PCCP

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/pccp

- 1 The effects of acetaldehyde, glyoxal and acetic acid on the
- 2 heterogeneous reaction of nitrogen dioxide on gamma-alumina
- 3
- 4 Zhenyu Sun,[†] Lingdong Kong,^{*,†,‡} Xiaoxiao Ding,[†] Chengtian Du,[†] Xi Zhao,[†] Jianmin
- 5 Chen,[†] Hongbo Fu,[†] Xin Yang,[†] Tiantao Cheng[†]

6 **Corresponding Author**

- 7 *E-mail: ldkong@fudan.edu.cn. Tel: +86-21-65642521, fax: +86-21-6564-2080.
- ⁸ ⁺Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention,
- 9 Department of Environmental Science & Engineering, Fudan University, Shanghai
 200433, China.
- [‡]Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution
 Control, School of Environmental Science and Engineering, Nanjing University of
 Information Science & Technology, Nanjing 210044, China.
- 14

15	Heterogeneous reactions of nitrogen oxides on the surface of aluminium oxide result
16	in the formation of adsorbed nitrite and nitrate. However, little is known about the
17	effects of other species on these heterogeneous reactions and its products. In this
18	study, diffuse reflectance infrared spectroscopy (DRIFTS) was used to analyze the
19	process of the heterogeneous reaction of NO_2 on aluminium oxide particle surfaces
20	in the presence of pre-adsorbed organic species (acetaldehyde, glyoxal and acetic
21	acid) at 298 K and reveal the influence of these organic species on the formation of
22	adsorbed nitrite and nitrate. It was found that the pre-adsorption of organic species
23	(acetaldehyde, glyoxal and acetic acid) on $\gamma\text{-}Al_2O_3$ could suppress the formation of
24	nitrate to different extents. Under the same experimental conditions, the
25	suppression for the formation of nitrate by the pre-adsorption of acetic acid is much
26	stronger than that by pre-adsorption of acetaldehyde and glyoxal, indicating that the
27	influence of acetic acid on the heterogeneous reaction of NO_2 is different from that
28	of acetaldehyde and glyoxal. Surface nitrite was formed and identified to be an
29	intermediate product. For the heterogeneous reactions of NO_2 on the surfaces of
30	$\gamma\text{-}Al_2O_3$ with and without the pre-adsorption of acetaldehyde and glyoxal, it was
31	firstly formed and then gradually disappeared as the reaction proceeded, but for the
32	reaction with the pre-adsorption of acetic acid, it was the final main product. This
33	indicated that the pre-adsorption of acetic acid would promote the formation of
34	nitrite while the others won't change the trend of the formation of nitrite. Possible
35	mechanisms for the influences of the pre-adsorption of acetaldehyde, glyoxal and

- 36 acetic acid on the heterogeneous conversion of NO₂ on γ -Al₂O₃ were proposed, and
- 37 atmospheric implications based on these results were discussed.
- 38

39 **1. Introduction**

40 Nitrogen dioxide is an important air pollutant and its chemical reactivity is of great importance in atmospheric chemistry.¹ It can undergo various heterogeneous 41 42 reactions to form adsorbed products such as adsorbed nitric acid, nitrates and nitrites.²⁻⁴ It is well known that nitric acid plays a significant role in the formation of 43 atmospheric secondary particles, and the formed nitrate aerosols are well known to 44 affect the air quality, human health and climate.⁵ Moreover, the heterogenous 45 reactions of NO₂ on soot or organic films can be considered as sources of HONO 46 which plays a fundamental role as hydroxyl radical precursor via its photolysis 47 during daytime.^{6,7} Hence the heterogeneous reactions of NO₂ have been received 48 increasing attention in the past decades. Many previous studies have focused on the 49 heterogeneous reactions of NO₂ on different mineral oxides,^{3, 8-11} and some of the 50 studies have discussed the synergistic effect existing in the heterogeneous reactions 51 between NO₂ and SO₂ on different mineral oxides.^{9,11} However, up to now, little 52 attention is paid to the effect of pre-adsorbed organic species on the heterogeneous 53 processes of NO₂ on the mineral aerosols.¹² 54

Acetaldehyde is one of the most abundant aldehydes in the atmosphere.¹³ It can be emitted directly from combustion sources and produced by photochemical oxidation of hydrocarbons. Besides formaldehyde, acetaldehyde is also closely

58	related to the sick building syndrome, and its effects on human health mainly
59	depend on its levels, duration and frequency of exposure. ¹⁴ Indirectly, it can act as a
60	chemical precursor of tropospheric ozone to compromise domestic air quality. ¹⁵
61	Heterogeneous reactions of CH_3CHO on oxide particles (e.g. SiO_2) have been
62	studied, ¹⁶⁻¹⁹ and the results showed that through the interaction of hydrogen
63	bonding between carbonyl groups and surface hydroxyl groups, CH_3CHO molecules
64	are weakly and reversibly physisorbed on the surfaces of SiO_2 particles, while on the
65	surfaces of other oxides (e. g. α -Al ₂ O ₃ , CaO and TiO ₂) CH ₃ CHO molecules can undergo
66	heterogeneous reactions to yield irreversibly adsorbed unsaturated carbonyl
67	compounds with higher molecular weight. It is found that the pre-adsorbed CH_3CHO
68	significantly suppresses the heterogeneous reaction of large amount of SO_2 on the
69	surface of α -Fe ₂ O ₃ and has a little influence on the uptake of small amount of SO ₂ . ²⁰
70	Therefore, it is expected that under atmospheric conditions CH_3CHO molecules can
71	also be adsorbed onto mineral dust aerosols, ¹⁸ and may change the surface
72	properties of these aerosols, and thereby affect the subsequent heterogeneous
73	uptake behaviors of NO_2 on these particles.

Glyoxal, the simplest and one of the most abundant dialdehydes found in the atmosphere, is produced largely via photochemical oxidation of volatile organic compounds (VOCs).²¹⁻²⁴ It has recently been the focus of numerous studies due to its potential to form secondary organic aerosol (SOA).²¹⁻²⁷ The important aspects for quantifying the role of glyoxal in forming SOA are the chemical processing of glyoxal in aerosol and the effect of electrolyte composition on Henry's law partitioning

80 coefficients of glyoxal in aerosol, the other important role of glyoxal in aerosol was the effect of condensed-phase chemistry on aerosol optical properties.²⁷ The 81 82 dialdehyde glyoxal is one of several dicarbonyl species that are formed in significant yields from the photooxidation of aromatic hydrocarbons.²⁸⁻³² Glyoxal is an excellent 83 84 candidate for studying heterogeneous reactions because it is significantly more 85 reactive than most other aldehydes in hydration, polymerization, and hemiacetal formation.³³ Also, glyoxal cannot undergo aldol condensation due to its relatively 86 87 special structure, which thereby reduces the complexity of observed reaction products. Previous study have reported the heterogeneous reactions of glyoxal on 88 particulate matter including sulfate and nitrate particles,³³ however, little attention is 89 90 paid to the influence of glyoxal on the heterogenous reaction of NO₂.

