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Abstract. Controlled actuation of electroactive polymers with embedded high

dielectric nanoparticles is theoretically analyzed. If the inclusions are placed randomly

in the elastomer body, the composite always contracts along the direction of the applied

field. For a simple cubic distribution of inclusions, contraction occurs if the applied

field is directed along the [001] direction of the lattice. For inclusions occupying the

sites of other lattice structures such as body-centered or face-centered cubic crystals,

the composite elongates along the field direction if it is applied along the [001] direction.

The stability of the elongation against the imperfectness of the lattice site positions and

the distortion ratio of the initial structures is examined. A finite elongation windows

show up for the initially distorted body-centered cubic and face-centered cubic crystals

as a function of the distortion ratio of the initial structure. The existence of this

elongation windows are also predicted from the analysis of the electrostatic energy

of the distorted body-centered cubic and face-centered cubic lattice structures. Our

results indicate that the electrostriction effect, which is the main contribution to the

actuation of low aspect-ratio composites, strongly depends on the geometry of the

spatial distribution of nanoparticles, and can thereby largely be tuned.
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Simulation Study of the Electrostriction Effects in Dielectric Elastomer Composites containing Polarizable

1. Introduction

Electroactive polymers and composites having tunable actuation properties belong to

the fast growing field of smart materials with promising applications in many directions

[1, 2, 3, 4, 5]. Initially being developed for sensors and shock adsorbers, these materials

are now viewed as perfect building blocks for artificial muscles [6, 7], drug delivery

systems [8, 9], and nano-cancer applications [10].

These electroactive materials, also called electro- or magneto-sensitive elastomers,

are composites with 3-0 connectivity [11, 12], where the index 3 refers to the 3-

dimensional self-connectivity of the primary active phase which is inert to polarization,

and the index 0 refers to the non-connected, i.e. isolated, secondary passive phase

which is highly polarizable. The composites consist of an flexible host polymer

matrix impregnated with hard-core inclusions. Usually, the host matrix is a dielectric

elastomer with the Young’s modulus in the range of 0.1 MPa-20 MPa, and low dielectric

permittivity in the range between 2 and 7. The inclusions are polarizable spheres with

high dielectric permittivity and a diameter ranging between several hundred nm to

several µm. Until recently the research on electroactive composites was mostly focused

on enhancing the Maxwell contraction of the host matrix through modifying its dielectric

and elastic properties [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. The increase of the

effective dielectric constant of the composite makes the Maxwell pressure stronger. Also,

the local field effects between neighboring inclusions induce an additional contraction

of the composite along the applied field direction.

During the last decade considerable theoretical advances have been made on

elucidating the role of the inclusion’s spatial distribution and the composite’s initial

shape on its actuation [26, 27, 28, 29, 30, 31, 32]. It was revealed that the composite

with a particular type of inclusion distribution might experience an elongation strain.

Theoretical studies of the composite actuation distinguish two separate contributions

to the composite strain: a macroscopic electrostatic effect (i.e., atomic or vibrational

polarization with elongated molecular bonds) as obtained within a continuum mechanics

approach, and the effects based on the explicit accounting for the dipolar interactions

between the discrete inclusions on the mesoscopic length scale. The first contribution

always results in the elongation of the composite along the applied field direction, and is

a nonlinear function of the aspect ratio of the composite. The aspect ratio here is defined

as the ratio of the composite dimensions a/b, where a is the composite thickness along

the applied field, and b is its width across the applied field. At small and high aspect

ratios a/b, corresponding to the prolate and oblate material geometries, the macroscopic

electrostatic elongation effect is weak, whereas at the intermediate aspect ratios it is

strong. The second contribution to the composite strain, called the electrostriction

effect, however, results in a negative contribution to the composite strain along the

applied field direction. A sum of these two contributions for some inclusion’s spatial

distributions gives rise to a finite window of elongation [28, 30, 31, 32] as a function of

the aspect ratio of the composite. That window, however, might be completely screened
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by the Maxwell contraction term which act on the host polymer regardless of the dipole

moment of particles and their distribution factors.

The electrostriction effect has been discussed in many experimental works [33, 34,

35, 36, 37, 38, 39, 40, 41, 42]. Under the poling fields up to 20 MV/m contracting strains

up to 10% were observed whereas the Maxwell-stress induced strain of the pure polymer

was below 1%. In other studies single-walled carbon nanotubes [38, 39, 40, 41] and lead

zirconate titanate (PZT) ceramics [42] were used as fillers in electrostrictive polymers

where a weak electrostriction effect of few percents was reported. Recent studies report

on the electrostriction properties of carbon black (CB) nanoparticles in PU elastomers

[36, 37]. At dilute concentrations of CB and low fields, η ≈0.01 and E <4 MV/m, a

twice larger than the Maxwell strain was reported, though the nature of this enhanced

strain is debated to come from the dielectric permittivity increase in the CB–polymer

mixtures.

In all existing theoretical studies, the magnitude of the linear response coefficients

and the sign of the composite actuation are predicted for a frozen particle distribution,

meaning that the particle displacement in the course of deformation is not taken into

account. However, in reality, the latter, together with the shape change of the composite

during the deformation, contributes to the depolarization factor, and through it to the

ultimate strain of the composite. These effects are hard to include in a theoretical

analysis, but can readily be incorporated into a computer simulation of the composite

actuation which resolves the nature of the inclusions explicitly. Composite simulations

use different representations for the host matrix polymer: it can be modeled as a full

atomistic material, or a coarse grained polymer with several of its atoms grouped into

blobs, or a low level coarse-grained polymer consisting of elastic springs between the

inclusions. In this paper, we use the latter model which allows for the simulation of

large systems.

The goal of this study is to explicitly evaluate the electrostriction effect of inclusions

and its dependence on the inclusion’s spatial distribution. For the latter we consider

four different distributions: a simple cubic (SC), a body centered cubic (BCC), a face

centered cubic (FCC) periodic lattice, and a random distribution. In order to decouple

the electrostriction effect from the macroscopic electrostatic effect we assume that the

full system has a low aspect-ratio (such as a slab). As shown in Ref. [28], in this

case, the macroscopic contribution to the strain becomes negligibly small, and only the

electrostriction and Maxwell strains need to be considered.

We use a mesoscopic spring-bead model for the composite combining classical

phenomenological electrostatics on the mesoscopic length scale of the inclusions with

phenomenological elasticity theory, but the effective polarization-induced (dipole-dipole-

like) interactions between the inclusions is taken explicitly into account. Within this

model the response of the composite to external fields is calculated by using the

method of equality of internal pressure components in all three directions. The pressure

components are determined from the virials of the elastic and electrostatic forces.

