and reproducible performance. Compared with the widely studied polymer-based organic solar 

cells (OSCs), the development of small-molecule-based OSCs has progressed well in recent 

years, and PCEs of more than 9% have been reported.31–33 Among various small molecules 

such as oligothiophene derivatives end-capped with electron-withdrawing units31–40 and 

dithienosilole-benzothiadiazole derivatives,41–45 diketopyrrolopyrrole (DPP) derivatives are 

promising candidates as donor materials for high-efficiency photovoltaics because of their high 

optical density and carrier transport properties. Recently, we reported DPP-based small-

molecule donors that provide PCEs as high as 5.8% when combined with [6,6]-phenyl-C71-

butyric acid methyl ester (PC71BM) as an electron-acceptor in OSCs.46,47 

 To develop new DPP-based small molecules that exhibit much higher PCEs and thus 

are promising donor materials for OPVs, we have investigated five DPP-based small-molecule 

donors both experimentally and theoretically. In particular, the electronic properties related to 

photoabsorption, recombination, and hole transfer have been investigated by using first-

principles calculations. 

 

Methods 

In this study, we analyzed five donor molecules, D1–5, the chemical structures of which are 

shown together with PCBM as an acceptor in Fig. 1. For each of these molecules, two 

experiments and three sets of theoretical calculations were conducted to establish the factors 

that determine the efficiency of the DPP-based OPVs. In particular, theoretical analyses were 

performed to reveal chemical processes that could enhance or suppress the rates of photocurrent 

generation. The experiments conducted on the devices were (e1) UV-Vis absorption 

spectroscopy and (e2) current density–voltage (J–V) measurements. The theoretical 

calculations involved the following. (t1) Geometrical optimizations for donor molecules, pairs 

of donor and acceptor molecules, and dimers of donor molecules. The corresponding frontier 

orbitals were also analyzed. (t2) Estimation of the electronic couplings between electronic 

ground and charge-transfer states in the supermolecules of donor and acceptor molecules to 

investigate charge recombination at the interfaces. Electronic couplings between neutral and 

cationic donor molecules were also estimated to investigate hole transfer in the donor domain. 

(t3) Finally, photoexcitation inducing charge transfer simultaneously at the interfaces of donor 
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and acceptor molecules was analyzed. 

Experimental conditions 

UV-Vis absorption spectra were measured with a Shimadzu UV-2550 spectrometer. The OSC 

devices were fabricated according to the following procedures. ITO-coated glass substrates 

were cleansed sequentially by sonicating in detergent solution, deionized water, acetone, and 

isopropanol for 10 min each, and then subjected to UV/ozone treatment for 15 min. A thin layer 

(ca. 40 nm) of PEDOT:PSS (Clevios P VP Al 4083) was spin-coated onto the ITO substrate at 

2000 rpm for 60 s, and then baked at 150 °C for 10 min under air. The photoactive layer was 

deposited by spin-casting (1000 rpm for 60 s) from a CHCl3 solution containing 7–8 mg/mL of 

a donor and PCBM, after passing through a 0.45 µm poly(tetrafluoroethylene) filter. Finally, 

layers of LiF (1 nm) and Al (100 nm) were thermally evaporated on top of the active layer 

under high vacuum, through a shadow mask defining an active device area of 0.04 cm2. The 

current density–voltage (J–V) curves of the devices were measured with a Keithley 2400 source 

measure unit in air under AM 1.5G solar illumination at 100 mW cm–2 (1 sun) with a Bunko-

keiki SRO-25GD solar simulator and IPCE measurement system, calibrated with a standard Si 

solar cell. 