91 Organic acids are important constituents of the troposphere, for they contribute to a large fraction of the non-methane hydrocarbon mixture,^{34, 35} and also contribute 92 93 significantly to tropospheric free acidity. These compounds can be emitted directly 94 into the atmosphere by mobile and stationary sources and be produced in situ by 95 the photo-oxidation of gas-phase hydrocarbons. As sources of free radicals in the 96 atmosphere and precursors in the formation of organic aerosols, they are major contributors to urban photochemical smog.^{36,37} Acetic acid (CH₃COOH) is considered 97 to be the important component of these acids and has low gas-phase reactivity when 98 reacted with OH and NO₃ radicals.³⁸ CH₃COOH is the oxidation product of CH₃CHO 99 100 which is also contributing to the occurrence of atmospheric pollution, however, few 101 studies have explored the differences in the effects of CH₃COOH and CH₃CHO on the 102 heterogeneous reaction of NO₂.

103	Mineral dust aerosol represents one of the largest natural mass fractions of the
104	global aerosol. It is produced mainly in the arid and semiarid areas of our planet, in
105	particular in the great deserts. ³⁹ The impact of mineral dust particles on the Earth's
106	atmosphere is manifold. They are believed to have a direct effect on the radiation
107	budget of the atmosphere and therefore are expected to impact on climate. 40 In
108	addition, the surface of such aerosol particles can provide reactive sites for
109	heterogeneous reactions, and the potential role of which has been emphasized in
110	several modelling studies. ^{41, 42} Alumina is an important component of mineral dust in
111	the atmosphere. There are a few forms of aluminum oxide, for example, $\alpha\text{-Al}_2\text{O}_3,$
112	and $\gamma\text{-}Al_2O_3.$ $\gamma\text{-}Al_2O_3$ has been widely used as a model of mineral aerosol for its higher
113	Brunauer-Emmett-Teller (BET) surface area and better quality of spectra information,
114	which serves to obtain useful information about the mechanism of atmospheric
115	heterogeneous reactions. ⁴³

116 Although the role of gas phase carbonyls as a source of radicals and organic nitrates has been studied extensively,^{44, 45} little is known about the influence of 117 118 aldehydes and organic acids on the heterogeneous reaction of NO₂ on mineral 119 particles. In this study, the influence of pre-adsorbed acetaldehyde, glyoxal and 120 acetic acid on the heterogeneous reaction of NO_2 on γ -Al₂O₃ is investigated using in 121 situ diffuse reflectance infrared Fourier spectroscopy (DRIFTS). The effect of 122 pre-adsorption species on nitrate and nitrite formation is also discussed. This study 123 may lead to a better understanding of the heterogeneous reaction of NO₂ on mineral 124 aerosol particles in the troposphere, and it would also provide useful information for

125 atmospheric chemistry studies.

126

- 127 **2. Experimental**
- 128 **2.1. Chemicals.**

129 In this study, commercially available γ -Al₂O₃ particles (99.997% purity, surface area: 50 m^2/g) purchased from Alfa Aesar were used for spectral measurements. The 130 131 y-Al₂O₃ particles was dried at 100 $^{\circ}$ C for 24 h, and some of the dried y-Al₂O₃ 132 particles were kept in a desiccator at 68% RH for 48 h. This treatment made some 133 adsorbed water molecule layers be present on the particles, and the sample was still 134 loose, fine powders after the equilibration. NO₂ (200 ppm, NO₂/N₂) was used as 135 reactant gases, CH₃CHO (100 ppm, CH₃CHO $/N_2$), OHC-CHO (100 ppm, OHC-CHO $/N_2$) 136 and CH₃COOH (100 ppm, CH₃COOH $/N_2$) (Shanghai Qingkuan Chemical Co., Ltd) were 137 used as pre-adsorbed organic species of NO₂ respectively. O₂ (99.999% purity, 138 Shanghai Qingkuan Chemical Co., Ltd) and Ar (99.999% purity, Shanghai Qingkuan 139 Chemical Co., Ltd) were introduced into reaction chamber through gas dryers before 140 use.

141 **2.2.** *In situ* **DRIFTS experiment.**

In this study the heterogeneous reactions of NO₂ on humid γ -Al₂O₃ in the presence and absence of organic species have been studied by using in situ DRIFTS technique. The DRIFTS spectra were recorded using the Nicolet Avatar 360 FTIR spectrometer, equipped with a Spectra-Tech diffuse reflectance accessory and a high-sensitivity mercury cadmium telluride (MCT) detector cooled by liquid N₂. About 14 mg (± 0.02

147	mg) γ -Al ₂ O ₃ sample was placed into the ceramic crucible in the chamber. The sample
148	temperature in the chamber was kept at 298 K by using an automatic temperature
149	controller. After the reaction chamber was purged with a mixture of O_2 (21% v/v) and
150	Ar (79% v/v) at a total flow rate of 100 mL/min for 60 min, the pre-adsorbed organic
151	species (CH ₃ CHO, OHC-CHO and CH ₃ COOH) (79 mL/min) with O ₂ (21 mL/min) was
152	introduced into the chamber to perform the pre-adsorption respectively, then the
153	mixture of O_2 (21% v/v) and Ar (79% v/v) was used to purge the chamber for 60 min
154	again, and then a background spectrum was recorded. After collecting the
155	background spectrum, a mixture of gases [NO ₂ (1.12×10^{15} molecules cm ⁻³), O ₂ (21%
156	v/v) and Ar (59% v/v)] was introduced into the chamber at a total flow rate of 100 $$
157	mL/min for 120 min. When the mixture of gases was introduced, the IR spectra were
158	recorded automatically every 10 minutes. All the IR spectra were recorded at a
159	resolution of 4 cm ⁻¹ for 100 scans. For each reaction condition, experiments were
160	repeated at least 3 times.

161

162 **3. Results and discussion**

To investigate the impact of pre-adsorbed species on the heterogeneous reaction of NO₂, the following aspects are studied: 1) Investigation of heterogeneous uptake of acetaldehyde, glyoxal and acetic acid on pure γ -Al₂O₃ particles, respectively. 2) Investigation of heterogeneous reaction of NO₂ on γ -Al₂O₃ particles with and without pre-adsorption of these organic compounds. 3) The effect of pre-adsorbed species on the formation of nitrate. 4) The effect of the pre-adsorbed species on the formation

169 of nitrite.

Physical Chemistry Chemical Physics Accepted Manuscript

Figure 1. DRIFTS spectra of surface products during the reaction of humid γ -Al₂O₃ with pre-adsorbed species as a function of reaction time. (a) acetaldehyde (2.21× 10¹⁵ molecules cm⁻³), (b) glyoxal (2.21×10¹⁵ molecules cm⁻³), (c) acetic acid (2.21× 10¹⁵ molecules cm⁻³). The inset in Figure 1a is the enlarged spectral region from 1730 to 1590 cm⁻¹.