Our method presents a new approach to the actuation modeling of bulk composite.
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Assuming that the full shape of the sample has a low aspect ratio, and thus ignoring

the electrostatic effects, we investigate the electrostriction related contributions to the

composite strain. Within our spring-bead model we derive an analytical expression

for the Young’s modulus. We show that the strain of the composite along the applied

field strongly depends on the distribution of inclusions inside the host matrix. Whereas

the composites with homogeneously (randomly) distributed inclusions always contract

along the applied field, the actuation of regular lattice composites depends on their

lattice structure: the SC composite shrinks along the applied field, but the BCC and

FCC composites show a net elongation response along the applied field oriented parallel

to the [001] direction of the lattice. This elongation is shown to depend on the defects

of the inclusion distribution and on the distortion ratio of the initial structures. For the

BCC and FCC lattices we detect the existence of an elongation window as a function of

the distortion ratio of the initial structure. We show that a similar elongation window

can be predicted from the analysis of the electrostatic energy of the distorted crystal.

The remaining part of the paper is organized as follows. In section 2 we give

the underlying theory of the composite polarization and discuss the origins of the

macroscopic electrostatic and electrostriction contributions to the composite actuation.

In subsection 2.4 we calculate the free energy of the composite deformation used to

tune the elasticity parameter of our simulation model. Details of our simulation set-

up and the spring-bead model for the composite are given in section 3. In section

4 we give the details of our simulation method for the calculation of the composite

strain as a response to the applied field. Simulation results for the composite strain in

different fields and for different starting configurations for the inclusion’s distribution

are collected in section 5. We show that the composite actuation and the contribution

from the electrostriction strongly depend on the spatial distribution of inclusions. In

section 6 we give guidelines for experimental realization of theoretical predictions for

the composite actuation. Finally we conclude in section 7.

2. Theoretical Model

2.1. General Theory of Macroscopic Electrostatics of Composites.

We consider a composite membrane consisting of a host matrix with dielectric

permittivity ǫm impregnated with N polarizable inclusions with permittivities ǫp. As a

general case we assume that the dielectrics have arbitrary shapes as shown in Figure 1,

where only a single inclusion is pictured. The case of spherical inclusions in a slab-shaped

host matrix will be considered in chapter 2.2 as a particular case of the configuration

shown in Figure 1. When the host matrix is polarized under the external field ~E ‖ ~z,

the projection of the total field inside the inclusion on the z-axis is

~Ep = ~Em −
~Pp

ǫ0ǫm

αz
p +

N
∑

j

~Ej (1)
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Figure 1. (Color in online) Schematic representation explaining the polarization of

a dielectric inclusion in a host dielectric polymer under the field ~E oriented parallel

to the z-axis. Along the field direction the dielectrics have dielectric permittivities ǫk,

depolarization factors αz
k , and induced polarizations Pk, where k = p for inclusions,

and k = m for the host polymer.

where the first term, ~Em, is the projection of the total field inside the host matrix on

the z-axis,

~Em = ~E −
~Pm

ǫ0

αz
m (2)

The second terms in Eqs.(1) and (2) describe the dielectric depolarization effects along

the z axis stemming from the induced charges at the dielectric boundaries in the direction

of the z-axis. Here ~Pp and ~Pm are the the projections of the particle and host matrix

polarizations on the z-axis correspondingly. The third term in Eq.(1) is the projection of

the electrical field contribution from the dipolar fields of other inclusions j (1 ≤ j ≤ N),

existing in the host matrix, on the z-axis.

The depolarization factors 0 < αz
k < 1, (k = m, p) in Eqs.(1) and (2) depend on the

dielectric geometries measured in the terms of their aspect ratios ξk = ak/bk along the

field ~E, where ak and bk are the averaged dielectric sizes in the field and lateral directions

correspondingly [43]. For simple geometries such as a slab with ξ=0 (an infinite slab

placed perpendicular to the applied field ~E), or a cylinder with ξ → ∞ (an infinite

cylinder placed along the applied field ~E), or a sphere with ξ=1, the depolarization

factor αz
k takes values 1, 0, and 1/3 respectively. As has been shown in Ref. [28], in the

case of regular lattice sites used for particle distributions, the depolarization factors αz
k
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can be modified to include also the electrostriction effects. The resulting depolarization

field then can take both positive and negative values. Because our aim is to consider only

the behavior of the electrostriction effects in low aspect-ratio membranes, for which the

electrostatic effects are believed to be weak, there is no need to modify the depolarization

terms in Eqs.(1) and (2).

The setup in Figure 1 corresponds to a constant surface charge condition on the

electrode surface which implies an open circuit case. This boundary condition differs

from short circuit condition, which is used in most experimental studies. For low

inclusion volume fractions η not exceeding several percents, when the contribution of the

inclusion polarization to the host matrix polarization is small and thus can be neglected,
~Pm is defined as

~Pm = ǫ0(ǫm − 1) ~Em (3)

Combining Eq.(2) with Eq.(3), for the field ~Em and the polarization ~Pm we get

~Em =
~E

1 + (ǫm − 1)αz
m

(4)

~Pm =
ǫ0(ǫm − 1) ~E

1 + (ǫm − 1)αz
m

(5)

The polarization of the inclusion ~Pp has two parts: the first part ~P1 = ǫ0 (ǫp − 1) ~Ep

corresponds to the polarization of inclusion placed into the vacuum, and the second part
~P

′

2 is the polarization created by the host matrix inside an empty cavity of the inclusion

shape,

~Pp = ~P1 + ~P
′

2 (6)

The term ~P
′

2 can be replaced by the polarization of the inclusion with permittivity ǫm

placed into the vacuum, ~P
′

2 = −~P2 = −ǫ0 (ǫm − 1) ~Ep. Therefore, Eq.(6) becomes

~Pp = ǫ0(ǫp − ǫm) ~Ep (7)

From Eqs.(1) and (7) for the polarization ~Pp we get,

~Pp =
ǫp − ǫm

ǫm + (ǫp − ǫm)αz
p

ǫ0ǫm





1

1 + (ǫm − 1)αz
m

~E +
∑

j

~Ej



 (8)

This simple expression for Pp defines its dependence on the inclusion and host polymer

geometries along the z-axis through the coefficients αz
k, k = m, p for matrix and particle,

respectively.

The induced dipole moment of the inclusion along the z-axis has two parts,

~µp = Vp
~Pp = ~µ0

p(E) + ~µj
p(Ej) (9)

where the first part ~µ0
p is the pure dipole moment stemming from the external field ~E,

~µ0
p = Vp

ǫp − ǫm

ǫm + (ǫp − ǫm)αz
p

1

1 + (ǫm − 1)αz
m

ǫ0ǫm
~E (10)
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and the second part ~µp(Ej) is the excess dipole moment corresponding to the cumulative

sum of the fields created by other inclusions j ( 1 ≤ j ≤ N) at the position of the

inclusion i,

~µj
p = Vp

ǫp − ǫm

ǫm + (ǫp − ǫm)αz
p

ǫ0ǫm

N
∑

j

~Ej (11)

Here Vp is the inclusion volume (for spherical inclusions Vp = 4πR3/3, R = σ/2, where

σ is the inclusion diameter). The free energy Fd of a single dipole ~µ0
p in the external field

~E, which is the energy needed to polarize a single inclusion along the z-axis, is defined

as

Fd = −
∫ E

0
µ0

pdE
′

= −1

2
Vp

ǫp − ǫm

ǫm + (ǫp − ǫm)αz
p

ǫ0ǫmE2

1 + (ǫm − 1)αz
m

(12)

From this expression we see that low Fd values, which are necessary for achieving

equilibrium polarized states, correspond to smaller depolarization factors αz
p and αz

m.