 

Theoretical calculations 

Theoretical calculations were conducted using NWChem48 for ab initio calculations, e.g., 

Hartree–Fock (HF), density functional theory (DFT), and time-dependent density functional 

theory (TDDFT) and MolDS was used for the semiempirical quantum chemical method PM3.49 

Geometrical optimizations for each molecule were conducted by using DFT with basis function 

6-31G* and exchange-correlation functional B3LYP.50,51 For supermolecules such as pairs of 

donor and acceptor molecules and dimers of donor molecules, basis function 6-31G* and 

exchange-correlation functional B3LYP-D2 were adopted to include van der Waals 

interactions.52 For the analysis of charge recombination and hole-transfer processes, we 

investigated electronic couplings between the electronic states. The electronic coupling is 

known as a prefactor, VRP, in the Marcus theory, 

𝑘 = !!
ℏ

!
!!"!!!

𝑉!"! exp − !!!!! !

!!!!!
,     (1) 
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with 

𝑉!" = 𝛹!| 𝐻|𝛹! ,       (2) 

where |𝛹!  and |𝛹!  are electronic states of the reactant and product, respectively, and 𝐻 is the 

Hamiltonian considered. In this study, the electronic couplings for recombination and hole-

transfer processes were investigated because the electronic coupling reflects the electronic 

transition strongly, as defined in Eq. (2). In detail, the ground and charge-transfer states were 

calculated with HF and constrained HF methods,53–55 respectively, with the 6-31G* basis 

function, and the electronic couplings between the ground and charge-transfer states in the 

supermolecules of the donor and acceptor molecules were estimated. Then, the electronic 

couplings for hole transfers were also calculated with the constrained HF method with basis 

function of 6-31G*. In these calculations of electronic coupling, molecular orbitals of HF rather 

than DFT are used because the electronic coupling should be a transfer integral between 

quantum wave functions. Finally, to explore electronically excited states arising upon 

photoexcitation, we mainly adopted configurational interaction singles (CIS) based on the 

semiempirical quantum method PM3 for each DPP derivative and DPP-derivative/PCBM 

complex. Even today, semiempirical quantum methods are frequently used to investigate 

OPVs9,56–61 because ab initio calculations can require huge computer resources to analyze 

electronic properties, such as electronic excited states of large molecules including those of 

OPVs. In our calculations of the electronic excited states using PM3/CIS, the number of 

orbitals included in the active space was set to the number of π electrons in the system. 

Furthermore, TDDFT with basis function 6-31G* and exchange-correlation functional CAM-

B3LYP is also adopted to validate the discussion by PM3/CIS.   

Results and discussion 
Experimental results 
Optical absorption 

The experimental UV-Vis absorption spectra of the five DPP derivatives as thin films are 

depicted in Fig. 2. The main absorption band in the visible region is attributed to π-π* 
transitions in each DPP derivative. The absorption band of D1 and D2 are redshifted compared 

with those of D3, D4, and D5. This feature can be understood easily from the HOMO–LUMO 

gap and from the excited-state calculation for each DPP derivative, which will be discussed in 
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the theoretical section. The bimodal peak that arises in the experimental UV-Vis spectrum of 

D2 (582 and 637 nm) originates from packing effects of donor molecules such as J- and H-

aggregates.46 As shown in Fig. 2, D1 and D2 exhibit a relatively large photocurrent because 

these compounds have a broader absorption band (ca. 500 nm < λ) than the others. No specific 

differences in the absorption bands of D3, D4, and D5 could be observed. 

 

Photovoltaic performance 

Solution-processed BHJ solar cells were fabricated by using the five DPP derivatives as 

electron donors and PCBM as acceptors. Fig. 3 depicts the experimental J–V curves obtained 

with the BHJ solar cells based on an as-cast DPP-derivative/PCBM-blend film under AM 1.5G 

illumination at an intensity of 100 mW cm–2. Table 1 summarizes the photovoltaic parameters 

of the BHJ solar cells. The internal quantum efficiencies (IQE) at 0 V presented in Table 1 were 

estimated from JSC and from the overlap between the AM 1.5G illumination spectrum and the 

absorption spectrum of each DPP derivative, for which we assumed that the absorption spectra 

for each DPP derivative can be used to distinguish differences in these DPP derivatives. From 

Fig. 3 and Table 1, three prominent features are apparent: (i) the smallest VOC was measured for 

the device with D1, (ii) the largest JSC was measured for the device with D2, and thus (iii) the 

largest PCE (IQE) was for the device with D2. In the following theoretical analyses, we aim to 

explain these features in terms of electronic structures. 