179 **3.1 Uptake of acetaldehyde on the surface of** γ **-Al**₂**O**₃ **particles.**

Heterogeneous uptake of acetaldehyde onto the surface of γ -Al₂O₃ particles at 298 K is investigated at first. DRIFTS spectra following the exposure of CH₃CHO (79 ppm) in the mixture of O₂ (21% v/v) and Ar on γ -Al₂O₃ particles as a function of time are shown in Figure 1a. The exposure of alumina to acetaldehyde results in appearance of some sharp bands at 3000, 2862, 1716, 1457, 1400, 1376, 1346 and 1179 cm⁻¹, and several weak bands at 3735, 3632, 2947, 2906, 1682, 1652, 1641 and 1622 cm⁻¹. The C-H stretch region of the infrared spectrum shows bands at 3000, 2947, 2906, and

2862 cm⁻¹. The bands observed at 2862 cm⁻¹ (v (CH)), 1716 cm⁻¹ (v(C=O)) and 1346 187 cm^{-1} ($\delta_s(CH_3)$) could be assigned to physisorbed acetaldehyde, while the bands at 188 3000 cm⁻¹ (v_{as} (CH₃)), 2947 cm⁻¹ (v_{as} (CH₃)) and 1400 cm⁻¹ (δ_s (CH₃)) are probably due 189 to oligomeric acetaldehyde such as paraldehyde or metaldehyde.⁴⁶ The decrease in 190 191 intensity of v (O-H) band of surface isolated hydroxyl groups at 3735 cm^{-1} indicates 192 that acetaldehyde can be adsorbed onto alumina via H-bonding interaction of the carbonyl group with isolated OH group.^{18, 46} The band at 1682 cm⁻¹ corresponding to 193 194 v(C=O) of acetaldehyde shifts to lower wavenumbers with respect to the v(C=O) band in the gas phase spectrum, indicating that some acetaldehyde molecules are 195 196 coordinated with Lewis sites through the carbonyl oxygen. These results suggest that 197 acetaldehyde molecules are adsorbed on the surface of alumina not only via 198 H-bonding but also via strong interaction of the carbonyl group with Lewis sites, most probably coordination-unsaturated Al^{3+, 47, 48} 199

The weak bands at 1652 and 1641/1622 cm^{-1} are assigned to the v(C=O) and 200 v(C=C) modes of crotonaldehyde, respectively,^{46, 49-51} and the former is most likely 201 202 due to the crotonaldehyde coordinated with Lewis sites through the carbonyl oxygen. 203 This result indicates that aldehyde condensation occurs and small amount of crotonaldehyde is formed on the surface of γ -Al₂O₃.^{50, 51} However, it should be 204 205 pointed out that the intensities of these bands have decreased almost synchronously with increasing exposure time since it is formed at the initial stage of adsorption, 206 indicating the loss of crotonaldehyde. In addition, the band around 1273 cm⁻¹ due to 207 δ (C-OH) of 3-hydrobutanal surface intermediate is not observed in the region of 208

1330-1200 cm⁻¹ after exposure of the γ -Al₂O₃ surface to acetaldehyde,⁵⁰ which may 209 be due to the rapid 3-hydrobutanal dehydration to crotonaldehyde on γ -Al₂O₃.⁴⁶ But it 210 211 is more likely that both results mentioned above may suggest a termination of the 212 aldol condensation on the humid γ -Al₂O₃ surface after a short exposure time. This is 213 consistent with the previous study that have demonstrated that the aldolization 214 reaction on rutile TiO_2 at 313 K can be terminated after a short exposure time, and the 215 desorption of the formed crotonaldehyde via aldolization reaction occurs with increasing exposure.⁵² One possible explanation is that only a small fraction of the 216 217 surface sites on the humid γ -Al₂O₃ are capable of carrying out aldolization, and 218 reaction products such as H₂O, OH, or the higher molecular products of multiple 219 aldolization events may poison or block the access of reactant molecules to the active sites.⁵² 220

The bands at 1457 ($\delta_{as}(CH_3)$), 1376 ($\delta_{s}(CH_3)$) and 1179 (v(C-O-C)) cm⁻¹ are 221 222 observed, which may also suggest that small amounts of gem-diol $[CH_3CH(OH)_2]$ and dimer [CH₃CH(OH)OCH(OH)CH₃] are formed on the humid γ -Al₂O₃.^{11, 19, 20, 53} This 223 224 is because that the adsorbed acetaldehyde coordinated to Lewis sites through the 225 carbonyl oxygen has a positively polarized carbonyl carbon, which may make it more 226 susceptible to nucleophilic attack by H_2O and produce a gem-diol. Meanwhile, the 227 Lewis acid sites may also catalyze the subsequent polymerization reaction between 228 the hydroxyl groups of gem-diol and adsorbed acetaldehyde or dehydration between gem-diol molecules to produce the dimer.^{54, 55} 229

In addition, acetate is usually associated with the $v_a(COO)$ bands observed around

Physical Chemistry Chemical Physics

231 1580 cm⁻¹ (surface-coordinated acetate) and 1550 cm⁻¹ (acetate ions),^{56, 57} but in this 232 study no clear bands at 1580 and 1550 cm⁻¹ are observed, indicating that no 233 formation of acetate occurs on γ -Al₂O₃.

The results mentioned above clearly indicate that acetaldehyde molecules can be transformed into many other species on the surface of γ -Al₂O₃ particles and reveal that the adsorption of acetaldehyde on γ -Al₂O₃ surface is rather complicated.

237 **3.2** Uptake of glyoxal on the surface of γ -Al₂O₃ particles.

238 As the simplest and one of the most abundant dialdehydes found in the atmosphere, 239 glyoxal is produced largely via photochemical oxidation of volatile organic compounds (VOCs).²¹⁻²⁴ The heterogeneous reaction of glyoxal on the surface of 240 241 y-Al₂O₃ particles is also discussed. The DRIFTS spectra during the OHC-CHO (79 ppm) pre-adsorption process are shown in Figure 1b. It is interesting to find that two major 242 bands (including a broad band from 3630 to 2780 cm⁻¹ and another band at 1661 243 cm^{-1}) and a negative band at 3735 cm^{-1} are observed during the uptake of glyoxal on 244 the surface of humid γ -Al₂O₃ particles. The broad band from 3630 to 2780 cm⁻¹ 245 reflects the OH groups of CH(OH)₂CHO.⁵⁹ The band appearing at 1661 cm⁻¹ is due to 246 v(C=O) stretching vibration, ^{59, 60} indicating the coordination of glyoxal molecules with 247 248 Lewis sites through the carbonyl oxygen. The observed species indicates that the gaseous glyoxal is easily converted to other surface species, which is consistent with 249 250 the previous studies that have demonstrated that OHC-CHO can react with surface adsorbed water to form CH(OH)₂CHO.^{33, 59} No OH groups which is coordinated with 251 252 two aluminum atoms is consumed, only a few isolated OH groups are lost. The band