In other words, the macroscopic electrostatics effect indicates the feasibility of the

composite elongation along the applied field ~E. This effect depends on the initial

shape aspect ratio a/b of the host matrix and has been analyzed for ferrogels and

magnetosensitive elastomers in Refs. [28, 31, 32].

For the field Ep inside the inclusion, combining Eq.(1) and Eq.(7) we get

Ep = E
3

ǫp + 2ǫm

= Em
3ǫm

ǫp + 2ǫm

(13)

This field is smaller than Em for ǫp > ǫm. The partial expulsion of the Em from the

interior of the high dielectric constant particle increases the macroscopic field in the

vicinity of the inclusion. As a result, at high inclusion volume fractions, the average

macroscopic field Em in the host matrix should be modified to account for such local

field effects, Ẽm = Em (1 + γη) with some scaling coefficient γ. In the current setup

with η ≪1, local field effects are considered negligible.

2.2. Electrostriction Effects in Slab-shaped Composites with Spherical Inclusions

Electrostriction effects in composite materials are defined by the dipole-dipole

interaction forces ~Fji and by the torques ~τi of the electrostatic fields. For a slab-shaped

host matrix and spherical inclusions, putting αz
m = 1, and αz

p = 1/3, into Eqs.(9), (10)

and (11), for the dipole moment of inclusions we get

~µi
p = 4πǫ0R

3 ǫp − ǫm

ǫp + 2ǫm



 ~E +
N

∑

j

ǫm
~Ej(µj)



 (14)

Consequently, the polarization of the inclusion is

αp = 4πǫ0R
3 ǫp − ǫm

ǫp + 2ǫm

(15)
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Obviously, Eq.(14) cannot be used for other host polymer matrix shapes considered

in Refs. [30, 32, 44]. For the host polymer having a spherical geometry the dipole moment

~µi
p will be

~µi
p = 4πǫ0R

3 ǫp − ǫm

ǫp + 2ǫm





3ǫm

ǫm + 2
~E +

N
∑

j

ǫm
~Ej(µj)



 (16)

with an additional prefactor 3ǫm/(ǫm + 2) for the applied field E. Consequently, the

polarization of the inclusion will also change to

αp = 4πǫ0R
3 ǫp − ǫm

ǫp + 2ǫm

3ǫm

ǫm + 2
(17)

In other words, the polarization of inclusions depend on the geometry of the host matrix.

The induced electric field ~Ei(µ
i
p) of the inclusion i,

~Ei(µ
i
p) =

1

4πǫoǫm

1

r3
ij

(

3

r2
ij

(

~µi
p · ~rij)~rij − ~µi

p

)

)

(18)

defines the electrostatic force ~Fij between a pair of interacting inclusions

~Fji =
1

4πǫ0ǫ

3

r5
ji

(

(~µj · ~µi)~rji − 5
(~µi · ~rji)(~µj · ~rji)

r2
ji

~rji + (~µj · ~rji)~µi + (~µi · ~rji)~µj

)

(19)

where ~rji = ~ri − ~rj.

The orientation of dipoles is controlled by the torque created by the fields ~E and
~Ej,

~τi = ~µi× ~E + ~µi×
N

∑

j

~Ej (20)

For the case of induced dipoles, the second term in Eq.(20) is weak compared to the

first term,
N

∑

j

Ej/E ≈
(

8ǫmr3
)

−1
, where r denotes the distance between the inclusions

scaled to their diameter σ.

It should be noted that whereas the electrostatic effects described by Eq.(12)

always result in the composite elongation along the field direction, there is no

clear understanding on how the electrostriction effects described by Eq.(19) and

Eq.(20) contribute to the composite deformation. Obviously the reorientation and

rearrangement of induced dipoles depend on the morphology of their spatial distribution

in the host matrix.

For the case of induced dipoles ~µi ‖ ~µj ‖ ~E the pair interaction potential between

dipoles reduces to

Vij =
µiµj

4πǫ0ǫmr3
ij

(

1 − 3 cos2(θ)
)

(21)

The strength of the electrostriction is measured by the coupling parameter Γ,

Γ =
|Vij(rp)|

kBT
(22)
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where rp is the nearest neighbor distance between the dipoles, rp = (3/(4πρp))
1/3, with

ρp = η/Vp being the density of inclusions. For the case of induced dipoles homogeneously

distributed in the host matrix, a modified coupling parameter is introduced,

Γ =

〈

µiµj

4πǫ0ǫmr3
p

∣

∣

∣

∣

∣

1 − 3 cos2(θ)

kBT

∣

∣

∣

∣

∣

〉

θ

=
µiµj

8πǫ0ǫmkBTr3
p

(23)

where the angular brackets are for the averaging over all mutual dipolar configurations.

In the strong electrostriction regime Γ > 1 the dipoles ”connect” to each other through

their chaining along the field direction (this is the case for electrorheological fluids). In

the extreme regime Γ ≫ 1 the chains form a secondary structure by forming 2D lattices

in the lateral direction. A formation of such connected dipolar structures results in the

host polymer matrix deformation.

2.3. Maxwell Pressure and Mixing Rules

The actuation of the composite elastomer, together with the electrostatic and

electrostriction forces described above, has also a contribution from the Maxwell pressure

p = PmE (24)

which always contracts the composite in the field direction. Using Eqs.(3) and (4), the

pressure p is rewritten as

p = ǫ0E
2

(

1 − 1

ǫm

)

(25)

and the resulting Maxwell strain ΣM of the composite under the open circuit condition

is

ΣM = − p

Y
= −ǫ0E

2

Y

(

1 − 1

ǫm

)

(26)

where Y is Young’s elastic modulus of the host matrix. It should be noted that Eq.(26)

is derived from linear elasticity theory for the host matrix deformations, hence it is

applicable only to the cases of small strains Σz < 0.1 (in percentages this corresponds

to the strain values less than 10%). For moderate strains, 0.1 ≤ Σz ≤0.2, a modified

expression for the strain, instead of Eq.(26), should be used, see Ref. [16]. Under the

constant voltage boundary (or short circuit) condition with a reduced applied field E/ǫm

(in order to keep the total field in the inclusion the same as in the open circuit case),

Eqs.(25) and (26) take forms

p(V ) = DmEm = ǫ0ǫmE2
m (27)

and

Σ
(V )
M = −p(V )

Y
=

ǫ0E
2

ǫmY
(28)

The ratio of these two strains is

ΣM

Σ
(V )
M

= ǫm − 1 (29)
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If the host matrix permittivity is ǫm = 1, its Maxwell strain vanishes, ΣM=0, because

no polarization appears on the host matrix surface facing the vacuum. However, under

constant voltage condition, the attraction between oppositely charged electrodes will

squeeze the composite resulting in a nonzero strain Σ
(V )
M . For the particular case ǫm = 2

the two strains are equal to each other.