  

 Theoretical calculations 
 Molecular orbital energies 

First, the molecular structures of all DPP derivatives and PCBM were optimized. The energy 

levels of the frontier orbitals of the optimized structures were then calculated for each donor 

molecule and PCBM; these values are summarized in Table 2. The energy differences between 

LUMO and HOMO (ΔEg) for each of the molecules can be used to compare the energy 

differences with the absorption band in Fig. 2. Thus, the smaller ΔEg values for D1 and D2 than 

other DPP derivatives is consistent with the conclusion that the absorption band of D1 and D2 

arise in a lower energy region than those of other DPP derivatives.  
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 The energy differences between the LUMO of PCBM and the HOMO of each donor 

(ΔEv) are also shown in Table 2. This energy difference is sometimes used as a rough estimate 

of the open-circuit voltage (VOC). Comparing the energy differences ΔEv to the experimental 

value of the open-circuit voltage, the calculated result for D1, which is minimum ΔEv, is 

consistent with the lowest VOC observed experimentally. Furthermore, the calculated result for 

D4 is also consistent with the experimental finding that the largest VOC was observed for 

D4/PCBM. However, an exact correlation between the theoretically calculated ΔEv and the VOC 

measured experimentally has yet to be confirmed. This is because the open-circuit voltage is 

not a photovoltaic parameter that is uniquely determined by the characteristics of a single 

molecule; namely, the open-circuit voltage is strongly affected by various characteristics of 

organic semiconductors such as mobilities of charges and the extent of recombination of holes 

and electrons. Then, concerning the voltage loss 𝑉OCloss, which is defined as the difference 

between the theoretical ΔEv and the experimental VOC and is shown in the last row of Table 2, 

the order of magnitude 𝑉OCloss is consistent with the order of IQE. Actually, the smallest 𝑉OCloss 

value, which was obtained for D2/PCBM, is consistent with the largest IQE, which was also 

measured for D2/PCBM. Thus, we are now in position to discuss IQE values based on analyses 

of characteristics such as the mobilities of charges and the amount of recombination. Below, we 

focus in detail on the largest IQE of D2/PCBM. In other words, we will discuss processes that 

can lead to bottlenecks in the generation of photocurrent for other donors. 

 

Electronic coupling for recombination of holes and electrons at interfaces 

To investigate the magnitudes of the recombination reactions at the interfaces of each DPP 

derivative and PCBM, we analyzed the electronic couplings between interfacial charge-transfer 

and ground states. To do so, atomistic interfacial configurations needed to be optimized. Thus, 

we estimated the charge-transfer states for each DPP derivative/PCBM with constrained HF 

after the optimized structures of the supermolecules of each DPP derivative and PCBM were 

obtained. As an example, the optimized structure and the charge-transfer state of D2/PCBM are 

shown in Fig. 4 (a) and (b), respectively. In Fig. 4 (b), the difference between the electron 

densities of the charge-transfer and ground state is depicted; the transferred electron and the 

remaining hole are shown in blue and red, respectively. The electronic couplings between these 
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charge-transfer and ground states were then estimated for the supermolecule of each DPP 

derivative and PCBM; the results are summarized in Table 3. These electronic couplings reveal 

the extent of recombination of hole and electron at interfaces. Based on the results shown in 

Table 3, we can conclude that the electronic coupling of D1/PCBM is greater than those of 

other pairs and thus the bottleneck of the charge separation process in D1/PCBM is the 

recombination process.  