253	at 1661 cm ⁻¹ is quickly saturated at 10 min, and then decreases with the reaction
254	time. The explanation may be that with the introduction of glyoxal onto the humid
255	$\gamma\text{-}Al_2O_3$ particles, the O atom of C=O group of OHC-CHO, with highly polar, is trapped
256	in a hydrogen atom of the surface isolated hydroxyl group or a possible Lewis acid
257	site to form adsorbed OHC-CHO, which makes the carbonyl carbon more electrophilic
258	and easier to be attacked by an oxygen atom of the adjacent hydroxyl group or water
259	molecules, resulting in the quick formation of $CH(OH)_2CHO$ and the consumption of
260	the surface hydroxyls on the surface of humid $\gamma\text{-Al}_2O_3$ particles. $^{51,\;61,\;62}$ In addition,
261	water molecules preferentially take up Al^{3+} active sites (i.e. Lewis acid sites) by
262	non-dissociative adsorption on the humid surface of $\gamma\text{-}Al_2O_3\text{,}$ and some of these
263	water molecules can make part of the Lewis acid sites be converted into surface
264	hydroxyl groups by its dissociative chemisorption. ⁶³ These would result in a decrease
265	of Lewis acid sites available for the adsorption of OHC-CHO and suppress the
266	interaction of OHC-CHO with Al^{3+} , and thus inhibit the subsequent heterogeneous
267	oxidation of the adsorbed glyoxal (combining with unsaturated Al ³⁺) by active oxygen
268	species. 61 In addition, the presence of water on the humid surface of $\gamma\text{-Al}_2\text{O}_3$ would
269	also shift the hydration equilibrium of glyoxal from the unhydrated carbonyl form to
270	the hydrated form, which also suppress the heterogeneous oxidation of the adsorbed
271	glyoxal. Therefore, no band assigned to $v(C=O)$ of carboxylic acid or carboxylate is
272	observed on the humid $\gamma\text{-}Al_2O_3.$ While the fact that the band at 1661 $\text{cm}^{\text{-}1}$ decreases
273	with the reaction time after saturation may suggest the further hydration of another
274	aldehyde group in the product CH(OH) ₂ CHO.

275 **3.3 Uptake of acetic acid on the surface of \gamma-Al₂O₃ particles.**

276	As an important component of organic acids in the troposphere and the oxidation
277	product of acetaldehyde, the uptake of acetic acid on the surface of $\gamma\text{-Al}_2\text{O}_3$ particles
278	at room temperature is investigated in this study. Figure 1c shows the DRIFTS spectra
279	during the uptake of acetic acid on the surface of the humid $\gamma\text{-}Al_2O_3\text{particles}.$ There
280	are several major bands at 1701, 1580, 1462, 1426, 1337 and 1288 cm $^{-1}$. The band at
281	1701 $\mbox{cm}^{\mbox{-1}}$ is assigned to v(C=O) in molecularly adsorbed acetic acid, and the
282	molecularly adsorbed acetic acid is considered to be bonded to Lewis acid sites (AI^{3+})
283	through the oxygen lone-pair electrons of the carbonyl group. ^{56, 64} The two bands at
284	1580 and 1462 cm^{-1} reflect asymmetric and symmetric v(COO) modes of
285	surface-coordinated acetate, respectively, 56, 64, 65 the surface-coordinated acetate is
286	derived from the dissociation of acetic acid on Al_2O_3 . No band at 1550 cm ⁻¹ is
287	observed with increasing exposure, indicating no formation of acetate ions on the
288	humid surface. 65 The two bands at 1426 and 1337 cm $^{-1}$ reflect $\delta(CH_3)$ modes of
289	acetate and acetic acid respectively. $^{56,\ 65}$ The band at 1288 cm $^{-1}$ is due to the
290	molecularly adsorbed acetic acid. ^{56, 64, 65} The negative band at 3705 cm ⁻¹ is assigned
291	to the OH groups which are coordinated with two aluminum atoms. ¹⁹
292	Detailed assignments of the bands formed during the untake of pre-adsorbed

293 species are summarized in Table 1.

294

Table 1. Main Absorption Bands Observed during the Reaction of Pre-adsorption

wavenumber/cm ⁻¹	vibration type/functional groups
3735	Isolated OH ¹⁸
3705	OH groups ⁶⁶ (coordinated with two aluminum atoms)
3630-2780	OH ⁵⁹ CH ₂ (OH)CHO

3000	$v_{as}(CH_3)^{53}$
2947	$v_{as}(CH_3)^{46}$
2906	C-H ¹
2862	v (CH) ^{11, 19}
1716	v(C=O) physisorbed CH ₃ CHO ^{11,53}
1701	ν(C=O) ^{56, 64} CH ₃ COOH
1682	v(C=O) chemisorbed CH ₃ CHO ¹¹
1661	v(C=O) ^{59, 60} CH(OH) ₂ CHO
1652	v(C=O) chemisorbed crotonaldehyde ¹¹
1641	$v(C=C)^{46, 49-51}$
1622	$v(C=C)^{46, 49-51}$
1580	Asymmetric v(COO) ^{56, 64}
1462	symmetric v(COO) ^{56, 64}
1457	$\delta_{as}(CH_3)^{11, 19}$
1426	δ(CH ₃) ⁶⁵
1400	$\delta_{s}(CH_{3})^{46}$
1376	δ _s (CH ₃) ^{11, 19, 53}
1346	δ _s (CH ₃) ^{19, 53}
1337	$\delta(CH_3)^{56, 65}$
1288	Molecularly adsorbed acetic acid ^{56, 64, 65}
1179	v (C–O-C) ²⁰

295

296 As can be seen from Figure 1, the heterogeneous uptake of acetaldehyde, glyoxal 297 and acetic acid occurs on the humid γ -Al₂O₃ particles respectively, which would 298 potentially change the properties of the particles and further affect the subsequent 299 heterogeneous reactions of the other species on the coating particles. This study will 300 provide significant information for atmospheric chemistry studies. 301 3.4 Uptake of NO₂ on the surface of γ -Al₂O₃ particles with different pre-adsorbed 302 species. 303 In this study, the heterogeneous reactions of NO₂ on the surface of γ -Al₂O₃ particles 304 with and without preadsorption of acetaldehyde, glyoxal and acetic acid are 305 discussed in details. In uptake experiments, the DRIFTS spectra are collected as 306 difference spectra with the unreacted γ -Al₂O₃ sample as the background, and thus,

307 surface reaction products formed during the uptake can be observed through the 308 positive absorption bands, whereas negative bands indicate the losses of surface 309 species. The DRIFTS spectra of humid γ -Al₂O₃ with and without preadsorption 310 exposed to NO₂ as a function of time are shown in Figure 2.

312

313

314

Figure 2. DRIFTS spectra of surface products during the reaction of humid γ -Al₂O₃ with NO₂ as a function of reaction time, the particles have been preadsorbed by (a) none, (b) acetaldehyde (2.21× 10¹⁵ molecules cm⁻³), (c) glyoxal (2.21× 10¹⁵ molecules cm⁻³), (d) acetic acid (2.21× 10¹⁵ molecules cm⁻³) for 30 min, respectively.