When the host matrix contains inclusions, the parameters Y and ǫm in Eq.(26),

and also in Eq.(28) should be treated as effective constants Ỹ and ǫ̃m derived from the

mixing rules. By using the Maxwell-Garnett equation for the spherical inclusions at the

volume fraction η = NVp/Vm, for the ǫ̃m we get [45, 46, 47, 48]

ǫ̃m = ǫm
2ǫm + ǫp − 2η(ǫ̃m − ǫp)

2ǫm + ǫp + η(ǫ̃m − ǫp)
(30)

The effective Young’s modulus of the composite can be approximated by the

Einstein’s mixing rule [24, 49, 50, 51]

Ỹ = Y + Y k1η + Y k2η
2 (31)

with k1 = 2.5 and k2 = 14.1.

2.4. Free Energy of Elastic Deformations of the Host Polymer Matrix

The strength of the composite deformation as a reaction to the electrostatic,

electrostriction and Maxwell forces is defined primarily by the Young’s modulus Y of the

host matrix. Under the incompressibility condition the composite with initial dimensions

L0
x, L0

y, and L0
z, attains new dimensions Lx, Ly, and Lz with Vm = LxLyLz = L0

xL
0
yL

0
z.

In the limit of small strains the free energy of the deformation is

Fd =
1

2

(

GxAyz

L0
x

∆L2
x +

GyAxz

L0
y

∆L2
y +

GzAxy

L0
z

∆L2
z

)

(32)

Here Gk for k = x, y, z are the shear moduli of the matrix, Aij = L0
i L

0
j for i, j = x, y, z

and i 6= j 6= k is the surface area of the non-deformed composite perpendicular to

the deformation direction k, and ∆Li = Li − L0
i is the deformation along the axis i.

We note that Eq.(32) is valid for a network of randomly jointed chains in the limit

of small chain extensions d ≪ nd0, where d is the chain end-to-end distance, n is the

number of joints for each chain in the host matrix, d0 is the bond length between

neighboring joints, and nd0 is the maximum extensibility of the chain. The probability

of d for randomly jointed chains with rigid bonds d0 is given by the Gaussian distribution

function [52, 53]. Within the Gaussian statistics the force-extension f(d) relation for a

single chain follows the Hookian-like linear relation f ∗(d∗) = 3d∗, where f ∗ is a rescaled

elastic force f ∗ = f(d)d0/ (kBT ), and d∗ = d/(nd0) is a rescaled chain extension. For a

more realistic representation of the elastic properties of the host matrix for the whole

range of the chain extensions, the Langevin chain statistics [52, 53, 54] should be used.

Within this approximation the entanglement of polymer chains are taken into account

by various network models, which are generally based on the non-linear force-extension

dependence f ∗(d∗) = L−1(d∗). Here L−1(x) denotes the inverse Langevin function [52].
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Simulation Study of the Electrostriction Effects in Dielectric Elastomer Composites containing Polarizable

The Gaussian chain statistics can be derived from the Langevin chain statistics if the

first linear term of the Taylor expansion for d∗ is retained. The addition of higher order

terms of d/d0 in the Langevin statistics results in higher elastic forces for the same chain

extension d∗. These elastic forces are usually approximated by the finitely extensible

nonlinear elastic (FENE) model [55, 56, 57]. In this paper we will use the Gaussian

chain statistics for its simplicity for the calculation of the host matrix free energy. A

calculation of the host matrix’s strain energy for different network entanglement models

can be found in Refs.[53, 54].

Assuming an isotropy for the shear modulus components, Gx = Gy = Gz = G, and

rewriting ∆L2
i /(L

0
i )

2 = l2i + 2(1 − li) − 1 where li = Li/L
0
i , Eq.(32) for the free energy

of elastic deformations per unit volume becomes

fd =
Fd

V0

=
G

2





x,y,z
∑

j

l2i − 3 + 2
x,y,z
∑

j

Σi



 (33)

Here the strain of the matrix is defined as Σi = li − 1. The Eq.(33) can be further

simplified taking into account lz = 1/(lxly), or 1 + Σz = 1
(1+Σx)2

≈ 1 − 2Σx, and thus

Σx = Σy = −Σz/2. Therefore we have

fd =
G

2





x,y,z
∑

j

l2i − 3 − Σz − Σz + 2Σz



 =
G

2





x,y,z
∑

j

l2i − 3



 (34)

The shear modulus G and the Young’s modulus Y of the composite are related as

Y = 2G (1 + ν) (35)

where ν is the Poisson’s ratio. Assuming a rubber-like elasticity for the host polymer,

and putting ν ≈ 0.5 into Eq.(35), we get Y = 3G. For the free energy of the elastic

deformation per unit volume we have

fd =
Y

6

(

∑

i

l2i − 3

)

(36)

This elastic energy will be used to predict the elastic constant χ of the spring-bead

based simulation model.

3. Simulation Model for Composites

The elasticity of the host polymer matrix can be modeled at different coarse-grained

levels. At the highest level of coarse-graining a full-atomistic model with a well-defined

force-field for the host polymer can be used. At the medium level of coarse-graining

several host polymer atoms are grouped into blobs for which the partial charges and

modified force field parameters are necessary to develop. Finally, within the lowest level

coarse-graining the host matrix is replaced by effective elastic springs connecting some

selective nodes of the polymer. In this case the elastic constant of springs needs to be

tuned for matching the Young’s modulus of the coarse-grained model to the Young’s
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Simulation Study of the Electrostriction Effects in Dielectric Elastomer Composites containing Polarizable

Figure 2. (Color in online) Schematic representation explaining our simulation model.

For clarity a 2D simulation cell is shown. The inclusions of diameter σ are shown in red

in the main cell, and in green in the periodic images of the main cell, which are shown

as a hatched area. Each inclusion is connected to nb nearest neighbors by springs: for

clarity this is shown just for one inclusion i in the center of a circle (blue in online)

which encloses nb=7 neighbors. The inclusions have induced dipole moments ~µ shown

as red arrows. Each inclusion electrostaticly interacts with all inclusions in the main

cell, and with all their images in neighboring cells (note that only a part of periodic

images are shown).

modulus of the full atomistic model, or to the real material. The lowest level of coarse-

graining allows to simulate the actuation of larger systems consisting many inclusions

with diameters in the range between σ=100 nm and σ=100 µm.