 

Electronic coupling for hole transfer between DPP derivatives 

In addition to the electronic couplings for recombination dynamics, we analyzed electronic 

couplings for hole transfer between DPP derivatives. Dimer structures for each DPP derivative 

were optimized before calculation of the electronic couplings for hole transfer. Two charge-

localized states of the cationic dimer were then calculated by using constrained HF. In the first 

charge-localized state, the hole localizes on one DPP derivative. In the second charge-localized 

state, the hole localizes on the second DPP derivative in the dimer. As an example, the 

optimized structure and difference of electron densities between the two charge-localized states 

for D2 dimer are shown in Fig. 5 (a) and (b), respectively. In Fig. 5 (b), the densities of hole 

distribution before and after hole transfer are drawn in blue and red, respectively. The 

electronic couplings between these charge-localized states, that is, electronic couplings for hole 

transfer in the dimer of each DPP derivative, were then estimated; the results are summarized in 

Table 4. Based on these results, we can conclude that the electronic couplings for dimers of D3 

and D5 are smaller than are those of the other dimers. Therefore, the bottleneck of the charge-

separation process for D3/PCBM and D5/PCBM is hole transfer, because the amount of 

recombination increases when the holes are left as untransported carrier. 

The electronic couplings of charge recombination for each DPP-derivative/PCBM 

complex and of hole transfer for the dimer of each of the DPP derivatives are summarized in 

Fig. 6. In this figure, DPP derivatives that exhibit better efficiency are shown in the upper left. 

We can conclude that recombination or hole transfer can be a bottleneck for the charge-

separation process in D1/PCBM, D3/PCBM, and D5/PCBM. On the other hand, these 

elementary processes cannot be a bottleneck for D2/PCBM and D4/PCBM. Indeed, 

experimental results show that D2/PCBM and D4/PCBM exhibit higher IQE (see Table 1). In 
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the following, we discuss the differences between D2 and D4 and clarify why a superior 

quantum efficiency is observed for D2/PCBM. 

  

Direct charge transfer induced by photoexcitation 

Recently, Yu et al. demonstrated that the absolute value of the change in dipole moment before 

and after photoexcitation of the donor correlates strongly with the magnitude of the short-

circuit current density.57 Namely, donors that exhibit a large change in dipole moment upon 

photoexcitation can create pairs of holes and electrons in the donor molecule that can be 

separated more easily. For analysis of the change of dipole, electronic excited states are needed. 

In this study, the semiempirical PM3 method was mainly adopted to calculate the excited states. 

The oscillator strengths of the electronic excited states were then estimated with CIS based on 

PM3 for each DPP derivative (Fig. 7). We can conclude from this figure that the 

photoabsorbing states of D3 (480 nm), D4 (491 nm), and D5 (483 nm) are slightly blueshifted 

compared with those of D1 (567 nm) and D2 (534 nm), which is quantitatively consistent with 

the experimental results shown in Fig. 2. The bimodal peak that only arises in the experimental 

UV-Vis spectrum of D2 (582 and 637 nm in the spectrum plotted in red in Fig. 2) is due to the 

packing of donor molecules such as J- and H-aggregates.46 Detailed analysis of bimodal spectra 

of this type is beyond the scope of this study; here, we concentrate on a theoretical analysis of 

each isolated donor molecule. The semiempirical PM3/CIS method delivers sufficient precision 

for the calculations of electronic excited states necessary for the present discussion.  

 In Table 5, the change of the dipole moment between the ground state and excited state 

that exhibits the highest oscillator strength is summarized as ΔµD for all DPP derivatives. 

However, no correlation with IQE was found for the DPP derivatives because they do not 

exhibit intramolecular charge transfer. The same analysis of change in the dipole moment was 

then applied to each DPP-derivative/PCBM complex. The change in dipole moment that is 

induced upon photoexcitation of each DPP-derivative/PCBM complex (ΔµD/A) is also 

summarized in Table 5. As can be seen in this table, the changes of the dipole moment in 

D2/PCBM and D4/PCBM are greater than those of other DPP-derivative/PCBM complexes. In 

particular, the change of the dipole moment in D2/PCBM is greater than that of D4/PCBM. 