319 As a control group, Figure 2a shows the reaction products formed during the heterogeneous reaction of NO₂ on the surface of humid γ -Al₂O₃ without 320 321 preadsorption. It is found that once NO₂ is adsorbed on the humid γ -Al₂O₃ particles, 322 several new absorption bands appear and grow with the increasing reaction time. The absorption bands in the region from 1250 to 1670 cm^{-1} are mainly assigned to 323 the degenerate v_3 mode of nitrate ions coordinated to the surface.^{1,8} In this study, 324 the adsorption bands are consistent with previous studies.^{8,66} According to the 325 previous studies, the band at 1242 cm⁻¹ is assigned to bidentate nitrite species which 326 327 grows in the early stage of the reaction and then gradually disappears, the band at

328	1540 cm^{-1} is assigned to the monodentate nitrate species, the bands at 1343 and
329	1404 cm^{-1} reflect the formation of adsorbed water-solvated nitrate species, and the
330	two absorption bands at 1616 and 1504 cm^{-1} are assigned to the bridging nitrate
331	species. The broad absorption band extending from 3680 to 3470 cm^{-1} slowly
332	increases in intensity with the increase of reaction time, which is primarily associated
333	with O-H vibration of hydrogen-bonded OH groups. ^{8, 66-70} Figure 2b and Figure 2c
334	show the reaction products formed during the heterogeneous reactions of NO_2 on
335	the surfaces of humid $\gamma\text{-}Al_2O_3$ with acetaldehyde and glyoxal preadsorption for 30
336	min, respectively. Compared with Figure 2a, there are several new bands at 1556,
337	1489, 1415, 1390 and 1353 cm ⁻¹ . The bands at 1353, 1390 and 1415 cm ⁻¹ are still
338	assigned to adsorbed water-solvated nitrate species, which is in agreement with
339	previous study that have shown that inner-sphere and outer-sphere nitrate
340	coordination exist in the presence of co-adsorbed water.43 The presence of
341	co-adsorbed water can affect the local bonding of the nitrate ion on the surface, as
342	well as the geometry and vibrational frequencies of the adsorbed nitrate. ⁴³ The band
343	at 1556 cm^{-1} is assigned to monodentate nitrate species, and the weak band at 1489
344	cm ⁻¹ is assigned to monodentate nitrito $NO_2^{-,8,71}$ Figure 2d shows the in situ DRIFTS
345	spectra of surface species produced and consumed during the heterogeneous
346	reaction of NO_2 on the surface of humid $\gamma\text{-}Al_2O_3$ with the pre-adsorption of acetic
347	acid for 30 min. Several new positive bands at 1701, 1489, 1456, 1353 and 1320 cm^{-1}
348	and two negative bands around 1580 and 1548 cm^{-1} are observed. Most of the bands
349	are different from those in Figure 2a, but the major species are still nitrate and nitrite

350	species according to previous studies. ^{8, 66, 71, 72} The broad absorption band extending
351	from 3680 to 3470 cm^{-1} is primarily associated with O-H vibration of H-O-H. ^{8, 66-70}
352	The broad band from 3420 to 2730 cm^{-1} is primarily assigned to O-H vibration of
353	hydrogen-bonded OH groups, but it is associated with the acetic acid species. The
354	band at 1701 cm ⁻¹ is assigned to v(C=O) of acetic acid. $^{56, 64}$ The band at 1489 cm ⁻¹ is
355	assigned to monodentate nitrite. $^{67, 71}$ The bands at 1456 and 1320 cm $^{-1}$ reflect
356	bridging nitrite species. ^{71, 72} The band at 1353 cm ⁻¹ is attributed to water-solvated
357	nitrate. ^{8, 67} The two increased negative bands around 1580 and 1548 $\rm cm^{-1}$ are
358	assigned to the asymmetric stretching modes of COO in acetate $[v_a(COO)]$. ^{56, 64} The
359	former can be assigned to the surface-coordinated acetate and the latter can be
360	assigned to the acetate ions, $^{56, 64}$ indicating the consumption of acetate on the
361	surface of $\gamma\text{-}Al_2O_3\text{particles}$ during the reaction. From previous studies, 10,73 it can be
362	known that, with the NO_2 introduced, the acidity of the surface of $\gamma\text{-}Al_2O_3\text{particles}$
363	would increase through the disproportionation reaction between NO_2 and
364	surface-adsorbed water, resulting in the loss of acetate species and the formation of
365	acetic acid species.

It is worth noting that the trends in changes in the amounts of nitrite species shown in Figure 2b and Figure 2c have almost no change comparing with the control experiment shown in Figure 2a, and all the amounts of nitrite shown in Figure 2a, 2b and 2c increase at first, then decrease gradually and finally disappear with the increase of reaction time. But the trend in change in the amount of nitrite shown in Figure 2d has completely changed, the amount of nitrite is always increasing, and it

Physical Chemistry Chemical Physics Accepted Manuscript

372	does not disappear during the reaction. In addition, Figure 2a, 2b, 2c and 2d all have	
373	shown a slightly loss of OH groups at the bands of 3705, 3714, 3727 and 3735 cm ⁻¹ ,	
374	indicating that these OH groups are still the active sites for the heterogeneous	
375	reaction of NO_2 on the surface of $\gamma\text{-}Al_2O_3$ particles, which is consistent with previous	
376	studies. ^{10, 66}	
377	The assignments of bands of adsorbed nitrate and nitrite during the	
378	heterogeneous reaction of NO_2 on $\gamma\text{-}Al_2O_3$ with different pre-adsorbed species are	
379	summarized in Table 2.	
380	Table 2. Assignment of the vibrational frequencies (cm ⁻¹) for adsorbed nitrate and	
381	nitrite following exposure of γ -Al ₂ O ₃ particle surfaces to NO ₂ in this study.	
	wavenumber/cm ⁻¹ Vibration type/functional groups	
	1616, 1504 bridging nitrate ^{8, 66}	
	8 66 71	

wavenumber/cm ⁻¹	Vibration type/functional groups
1616, 1504	bridging nitrate ^{8, 66}
1556, 1540, 1489	monodentate nitrate ^{8, 66, 71}
1456, 1320	bridging nitrite ^{72, 73}
1404, 1390, 1353,	water-solvated nitrate ^{8, 66, 67}
1343	
1242	bidentate nitrite ^{8, 66}

382

383 3.5 The effect of pre-adsorbed species on the formation of nitrate.

In the experiments, the formation of nitrate on the surface of γ -Al₂O₃ with different preadsorbed species under the same concentration of NO₂ is investigated as a function of reaction time. As shown in Figure 3, the pre-adsorption of the organic species can clearly suppress the formation of nitrate to different extents. The pre-adsorption of glyoxal only has a little contribution to the suppression of the formation of nitrate, while the pre-adsorption of acetic acid contributes a lot. It should be pointed out that no surface adsorbed nitro compounds are formed in the 391 process of the heterogeneous reaction of NO₂ on the surface of γ -Al₂O₃ with different 392 pre-adsorption during the DRIFTS experiments, which is also verified by Ion 393 Chromatography (IC). This result may mean that there are no direct interactions 394 between the pre-adsorbed species (acetaldehyde, glyoxal and acetic acid) and NO₂ to 395 form any adsorbed nitrogen-containing products. This is consistent with the previous 396 study that has demonstrated that NO₂ cannot react with acetaldehyde in the room 397 temperature.⁷⁴

398

Figure 3. Integrated K-M areas of the nitrate absorption bands for different
pre-adsorbed reactant species. The error bars represent one standard deviation from
repeated experiments.