In the following we consider N hard sphere inclusions spatially distributed in the

bulk of of the host matrix of volume Vm. The homogeneous distribution of inclusions

is created by their random insertion into the host polymer matrix. For the non-

homogeneous distribution of inclusions they are placed at the regular lattice sites. Such

regular composites, depending on the type of the lattice structure, are referred as the

SC, BCC, and FCC composites. Each inclusion is connected by elastic springs to its

nb nearest neighbors, as shown in Figure 2. The resulting dipole-spring model was also

recently used in the context of ferrogels [58, 59, 60]. For the regular lattice composites

the nearest neighbors are chosen from the closest coordination shells. For the random
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Simulation Study of the Electrostriction Effects in Dielectric Elastomer Composites containing Polarizable

composite the nearest neighbors are taken from the list of the first nb closest particles.

All springs are assumed to have the same elasticity constant χ. The lattice structure

of the inclusion distribution is periodically extended in all three directions. It should

be noted that our simulation model in the limit of χ → 0 decouples the elastic and

electrostatic interactions allowing to go to the regime of electrorheological liquids.

When an external field ~E is applied along the z-axis, which coincides with the [001]

direction of the lattice structures, the long-range interaction between the induced dipoles

is handled using Ewald’s summation technique [61, 62, 63] with a correction for the

rectangular shape of the simulation cell [64]. Test simulations with direct summations

over the 100 neighboring image cells produced results similar to Ewald’s summation

with a difference between these two methods less than 0.01%. Direct summation of

the dipolar interactions can also be speeded up using the dipole–(infinite)chain and

(infinite)chain–(infinite)chain interaction potentials [65].

Our set-up corresponds to simulating the bulk volume of the host matrix, assuming

that the system boundaries in the [001] direction are far away. Omitting the boundaries

is necessary for getting a true long-range electrostatic contribution to the dipole-

dipole interactions between the inclusions. Therefore, considering a bulk system with

periodically repeated images in all three directions makes it possible to get reliable

actuation results with a modest number (up to 10,000) of inclusions in the system.

The option of taking the system boundaries explicitly into account demands excessive

simulation efforts. For example, a composite elastomer of a volume 1 mm3, with

particles of a diameter σ=200 nm distributed in its volume at very low volume fraction

η=0.005, hosts almost 1010 inclusions. Simulation of such huge amount of dipoles even

on parallelized clusters is an utterly time consuming process.

It should be noted that in the 3-0 composite materials initially poled under

sufficiently strong fields, heterocharges and homocharges can be trapped at the interface

between the dielectric inclusions and the elastomer matrix. Such trapping basically

results in the enhancement of the piezoelectric coefficient of composite materials

[66, 67, 68, 69, 70, 71, 72]. In our set-up the role of trapped charges, as a first

approximation, can be comprehended through the calculation of the remnant dipole

moment ~µt of the particle-charges complex under a zero field E = 0. In the following,

~µt should be added to the induced dipole moments ~µi
p(E) of inclusions given by the

Eq.(14). This will result in the shifting of Σz(E) [70, 71, 72], and in the hysteresis of

the polarization-field curve [73]. For realizing the precise role of the trapped charges, a

more sophisticated model should be used, which is not the scope of this work.

Another issue is the altered characteristics of the polymer matrix in the vicinity

of particles because of the particles-polymer bonding. Within the particle-polymer

interphase both the dielectric permittivity ǫm and the Young’s modulus Ym of the

polymer have enhanced values compared to their bulk values [74]. Therefore, a more

appropriate core-shell particle model is required for the correct calculation of the 3-0

composite actuation [75]. However, the difference between the core-shell and bare-core

(used in current work) models is expected to be negligible when the surface-to-surface
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Simulation Study of the Electrostriction Effects in Dielectric Elastomer Composites containing Polarizable

distance between neighboring inclusions is much larger than the doubled shell thickness.

If this condition is met, and also provided that the volume fraction of the shell is much

smaller than η, the shell region effectively can be considered as a part of the inclusion

volume. Otherwise, the core-shell model should be strictly implemented [76]. For η ≈
0.01 used in the current set-up, and for particles of radius R=100 nm, the average

surface-to-surface distance between neighboring particles is about 600–1000 nm, which

is at least two orders of magnitude larger than the typical shell thickness of a few (2–

5) nanometers. Therefore, for the current set-up the bare-core particle model can be

assumed as a reliable approximation. Additionally, the non-polar nature of the host

matrix blocks the polarization gradient from the inclusions into the host matrix [74],

which makes the changes to the computed electrostriction effects negligible.

3.1. Evaluation of the Young’s Modulus of the Host Polymer Matrix from Simulations

The elasticity parameter χ of the spring-bead model invoked in our simulations defines

the Young’s modulus of the simulated system. To get a good matching between the

simulation predicted Young’s modulus and the Young’s modulus of the real composite

material, we run a few test simulations with different fitting prefactors χ. The simulated

energy of elastic deformations per unit volume is

K =
1

2V

x,y,z
∑

i

χ∆r2
ij (37)

Here ∆rij = |~rij − ~r0
ij| is the bond length deformation between the inclusions i and j.

Then, equating the energy K to the energy of elastic deformations given in Eq.(36), we

identify the correct χ for which the simulation predicted Young’s modulus

YMD =
3χ

V

x,y,z
∑

i

∆r2
ij

x,y,z
∑

i

l2i − 3

(38)

is equal to the composite modulus Y , YMD = Y .

A guess value for the parameter χ can be roughly estimated using the following

analytical procedure. At small strains, assuming that all free energy components in

Eq.(32) are the same, and accepting G = 3Y , for the free energy of elastic deformations

we get

Fd =
Y V

2
(Σz)

2 (39)

Thus, the energy per inclusion is

f z
N =

Fd

N
=

Y

2ρp

(Σz)
2 (40)

This energy is equal to the spring energy between a pair of dipoles i and j,

Eelastic =
1

2
χ(rij − r0

ij)
2 =

1

2
χ (Σz)

2 (r0
ij)

2 (41)
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Simulation Study of the Electrostriction Effects in Dielectric Elastomer Composites containing Polarizable

Hence, from Eq.(40) and Eq.(41), and using the nearest-neighbor distance r0
ij =

(

3
4πρp

)1/3
, for the effective spring constant we have

χ =
Y

ρp(r0
ij)

2
=

4π

3
Y r0

ij (42)

Test simulations with χ predicted by Eq.(42) produced YMD ≈ Y within an accuracy of

3% . Hence, the knowledge of r0
ij is enough for getting a fairly good guess for the spring

constant of our spring-bead model. We also note that for the case of regular lattice

composites the parameter r0
ij in Eq.(42) can be replaced by the lattice constant rp.

It should be noted that the current simulation model for the composite, beside of

having elastic properties discussed in this section, also maintains a bulk viscosity υ.