These changes in the dipole ΔµD/A arise from changes in charge distribution on the DPP-
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derivative/PCBM complexes. Especially, the trend in the change of the dipole moment ΔµD/A 

that is induced by photoexcitation of DPP-derivative/PCBM complexes is consistent with the 

trend of the IQE values observed experimentally, as shown in Table 1.  

 To reveal the physical mechanism of the correlation between the large change of dipole 

moment and IQE, we recorded the UV-Vis spectra of complexes of the DPP derivative and 

PCBM. Fig. 8 shows the calculated UV-Vis spectra for D2 alone and for the D2/PCBM 

complex, which are shown in red and blue, respectively. The excited state that has the highest 

oscillator strength for the donor excitation (534 nm for D2) is slightly redshifted (550 nm for 

D2/PCBM) due to the interaction with PCBM. Furthermore, the oscillator strength is also 

reduced due to the interaction with PCBM. The principal molecular orbitals that contribute to 

the UV-Vis spectra are shown in Fig. 9. Donor excitation at 534 nm arises from HOMO–

LUMO transition of the D2 molecule, the MOs of which are shown in Fig. 9 (a) and (b), 

respectively. On the other hand, the states that hold the largest oscillator strength in the 

D2/PCBM complex originate mainly from a single electron excitation from HOMO to 

LUMO+5 of D2/PCBM; these are shown in Fig. 9 (c) and (d), respectively. The donor part in 

Fig. 9 (c) and (d) originates from the HOMO and LUMO of the donor, respectively. Therefore, 

the ability to absorb a photon is retained in the D2/PCBM complex. Notably, the LUMO+5 

molecular orbital of the D2/PCBM complex is delocalized on to the acceptor part. Orbitals that 

are delocalized over both the donor and the acceptor are called charge-bridging orbitals.24 

Therefore, photoexcitation of D2/PCBM at 550 nm is understood as photoexcitation from the 

HOMO of D2 to the charge-bridging orbital of the D2/PCBM complex.  

 In Table S1-1 of supplementary information, we summarized three main configurations of 

the photo-absorbing states of complexes of each DPP-derivative and PCBM, which were obtained 

by PM3/CIS calculations. Besides, main contributing molecular orbitals are also shown in Figure 

S1-1. One can confirm from Figure S1-1 and Table S1-1 that the photo-absorbing state (1st excited 

state) of D2/PCBM holds the most strongest charge-bridging nature among the five complexes. 

Especially, at the molecular interface of the D2 and PCBM, electron population is denser than other 

complexes. This is the reason why photoexcitation of D2/PCBM induces the largest changes of 

dipole moment. Therefore, we consider that these partial charge-bridging orbitals transfer states 

which can absorb a photon are critical for enhancing the charge separation in OSCs because 
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they create pairs of electrons and holes which can separate easily. We hereafter term this states 

holding the charge-bridging orbital as, which is induced by photon absorption directly, as a 

photon-absorbing charge-bridging (PACB) state.  

 To validate this PACBT state in D2/PCBM, we conducted TDDFT calculations with 

basis function 6-31G* and exchange-correlation functional CAM-B3LYP also. The calculated 

UV-Vis spectra of complexes of the DPP derivative and PCBM are shown in Fig. 10 (a). By 

comparison of this calculated UV-Vis spectra with those calculated by PM3/CIS, we can 

confirm that PM3/CIS spectra delivering sufficient precision for the present discussion. Besides, 

we also estimated numerical correction which was introduced by adopting larger basis function, 

6-31+G*, through rough estimation of energies of the charge transfer states as differences of 

the ionization energy of P3HT and the electron affinity of PCBM.  Then, we conclude that the 

estimated correction to the UV-Vis spectra by expanding the electronic Hilbert space is 0.19 eV 

even for the charge transfer states. The detail in estimating of the numerical correction is 

explained in supplementary information (Sec. S2).  In Fig. 10 (b) and (c), HOMO and 

LUMO+2 of PCBM/D2 complex, which are calculated with TDDFT/CAM-B3LYP/6-31G*, 

are shown, respectively. Note that the LUMO+2 is the charge-bridging orbital. The electronic 

configuration in which an electron is excited from HOMO to LUMO+2 is the main 

configuration of the prominent photo-absorbing state of PCBM/D2. Namely, considering that 

LUMO+2 is the charge-bridging orbital, we can validate the charge-bridging nature of photo-

absorbing state of PCBM/D2.  