402 The pre-adsorption of acetaldehyde and glyoxal suppresses the formation of 403 nitrate slightly, and it can be known from the DRIFTS spectra that the major active 404 sites for the adsorption of acetaldehyde and glyoxal on the surface of γ -Al₂O₃ are

405	isolated OH groups. Although the isolated OH groups are also the active sites for the
406	heterogeneous reaction of NO_2 , the major active sites for the adsorption of NO_2 on
407	the surface of $\gamma\text{-}Al_2O_3$ are the OH groups coordinated with two aluminum atoms,
408	which gives the band at 3705 cm ⁻¹ . Therefore, the consumption of the isolated OH
409	groups by preadsorbed species would suppress the heterogeneous reaction of \ensuremath{NO}_2
410	on $\gamma\text{-}Al_2O_3$ to some extent. In addition, as the water-solvated nitrate is the major
411	product of the heterogeneous reaction of NO_2 in this study, and the presence of
412	water is beneficial to the formation of surface OH groups, the pre-adsorption of
413	acetaldehyde and glyoxal would also consume some surface adsorbed water, the loss
414	of surface adsorbed water may be an influence factor for the suppression. For acetic
415	acid, its pre-adsorption makes some of the OH groups giving the band at 3705 $\rm cm^{-1}$
416	be consumed, these OH groups are the major active sites for the heterogeneous
417	reaction of NO_2 on the surface of $\gamma\text{-}Al_2O_3$ particles, $^{10,\;66}$ and hence resulting in the
418	decrease of the active sites and the subsequent suppression for the heterogeneous
419	reaction of NO_2 . Additionally, in this study, water molecules preferentially take up
420	${\rm Al}^{3*}$ active sites (i.e. Lewis acid sites) on the humid surface of $\gamma\text{-}{\rm Al}_2O_3,$ but the
421	preadsorbed acetic acid will also be adsorbed on Lewis acid sites (Al ³⁺) through the
422	oxygen lone-pair electrons of the carbonyl group. ^{56, 64} The competitive adsorption
423	would decrease the chemisorbed water molecules, which may reduce the
424	regeneration of surface active OH groups through the interaction of water molecule
425	with Al^{3+} active site on the humid surface of $\gamma\text{-}Al_2O_3,^{75,76}$ and further suppress the
426	subsequent heterogeneous reaction of NO_2 . In addition, nitrate generated during the

427subsequent heterogeneous reaction of NO2 may also occupy the reaction active sites428for the heterogeneous reaction of NO2, which may be another reason for the429suppression of nitrate formation. In conclusion, the formation of nitrate is430suppressed by the pre-adsorbed organic species.431**3.6 The effect of pre-adsorbed species on the formation of nitrite.**432As one of the adsorbed products of the heterogeneous reaction of NO2 on the433surface of γ-Al2O3, nitrite species has important influence in the atmosphere, and the

434 effect of pre-adsorbed species on the formation of nitrite is discussed in this study.

435

Figure 4. Integrated K-M areas of the nitrite absorption bands for differentpreadsorbed species.

As shown in Figure 4, the pre-adsorption of acetaldehyde and glyoxal can suppress
the formation of nitrite to a similar extent, the amounts of the formed nitrite species
firstly increase and then decrease and finally disappear with the increase of reaction

441 time. In this study, the nitrite species is an intermediate of the heterogeneous 442 reaction of NO₂ on the surface of γ -Al₂O₃ particles with and without pre-adsorption 443 of acetaldehyde and glyoxal, respectively. The nitrite species can be formed through a disproportionation of two adsorbed NO₂ molecules on the surface of γ -Al₂O₃ and a 444 disproportionation reaction between NO₂ and surface-adsorbed water,^{10, 66} and the 445 formed nitrite species will be further oxidized to nitrate species by excess NO2.^{8,66} 446 447 This is in agreement with previous studies. However, it should be pointed out that, 448 compared with no pre-adsorption of acetaldehyde and glyoxal, the presence of 449 preadsorbed acetaldehyde and glyoxal neither obviously promotes the formation of 450 nitrite nor clearly accelerates the decrease of nitrite.

451 It can also be seen from Figure 4 that the amount of nitrite formed on the surface 452 of γ -Al₂O₃ with acetic acid pre-adsorption always increase with the reaction time, 453 after the slow increase of nitrite species in the first 50 min of the reaction, the rate 454 of the nitrite formation is greatly increased. Nitrite is identified as an intermediate in 455 the previous studies and would disappear quickly when the high concentrations of NO₂ are continuously introduced.⁶⁵ But in this study, nitrite is a final product of the 456 457 heterogeneous reaction of NO₂ on the surface of γ -Al₂O₃ with acetic acid pre-adsorption. One possible explanation is that the pre-adsorption of acetic acid 458 459 consumes the major OH group active sites for the heterogeneous reaction of NO_2 460 and decreases the regeneration of surface OH groups on the surface of γ -Al₂O₃ particles, and finally suppresses the formation of nitrate and leads to the formation 461 462 of nitrite. This may also suggest that the major OH group active sites giving the band

463 at 3705 cm⁻¹ play an important role in the formation of nitrate during the 464 heterogeneous reaction of NO_2 .

465

466 **4. Conclusions**

In the study the heterogeneous reactions of NO_2 with alumina with and without 467 468 pre-adsorption of organic species (acetaldehyde, glyoxal and acetic acid) have been 469 studied by using in situ DRIFT spectroscopy as surface-sensitive method. It is found 470 that the pre-adsorbed species has a clear influence on the heterogeneous reaction of NO₂ on the surface of γ -Al₂O₃, the preadsorbed acetaldehyde, glyoxal and acetic acid 471 472 have suppression effect on the formation of nitrate in different degrees respectively, 473 and influence the formation of nitrite. Under the same experimental conditions, the 474 extent of the suppression by pre-adsorption of acetic acid for the formation of 475 nitrate is much stronger than that by pre-adsorption of acetaldehyde and glyoxal, 476 and the influence of acetic acid on the heterogeneous reaction of NO₂ is different 477 from that of acetaldehyde and glyoxal. Compared with the heterogeneous reactions 478 of NO₂ on the humid γ -Al₂O₃ with and without the pre-adsorption of acetaldehyde 479 and glyoxal, the preadsorbed acetic acid make nitrite species be the main product of the heterogeneous reaction of NO₂ on the surface of γ-Al₂O₃. Based on our 480 481 experimental results, the influence mechanisms of the different pre-adsorbed 482 species on the heterogeneous reaction of NO₂ have been studied and it is found that 483 the surface OH groups which act as the reaction active sites for the heterogeneous 484 reaction of NO₂ are the major influence factor of the product formation.