If the applied field is cyclic, Ez(t) = E0e
iωt, then the viscosity υ of the composite

can be defined from the rate of the composite response along the applied field,

υ = P µ
z Lz/(dLz/dt) [77, 78, 79]. Here P µ

z is a stress created by the electrostatic forces

Fji defined in Eq.(19). Because the forces Fji are induced by the field Ez(t), the viscosity

υ also depend on Ez(t). For the calculation of υ(Ez) a different set-up with a free surface

is needed in order to measure dLz/dt directly from the displacement of the boundary

layer. Then, depending on the value of ωτc, where the composite relaxation time τc and

the bulk viscosity υ is connected through the Debye-Stokes-Einstein relationship [80],

it is possible to estimate the energy dissipation and actuation hysteresis effects in the

composite. For a zero field Ez=0, the deformation rate dLz/dt of the composite can be

evaluated by applying an external mechanical perturbation Pz directly to the composite

boundary (or to the opposite boundaries of the slab polymer). In current set-up we

are interested only in the response Σz of the bulk composite to static loads Pz(Ez) for

Ez=const, therefore the issue of viscosity is out of scope of current consideration.

4. Simulation Details

The calculation of the composite actuation relies on the resolving of the field-

induced pressure components from the elastic deformations of springs and from the

dipolar interactions between the inclusions. The pressure components can be directly

determined from the corresponding force virials. For the latter the best suited method

is Molecular Dynamics simulation. We used NVT ensemble Molecular Dynamics

simulations with a Verlet algorithm and a Nose thermostat to access the actuation strain

of the composite with polarizable inclusions. N nanosized particles of diameter σ=200

nm at the volume fraction η=0.0083 were distributed in the bulk of the host elastomer

matrix. For the case of regular lattice composites, the lattice constants of the particle

distributions are rp=(γVp/η)1/3, where the parameter γ takes values 1, 2, and 4 for the

SC, BCC, and FCC composites correspondingly. For the case of random (homogeneous)

particle distribution, the nearest- neighbor length scale is defined as rp=0.554(Vp/η)1/3

according to Ref. [81]. Each inclusion is attached by springs with spring constants

χ to its nb nearest neighbors. For the SC composite nb=14 and includes 6 nearest
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neighbors from the first coordination shell of radius rp, and 8 neighbors from the second

coordination shell of radius rp

√
2. In the BCC composite each particle is connected to

its 8 neighbors from the first coordination shell of radius rp

√
3/2, and 6 neighbors from

the second coordination shell of radius rp, thus making the total nb=14 again. For the

FCC composite we used nb=12 nearest neighbors in the first coordination shell of radius

rp/
√

2. Schematically the spring-bead model for these composites is shown in Figure 3,

where blue-colored springs attach the chosen bead (colored blue) to its neighbours in

the first coordination shell, and pink-colored springs attach it to its neighbours in the

second coordination shell.

Figure 3. (Color in online) Schematic drawing showing details of the spring-bead

model used for the SC, BCC, and FCC composite structures. Blue-colored springs

attach the chosen blue-colored bead to its neighbours in the first coordination shell,

and pink-colored springs attach it to its neighbours in the second coordination shell.

Note that for the SC composite in the left picture and for the FCC composite in the

right picture only the attachment to the neighbours belonging to the single cell are

shown. For the BCC composite in the central picture the pink springs to the second

coordination shell particles are shown partially in the single cell. The green spheres in

the FCC composite represent the inclusions in the middle points of the cell faces.

Finally, for the random distribution we chose the first nearest nb=14 neighbors for

each inclusion. A 3D view of the simulation setup for the case of BCC composite with

N=1024 particles is shown in Figure 4a.

Nearly all experimental studies [33, 34, 35, 36, 37, 38, 39, 40, 41, 42] were done

for high k inclusions randomly distributed in electrostrictive polymers, for which an

enhancement of the contracting deformation is observed at fields up to 20 MV/m. In

our current model we omit the electrostriction of the host matrix, assuming that it has

a non-polar molecular structure. In other words, for a pure host matrix, assuming that

the inclusions are a part of the host polymer, putting ǫp = ǫm in Eqs.(10) and (11)

will result in µi=0 and Fij=0. The actuated performance of pure polymer is defined by

the Maxwell strain ΣM in Eq.(26). Our aim is to investigate composite deformations

generated by the electrostriction effect of the dipolar inclusions. To get larger strains we

apply stronger fields, 250 MV/m rather than the 20 MV/m in experiments, and consider

a more elastic host polymer, the Young’s modulus 0.1 MPa as compared to 0.5–3000 MPa

in experiments. Because our own experiments with similar to the simulated composite
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Figure 4. (Color in online) Snapshots of the bead-spring model used for the

BCC composite under the applied field E = 250 MV/m. Left picture - the initial

configuration at the simulation time t=380 ps, right picture- the final configuration at

the simulation time t=100µs. Pink arrows represent the dipole moments of inclusions.

Different bead colors correspond to the altitudes of the beads from the bottom plate

x=0. Springs are colored in green.

parameters are in the preparation stage, it is not yet possible to compare our simulation

results with the experimental data.

The amplitude of the applied field E has an upper limit because of the clamping

instability in dipolar systems at high fields. The value of the critical field Ec is analyzed

in A.

The evolution of the stress-free initial system with E=0 to a new state with

balanced electrostatic and elastic forces was controlled by the equivalence of the pressure

components in all three directions. The pressure was calculated using the force virials

P =
1

3V

N
∑

j>i

~rji · ~Ξji = Px + Py + Pz (43)

where the forces ~Ξij between the particles i and j (the force acts on the particle i from

the particle j) include both the electrostatic forces ~Fji given by Eq.(19) and the elastic

forces

~F elastic
ji = χ (rp − rij)

~rji

rji

(44)

Here ~rji = ~ri − ~rj, and for the elastic forces the summation in Eq.(43) goes over the nb
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neighbors of the inclusion i. The pressure components in Eq.(43) are defined as

Pk =
1

3V

∑

j>i

~kji · ~Ξ(k)
ji (45)

for k = x, y, z. The equivalence of the pressure components Pk implies Px = Py = Pz,

or

Pz = Pxy =
Px + Py

2
(46)

During simulations this equivalency condition was implemented according to the

protocol given in B.

5. Simulation Results

All simulations were carried using a time step h=380 ps and an equilibration time

∆τ=380 ns. The time for gathering the statistics was ∆t= 38 ns. The following

parameters for the host matrix and inclusions were considered: ǫp=100, ǫm=2, Y =0.1

MPa , and η = 0.083. Putting these values into into Eqs.(30) and (31) we get for the

composite ǫ̃m=2.06 and Ỹ =0.103 MPa. Then, according to Eq.(26) the Maxwell strain

will be

ΣM = 4.42 × 10−17
(

m

V

)2

· E2 (47)

where E is the amplitude of the applied field given in [V/m] units. Whereas our setup

does not explicitly include the Maxwell pressure acting on the surface of the whole

composite membrane, we assume that the strain calculated for the simulation box will

be the same for the whole membrane, and therefore, its strength should be compared

with the Maxwell strain.

The lattice constants rp for the regular particle distributions are: SC- 4σ, BCC-

5σ, FCC- 6.3σ. The critical field Ec, defined in A, for the system setup from Eq.(A5)

is about Ec ≈ 500 MV/m. We used twice weaker fields E=250 MV/m for the maximal

applied field.