 In Table S3-1 of supplementary information, we also summarized three main configurations 

of the photo-absorbing states of complexes of each DPP-derivative and PCBM, which were obtained 

by TDDFT/Cam-B3LYP/6-31G* calculations. Besides, the main contributing molecular (Kohn-

Sham) orbitals are shown in Figure S3-1. One can confirm from Figure S3-1 and Table S3-1 that the 

photo-absorbing state (5th excited state) of D2/PCBM exhibiting the most strongest charge-bridging 

nature among the five complexes. Especially, at the molecular interface of the D2 and PCBM, 

electron population is denser than other complexes as well as results obtained by PM3/CIS. Namely, 

these results obtained with TDDFT/CAM-B3LYP/6-31G* are qualitatively consistent to the photon-

absorbing charge-bridging orbitals, which was discussed by using with PM3/CIS. 

Finally, we conclude that the existence of PACB states, which is a physical origin of large 
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change of dipole moment, is crucial for enhancing IQE because the bounded electron and hole 

in PACB states should separate to free carriers more easily than those in the usual donor-

excited states. 

 

Summary and conclusions 

We have investigated five DPP derivatives both experimentally and theoretically. In the 

experimental part, we found that the blend of DPP derivative D2 and PCBM exhibits the 

highest IQE and PCE among the five DPP derivatives. In the theoretical part, we found that the 

open-circuit voltage VOC can be estimated from the difference between the energy gap of the 

frontier orbitals Ev and the voltage loss 𝑉OCloss and that the latter is suppressed when IQE is large. 

Given that the short-circuit current density is clearly enhanced when IQE is large, we 

proceeded to analyze the IQE theoretically by investigating charge recombination, hole transfer, 

and charge transfer induced by photoabsorption to reveal bottlenecks or factors that enhance 

photocurrent generation.  

 The computational results revealed the following features of each DPP derivative. In 

D1/PCBM, charge recombination at the interface suppresses IQE because of large electronic 

coupling between the ground and interfacial charge-transfer states. In D3/PCBM and 

D5/PCBM, the low hole mobility that increases the amount of recombination suppresses IQE. 

In contrast to these derivatives, charge recombination and hole transfer could not become the 

bottleneck of the charge-separation processes for D2/PCBM and D4/PCBM. Both of the latter 

two complexes also exhibit larger direct charge transfer induced by photon absorption. In 

particular, D2/PCBM exhibits the largest PACB states, from which charge separation to free 

carriers should occur easily. Even if the main absorber of photons is the bulk donor, the charge-

bridging states can enhance the charge-generation as additive photon-absorbers at the interface 

or intermediate states of the charge separation started from donor-excitons. PACB, therefore, 

leads to the highest IQE and PCE for the D2/PCBM complex among the five DPP derivatives. 

 Although it may be challenging to observe the photon-absorbing charge-bridging 

orbitals directly as experimental observables, some theoretical studies have investigated these 

concepts for poly-3-hexylthiophene (P3HT)/PCBM.24,62,63 In addition to these past studies, the 

present study also stresses the important role of charge-bridging orbitals. It is expected that 
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these concepts should help clarify the process of charge separation in OSCs. 
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Table 1: Photovoltaic parameters for the solution-processed BHJ solar cells. 