485	It has been already shown in a number of previous studies that the heterogeneous
486	reaction of NO_2 with mineral dust particles and its chemical reactivity are of great
487	importance in atmospheric chemistry, ^{3, 8-11} and many studies have discussed the
488	heterogeneous reactions of the simple organic compunds existing in the atmosphere
489	respectively, such as acetaldehyde, glyoxal and acetic acid. ^{13, 21-24, 38} But little
490	attention is paid to the synergism effect between NO_2 and the organic species like
491	acetaldehyde, glyoxal and acetic acid. The results from this study have important
492	atmospheric implications. The results reveal a significant impact of acetaldehyde,
493	glyoxal and acetic acid on the heterogeneous conversion of NO_2 and the formation
494	of nitrite and nitrate in the atmosphere. This chemistry may occur on surfaces of
495	airborne dust particles that are known to be transported and play a role in the
496	chemistry of the troposphere, which would affect the level of particulate nitrate in
497	the troposphere and the estimation of the amount of global atmospheric nitrate.
498	
499	Notes
500	The authors declare no competing financial interest.
501	Acknowledgments
502	This work was supported by the National Natural Science Foundation of China (Grant
503	Nos. 41475110, 21277028, 21190053 and 41275126) and the open fund by Jiangsu
504	Key Laboratory of Atmospheric Environment Monitoring and Pollution Control

- 505 (KHK1311).
- 506
- 507 References

508	1.	A. L.	Goodman,	Т.	M.	Miller,	V.	Н.	Grassian,	J.	Vac.	Sci.	Technol.	Α,	1998,	16,
509		2585	-2590.													

- 510 2. R. Vogt and B. J. Finlayson-Pitts, J. Phys. Chem., 1994, 98, 3747-3755.
- 511 3. S. J. Peters and G. E. Ewing, J. Phys. Chem., 1996, **100**, 14093-14102.
- 4. A. L. Goodman, G. M. Underwood and V. H. Grassian, J. Phys. Chem. A, 1999, 103,
- 513 **7217-7223**.
- 514 5. S. Sillman, J. A. Logan, S. C. Wofsy, *J. Geophys. Res.* 1990, **95**, 1837-1851.
- 515 6. M. Ammann, M. Kalberer, D. T. Jost, L. Tobler, E. Rossler, D. Piguet, H. W.
- 516 Gaggeler and U. Baltensperger, *Nature*, 1998, **395**, 157-160.
- 517 7. C. George, R.S. Strekowski, J. Kleffmann, K. Stemmler and M. Ammann, Faraday
- 518 *Discuss.* 2005, **130**, 195–210.
- 519 8. L. Wu, S. Tong and M. Ge, J. Phys. Chem. A, 2013, **117**, 4937-4944.
- 520 9. C. Liu, Q. Ma, Y. Liu, J. Ma, and H. He, Phys. Chem. Chem. Phys., 2012, 14,
- 521 **1668-1676**.
- 522 10. H. J. Li, T. Zhu, D. F. Zhao, Z. F. Zhang and Z. M. Chen, Atmos. Chem. Phys., 2010,
- 523 **10**, 463-474.
- 524 11. M. Ullerstam, M. S. Johnson, R. Vogt and E. Ljungstrom, Atmos. Chem. Phys. 2003,
- 525 **3, 2043–2051**.
- 526 12. Z. Sun, L. Kong, X. Zhao, X. Ding, H. Fu, T. Cheng, X. Yang and J. Chen, J. Phys.
- 527 *Chem. A,* 2015, **119,** 9317–9324.
- 528 13. T.E. Graedel, D.T. Hawkins and L.D. Claxton, *Eos Trans. AGU*, 1987, **68**, 1643.
- 529 14. B. Hauchecorne, D. Terrens, S. Verbruggen, J. A. Martens, H. Van Langenhove, K.

^bhysical Chemistry Chemical Physics Accepted Manuscript

- 530 Demeestere and S. Lenaerts, *Appl. Catal. B: Environ.*, 2011, **106**, 630-638.
- 531 15. J. Duan, J. Tan, L. Yang, S. Wu and J. Hao, Atmos. Res., 2008, 88, 25-35.
- 532 16. J. Raskó and J. Kiss, *Appl. Catal. A*, 2005, **287**, 252-260.
- 533 17. R. Kydd, W. Y. Teoh, J. Scott, D. Ferri and R. Amal, ChemCatChem, 2009, 1,
- 534 **286-294**.
- 535 18. P. Li, K. A. Perreau, E. Covington, C. H. Song, G. R. Carmichael and V. H. Grassian,
- 536 *J Geophys. Res.*, 2001, **106**, 5517-5529..
- 537 19. M. A. Natal-Santiago, J. M. Hill and J. A. Dumesic, J. Mol. Catal. A-Chem., 1999,
- 538 **140**, 199-214.
- 539 20. X. Zhao, L. Kong, Z. Sun, X. Ding, T. Cheng, X. Yang and J. Chen, J. Phys. Chem. A,
- 540 **2015**, **119**, 4001-4008.
- 541 21. J. Liggio, S. M. Li and R. Mclaren, J. Geophys. Res.-Atmos. 2005, **110**, D10304.
- 542 22. R. Volkamer, P. J. Ziemann and M. J. Molina, Atmos. Chem. Phys. 2009, 9, 1907–
- 543 **1928**.
- 544 23. J. H. Kroll, N. L. Ng, S. M. Murphy, V. Varutbangkul, R. C. Flagan and J. H. Seinfeld,
- 545 *J. Geophys. Res.-Atmos.* 2005, **110**, D23207.
- 546 24. M. M. Galloway, P. S. Chhabra, A. W. H. Chan, J. D. Surratt, R. C. Flagan, J. H.
- 547 Seinfeld and F. N. Keutsch, *Atmos. Chem. Phys.* 2009, **9**, 3331–3345.
- 548 25. A. G. Carlton, B. J. Turpin, K. E. Altieri, S. Seitzinger, A. Reff, H. J. Lim and B. Ervens,
- 549 Atmos. Environ. 2007, **41**, 7588–7602.
- 550 26. A. L. Corrigan, S. W. Hanley and D. O. De Haan, Environ. Sci. Technol., 2008, 42,
- **4428-4433**.