In Figure 5 we show the evolution of the pressure components Pz and Pxy during

the simulation time for the FCC composite at E=200 MV/m. At the initial time t = 0,

when a stress-free composite is put under external field E, the dipole-dipole interaction

between the inclusions attempts to elongate the composite along the z-axis direction

making Pz > Pxy. For balancing these two components, the system size is increased

along the z direction with simultaneous decreasing of its lateral dimensions. This leads

to the drop of the pressure component Pz and to the rise of the pressure component

Pxy. When the two pressure components reach the same value, the composite enters

into a stable polarized state. The time resolved evolution of the composite strain is

shown in Figure 5. Following the drop of the pressure component Pz the strain linearly

increases and reaches its equilibrium value Σz= 12% at which the difference between the

pressure components becomes zero. The small fluctuations of the strain Σz around its

equilibrium value is related to the amplitude of the size increment δ of the simulation
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box size Lz. Even at the equilibrium state, the balance between the pressure components

in the composite is tested by random attempts to change the composite thickness by

δ. Decreasing the value of δ will decrease the amplitude of fluctuations in Σz, however

it will increase the simulation time needed for the composite to reach the equilibrium

state.

5.1. Actuation of the SC, BCC, FCC, and Random Composites

Calculated strains for composites with different particle distributions as a function

of the applied field E are collected in Figure 6. Negative strains in this figure

mean a contraction, and positive strain means an elongation of the composite. The

homogeneous (random) distribution of inclusions provides the strongest contraction with

Σz reaching almost -50% at E = 250MV/m. The SC distributed inclusions also generate

sufficiently strong negative strain. At the same time other regular lattice composites

reveal an elongation, with the BCC composite having a stronger response than the

FCC composite. Note that in the regular lattice composites with non-zero strains the

following transitions take place: SC to simple tetragonal lattice, BCC to body-centered

tetragonal (BCT) lattice, and FCC to face-centered tetragonal (FCT).

The contraction of the random composite can be understood using the following

analytical approach. Let us assume that an inclusion i is wrapped by an fictitious shell of

radius rp and thickness δr. There are Ns = 4πr2
pδrρp dipoles homogeneously distributed

in this shell. The force between the central dipole i and the dipole j from the shell,

which is given by Eq.(19), can be rewritten as

~Fji(r) =
1

4πǫ0ǫm

3µ2

~r 4
ji

[(

1 − 5 cos2 θ
)

~e~rij
+ 2 cos θ ~e~µ

]

(48)

for the case of aligned dipoles ~µi ‖ ~µj ‖ ~z. Here θ is the angle between the ~rji (directed

from j to i) and the axis ~z, µ is the amplitude of ~µi = ~µj, and ~e~rji
and ~e~µ are unit

vectors along the separation distance and dipole moments correspondingly. We calculate

spherically averaged force components ~Fji~ez

〈

~Fji~ez

〉

θ
= A

[

∫ π/2

0

(

1 − 5 cos2 θ
)

cos θ + 2 cos θ cos θ

]

ρ(θ) sin θ dθ (49)

and ~Fji~exy,

〈

~Fji~exy

〉

θ
= −A

[

∫ π/2

0

(

1 − 5 cos2 θ
)

sin θ

]

ρ(θ) sin θ dθ (50)

in the upper hemisphere 0 < θ < π/2. Here ~ez is a unit vector along the z-axis, and

~exy is a unit vector perpendicular to the applied field and directed from the central

dipole i outwards to the shell particles. Note that the averaging over 0 < θ < π in

Eqs.(49) and Eq.(50) might lead to the mutual cancellation of the force components in

the upper and bottom hemispheres). The function ρ(θ) in Eqs.(49) and Eq.(50) is the

angular dependence of the dipole distribution, and the prefactor A = 3
2

µ2

ǫ0ǫm
~r 4

ji has no
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Figure 5. (Color in online) Upper figure: the Pxy and Pz components of the total

pressure calculated from the virials of the electrostatic ( Eq.(19)) and elastic (Eq.(44))

forces, as a function of the simulation time. Red solid line is for Pxy, and dashed blue

line is for Pz. Bottom figure: The evolution of the composite strain. Other system

parameters are: E=200 MV/m, a FCC composite, η = 0.0083.

θ dependence. By putting ρ(θ)=1 for the uniform distribution of dipoles valid for the
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Figure 6. (Color in online) Deformation of the composite under the applied field E

oriented in the [001] direction for the parameters Y =0.1 MPa, ǫp = 100, ǫm = 2. Four

different spatial distributions for the inclusions are used: BCC- red line with squares,

FCC- blue line with circles, SC- black line with triangles, and random distribution-

pink line with stars. Whereas the BCC and FCC composites elongate, the SC and

random composites contract. Green dashed line represents the Maxwell strain ΣM

given by Eq.(47).

random composite, we have
〈

~Fji~ez

〉

θ
= A

[

−1

2
cos2 θ +

5

4
cos4 θ

]π/2

0
= −3

4
(51)

〈

~Fji~exy

〉

θ
= −A

[

−θ

8
− sin(2θ)

4
+

5

32
sin(4θ)

]π/2

0

=
π

16
(52)

The negativity of
〈

~Fji~z
〉

θ
means shell contraction along the z-axis. A positive value of

〈

~Fji~exy

〉

θ
corresponds to the repulsion of the shell particles from the central dipole i in

the lateral direction. Thus, a combined result of these two terms is a net contraction

of the random composite along the applied field E. This pure dipolar argument defines

the electrostriction effect in the random composite. For finding the total composite

actuation the contribution from elastic springs should also be calculated.

Using similar arguments it is possible to comprehend the contraction of the SC

composite. In this case the angular averaging in Eqs.(49) and Eq.(50) should be done

over angles φ and θ, and the dipolar distribution in the shell ρ(φ, θ) a sum of the

Dirac functions ρ(θ, φ) = δ(θ)δ(φ) +
3

∑

i=0

δ(θ − π

2
)δ(φ − i

π

2
) should be used. However,
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the simplest way to evaluate the composite actuation is to use the expression for the

interaction between a pair of parallel dipolar chains per particle [65] (we show here the

leading term of the interaction)

Ucc(r, z) =
2πµ2

ǫ0ǫmr3
p

√

rp

r
e
−

2πr
rp cos

2πz

rp

(53)

Here r is the chain-chain separation distance, z is the vertical shifting parameter, and

the energy is scaled per particle. In the SC composite with its [001] orientation being

parallel to the applied field, each chain of dipoles has four nearest chains of the same

orientation with r = rp and z=0. For this case the interaction potential Ucc > 0 and

the neighboring chains are repelled from the central chain. Such lateral repulsion in the

SC composite results in its contraction in the ~z direction.