 D/A ratio wt/wt h/nm JSC/mAcm–2 VOC/V FF/% PCE/% IQE/% 

D1 1:1 95 –2.13 0.43 52.3 0.48 16.0 

D2 1:1 107 –5.74 0.94 38.7 2.09 50.2 

D3 1:1 96 –0.88 0.85 25.6 0.19 12.2 

D4 1:1 91 –1.52 1.05 27.9 0.44 22.1 

D5 1:1 123 –0.67 0.75 26.7 0.13 8.87 

 

 

Table 2: EHOMO, ELUMO: Energy levels of the frontier orbitals of the optimized structures for the 

donors and PCBM. ΔEg: Energy differences between LUMO and HOMO for all donors. ΔEv: 

Energy differences between LUMO of PCBM and HOMO of each donor. 𝑉OCloss: Energy 

difference between the theoretical ΔEv and the experimental VOC. All values are shown in 

electron volts (eV). 

 D1 D2 D3 D4 D5 PCBM 

EHOMO –4.63 –4.72 –4.90 –4.89 –5.02 –5.55 

ELUMO –2.63 –2.50 –2.43 –2.50 –2.56 –2.98 

ΔEg 2.00 2.22 2.47 2.34 2.46 2.56 

ΔEv 1.65 1.74 1.92 1.91 2.04 – 

𝑉OCloss 1.22 0.80 1.07 0.86 1.29 – 

 

 

Table 3: Electronic coupling VRP for charge recombination. 

 D1 D2 D3 D4 D5 

𝑉!"  /eV 0.0637 0.0466 0.0500 0.0385 0.00682 
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Table 4: Electronic coupling VRP for hole transfer. 

 D1 D2 D3 D4 D5 

VRP /eV 0.196 0.112 0.030 0.065 0.0312 

 

 

 

 

Table 5: Change of the dipole moment induced upon photoexcitation of donor molecules (ΔµD) 

and DPP-derivative/PCBM complexes (ΔµD/A).  

 D1 D2 D3 D4 D5 

ΔµD/D 4.75×10–2 8.94×10–2 4.06×10–1 4.18×10–1 3.41×10–1 

ΔµD/A/D 3.73 4.05 2.88 3.89 2.18 
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Figure 1: Chemical structures of donor (diketopyrrolopyrrole derivatives) and acceptor 

(PCBM) molecules studied herein. (a) D1, (b) D2, (c) D3, (d), D4, (e) D5, and (f) PCBM. 
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Figure 2: Experimental UV-Vis absorption spectra for diketopyrrolopyrrole derivatives 

recorded as solid thin films. 
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Figure 3: Experimental J-V characteristics under one sun illumination for organic solar cells 

based on diketopyrrolopyrrole derivatives (D1–D5) and PCBM (1:1, w/w) blends. 
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Figure 4: (a) Optimized structure on the electronic ground state of D2/PCBM. (b) Charge-

transfer state of D2/PCBM, calculated by constrained HF. Densities of transferred electron and 

remaining hole in the charge-transfer state of D2/PCBM are depicted in blue and red, 

respectively. 
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Figure 5: (a) Optimized structure on the electronic ground state of D2-dimer. (b) Hole densities 

before and after the hole transfer in the D2-dimer are depicted in blue and red, respectively. 
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Figure 6: Electronic couplings of recombination for each DPP-derivative/PCBM complex vs 

hole transfer for the dimer of each DPP derivative. 
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Figure 7: Calculated UV-Vis spectra for D1–D5 by PM3/CIS. 
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Figure 8: Calculated UV-Vis spectra by PM3/CIS for D2 (red) and D2/PCBM complex (blue). 
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Figure 9: (a) HOMO of D2. (b) LUMO of D2. (c) HOMO of D2/PCBM complex. (d) LUMO+5 

of D2/PCBM complex. These MOs are calculated by PM3.  
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Figure 10: (a) Calculated UV-Vis spectra for PCBM/D1 – PCBM/D5 by TDDFT/CAM-

B3LYP/6-31G*. (b) HOMO of PCBM/D2. (c) LUMO+2 of D2/PCBM complex.  
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