- 552 27. G. Yu, A. R. Bayer, M. M. Galloway, K. J. Korshavn, C. G. Fry and F. N. Keutsch,
- 553 Environ. Sci. Technol., 2011, **45**, 6336-6342.
- 554 28. M. Jang and R. M. Kamens, *Environ. Sci. Technol.* 2001, **35**, 3626-3639.
- 555 29. E. C. Tuazon, R. Atkinson, H. Macleod, H. W. Biermann, A. M. Winer, W. Carter
- and J. N. Pitts, *Environ. Sci. Technol.*, 1984, **18**, 981-984.
- 557 30. H. Bandow and N. Washida, Bull. Chem. Soc. Jpn., 1985, 58, 2541-2548.
- 558 31. H. Bandow, N. Washida and H. Akimoto, Bull. Chem. Soc. Jpn., 1985, 58,
- **2531-2540**.
- 560 32. J. Yu, H. E. Jeffries and K. G. Sexton, *Atmos. Environ.*, 1997, **31**, 2261-2280.
- 561 33. J. Liggio, S. Li and R. McLaren, *Environ. Sci. Technol.*, 2005, **39**, 1532-1541.
- 562 34. H. Puxbaum, C. Rosenberg, M. Gregori, C. Lanzerstorfer, E. Ober and W.
- 563 Winiwarter, *Atmos. Environ.*, 1988, **22**, 2841-2850.
- 35. M. Possanzini, V. Dipalo, M. Petricca, R. Fratarcangeli and D. Brocco, Atmos.
- 565 *Environ.*, 1996, **30**, 3757-3764.
- 566 36. R. Atkinson, *Atmos. Environ.*, 1990, **24A**, 1-41.
- 37. L. Montero, P. C. Vasconcellos, S. R. Souza, M. A. F. Pires, O. R. Sánchez-Ccoyllo,
- 568 M. F. Andrade, and L. R. F. Carvalho, *Environ. Sci. Technol.*, 2001, **35**, 3071-3081.
- 38. B. T. Jones, J. B. A. Muller, S. J. O'Shea, A. Bacak, M. Le Breton, T. J. Bannan, K. E.
- 570 Leather, A. M. Booth, S. Illingworth, K. Bower, M. W. Gallagher, G. Allen, D. E.
- 571 Shallcross, S. J. B. Bauguitte, J. A. Pyle and C. J. Percival, Atmos. Environ., 2014, 99,
- **572 556-567**.
- 573 39. S. Seisel, C. B Rensen, R. Vogt and R. Zellner, Phys. Chem. Chem. Phys., 2004, 6,

- **574 5498-5508**.
- 575 40. I. Tegen and A. A. Lacis, J. Geophys. Res., 1996, 101, 19237–19244.
- 576 41. Y. Zhang and G. R. Carmichael, J. Appl. Meteo., 1999, **38**, 353–366.
- 42. M. J. Phadnis and G. R. Carmichael, J. Atmos. Chem., 2000, **36**, 285–323.
- 43. J. Baltrusaitis, J. Schuttlefield, J. H. Jensen and V. H. Grassian, *Phys. Chem. Chem.*
- 579 *Phys.*, 2007, **9**, 4970-4980.
- 580 44. B. Noziere, I. Barnes and K. H. Becker, J. Geophys. Res., 1999, **104**, 23645-23656.
- 45. E. Grosjean, D. Grosjean and J. H. Seinfeld, *Environ. Sci. Technol.*, 1996, **30**,
 1038-1047.
- 46. V. V. Ordomsky, V. L. Sushkevich and I. I. Ivanova, J. Mol. Catal. A, 2010, 333,
 85-93.
- 585 47. J. Raskó, T. Kecskés and J. Kiss, *Appl. Catal. A- Gen.*, 2005, **287**, 244-251.
- 48. G. Busca and V. Lorenzelli, J. Chem. Soc., Faraday Trans. 1, 1982, 78,
 2911-2919.
- 49. B. I. Stefanov, Z. Topalian, C. G. Granqvist and L. Österlund, J. Mol. Catal. A, 2014,
 381, 77-88.
- 590 50. M. Singh, N. Zhou, D. K. Paul and K. J. Klabunde, *J. Catal.*, 2008, **260**, 371-379.
- 591 51. A. K. P. Mann, Z. Wu, F. C. Calaza and S. H. Overbury, ACS Catal., 2014, 4,
 592 2437-2448.
- 593 52. J. E. Rekoske and M. A. Barteau, *Langmuir*, 1999, **15**, 2061-2070.
- 594 53. H. Madhavaram and H. Idriss, J. Catal., 2004, **224**, 358-369.
- 595 54. M. S. Jang and R. M. Kamens, *Environ. Sci. Technol.* 2001, **35**, 4758-4766.

- 596 55. L. T. Iraci and M. A. Tolbert, J. Geophys. Res.: Atmos. 1997, **102**, 16099-16107.
- 597 56. D. H. Lee and R. A. Condrate, SA, J. Mater. Sci., 1999, **34**, 139-146.
- 598 57. Mattsson and L. Österlnd, J. Phys. Chem. C 2010, **114**, 14121-14132.
- 599 58. H. Idriss, C. Diagne, J. P. Hindermann, A. Kiennemann and M. A. Barteau, J. Catal.,
- 600 **1995**, **155**, 219-237.
- 601 59. H. M. Choi, J. H. Kim and S. Shin, J. Appl. Polym. Sci., 1999, 73, 2691-2699.
- 602 60. S. Y. Keskin and C. S. Keskin, Appl. Biochem. Biotech., 2014, **172**, 289-297.
- 603 61. B. Xu, J. Shang, T. Zhu and X. Tang, Atmos. Environ., 2011, 45, 3569-3575.
- 604 62. G. Busca, J. Lamotte, J. C. Lavalley and V. Lorenzelli, *J. Am. Chem. Soc.*, 1987, **109**,
- 605**5197-5202.**
- 606 63. M. Trueba and S. P. Trasatti, Eur. J. Inorg. Chem. 2005, **17**, 3393–3403.
- 607 64. M. J. Backes, A. C. Lukaski and D. S. Muggli, Appl. Catal. B: Environ., 2005, 61,
- 608 **21-35**.
- 609 65. M. A. Hasan, M. I. Zaki and L. Pasupulety, *Appl. Catal. A-Gen.*, 2003, **243**, 81-92.
- 610 66. C. Guan, X. Li, Y. Luo and Z. Huang, J. Phys. Chem. A, 2014, **118**, 6999-7006.
- 611 67. G. M. Underwood, T. M. Miller and V. H. Grassian, J. Phys. Chem. A, 1999, 103,
- 612 **6184-6190**.
- 613 68. C. Börensen, U. Kirchner, V. Scheer, R. Vogt and R. Zellner, J. Phys. Chem. A, 2000,
- 614 **104**, 5036-5045.
- 615 69. T. M. Miller and V. H. Grassian, *Geophys. Res. Let.*, 1998, **25**, 3835-3838.
- 616 70. Hadjiivanov, K.; Knozinger, H.; Tsyntsarski, B.; Dimitrov, L. Catal. Lett. 1999, 62,
- **6**17 **35–40**.

- 618 71. B. C. Hixson, J. W. Jordan, E. L. Wagner and H. M. Bevsek, J. Phys. Chem. A, 2011,
- 619 **115**, 13364-13369.
- 620 72. B. Westerberg and E. Fridell, J. Mol. Catal. A-Chem., 2001, 165, 249-263.
- 621 73. M. E. Jenkin, R. A. Cox and D. J. Williams, *Atmos. Environ.*, 1998, **22**, 487–498.
- 622 74. A. Takahashi, M. Haneda, T. Fujitani and H. Hamada, J. Mol. Catal. A: Chem.,
- 623 **2007**, **261**, 6-11.
- 624 75. T. Morimoto, M. Nagao and F. Tokuda, J. Phys. Chem., 1969, 73, 243-248.
- 625 76. C. H. Rochester and S. A. Topham, J. Chem. Soc., 1979, 75, 1073-1088