For the BCC and FCC composites, each dipolar chain is also surrounded with its

four nearest chains at separation distances r=rp/
√

2 and r=rp/2 correspondingly, with

z=rp/2 for both composites. Putting these values into Eq.(53) we get Ucc < 0 for the

BCC and FCC composites. Such lateral attraction in the composite is equivalent to the

elongation in the longitudinal direction.

In Figure 6 we also show the contribution from the Maxwell strain in Eq.(26). This

strain appears to be more than twice stronger than the electrostrictive strain of the

composites for the current system parameters. As it has been discussed in section 2.3,

at large strains the linear approximation should be replaced by the modified theory

given in Ref. [16] which predicts smaller strain values. Therefore, the Maxwell data at

the applied field E >50 MV/m overestimates the true strain of the material. At the

same time, at low fields E <50 MV/m, the Maxwell data can be assumed reliable. It is

stronger than other strains in that area. Obviously, for larger inclusions with a higher

dielectric constant, which will result in a much stronger dipolar interaction between the

inclusions, the positive strain of the BCC and FCC composites will be stronger than the

Maxwell strain. The latter very weakly depends on the size and dielectric constant of

particles, mainly through the mixing rules Eq.(30) and Eq.(31). Note also that for ǫm=2

considered for the host matrix, the Maxwell strain for the constant voltage condition

given by Eq.(28) coincides with the strain shown in Figure 6.

The effect of the inclusion packing fraction η on the composite actuation is analyzed

in Figure 7 on the example of the BCC composite. The increase of η enhances

the composite actuation because of the stronger dipole-dipole interaction at smaller

separation distances. However, it should be noted that at high η the effective composite

elasticity constant Ỹ given by Eq.(31) might become big enough resulting in a weakened

composite actuation.

5.2. Lattice Randomness Effects on the Composite Actuation

We now investigate how the deviation of the inclusion position from the true lattice

sites might alter the composite actuation. Such spatial distribution defects always exist
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Figure 7. (Color in online) Deformation of the BCC composite under the applied

field E. Other system parameters are: Y = 0.1MPa, ǫp = 100, ǫ = 2, η = 0.0083 (red

line with squares) and η = 0.064 (blue line with circles).

in experimental studies. The imperfectness of the spatial distribution of inclusions {~rj}
can be estimated by the randomness parameter

δ =
1

Nσ

N
∑

j

|~rj − ~r0| (54)

where ~r0 denotes the positions of the lattice sites. For each randomness parameter δ we

generate a sphere of radius δ around each lattice site and assign a random point from its

surface to the inclusion position. Simulation results for the actuation of the SC, BCC,

and FCC composites are shown in Figure 8. We see that, as the parameter δ increases,

the strength of elongation of the BCC and FCC composites gradually fades away and

at about δ ≈ 0.8 reverses to a complete contraction.

The behavior of the SC composite in Figure 8 stands separate from the monotonic

behavior of the BCC and FCC composites. The contraction of the SC composites

first weakens by going up to smaller -Σz values, and then enhances going back to

the higher -Σz. Such nonlinear behavior is a consequence of the fact that in the SC

composite the dipolar chains have maximal mutual repulsion because of the zero shifting

along their ~z positions. Therefore, any non-zero shifting z brought by the randomness

parameter δ into the chain positions will definitely decrease the chain-chain repulsion in

Eq.(53), or equivalently, weaken the composite contraction. For larger δ the simulated

systems behave like a random composite, and thus the actuation of all regular lattice
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composites approaches the random composite strain value of about 50% (see the pink

line in Figure 8.
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Figure 8. (Color in online) Dependence of the composite strain Σz on the randomness

parameter δ for the SC, BCC, and FCC composites. Other parameters are: E=250

MV/m, Y = 0.1MPa, ǫp = 100, ǫm = 2, and η = 0.0083.

5.3. Actuation of Distorted Lattice Composites

We now examine how the initial distortion of the lattice structure of the inclusion

distribution alters the composite actuation. For this purpose we fix the packing fraction

of inclusions to η = 0.0083, and change the ratio of the lattice constants ℓ = c/a, where

c is the lattice constant of the regular lattice in the ~z axis direction, and a is the lattice

constant in the x and y directions. In all cases we limit ourselves to the consideration

of symmetric distortions of the initial structure in the xy plane. In other words, instead

of starting with SC, or BCC, or FCC lattice composites with ℓ = 1, we chose different

simple tetragonal, BCT and FCT lattice composites with 0.4 < ℓ < 2.5 as the starting

configuration for the composite.

The calculated electrostatic energies Vij per particle, given by Eq.(21), for the

distorted SC, BCC, and FCC composites are plotted in Figure 9 for an applied field

of E=1 MV/m. At low distortion ratio ℓ of the initial structure, which corresponds
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Figure 9. (Color in online) The calculated total electrostatic energy per particle

Uel = 1

N

N
∑

ij=1

Vij for the distorted SC, BCC, and FCC composites with η = 0.0083 as a

function of the distortion ratio of the initial structure ℓ = c/a. Applied field is E = 1

MV/m.

to a configuration of dipolar chains separated by a distance larger than the separation

between the intra-chain dipoles, the main contribution to the electrostatic energy comes

from the intra-chain dipole-dipole attractions. That is why all the energy curves in

Figure 9 have negative values at low ℓ. At high ℓ values, which correspond to the

configuration of dipolar sheets (2D plates) separated by a distance larger than the inter-

sheet separation between the dipoles, the main contribution to the electrostatic energy

stems from the intra-sheet dipole-dipole repulsion. This is seen as the upward increase

of energy curves in Figure 9 at large ℓ. Between these two extreme cases for ℓ the

electrostatic energy for the BCC and FCC composites has nonmonotonic dependence

on ℓ. The energy curve for the BCC composite has a maximum at ℓmax=0.7664 and

a minimum at ℓmin=1.6565. For the FCC composite these values are ℓmax=0.5637 and

ℓmin = 1.241 correspondingly. The position of ℓmax corresponds to a metastable state,

and any small deviation, either elongation or contraction of the initial system, from

this position will be energetically favorable. An opposite behavior is expected for the

system with a distortion ratio of the initial structure ℓmin. In this case the composite
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stays forever at this position, because all other states in its vicinity are unfavorable and

thus will try to elongate, or contract, depending on which side of ℓmin they are standing,

for reaching the ℓmin state.

To further analyze the meaning of ℓmax and ℓmin in Figure 9, we compare their

values with the stability points of hard sphere dipolar systems and electrorheological

fluids [63, 64, 65, 82, 83, 84]. For systems with permanent dipoles, it is known that as

the dipole moment of spheres increases, the ground state of the system changes from the

apolar BCC lattice structure to a polarized BCT lattice structure. The lowest energy for

the BCT structure happens at the size ratio c
a
=

√

2
3
=0.817, with c = σ corresponding to

the case of touching dipoles along the ~z axis. The [110] plane of this BCT has a triangular

lattice with the lattice constant c, and the cell is polarized in the perpendicular to this

plane direction. A similar BCC-BCT behavior is also observed in electrorheological

colloidal suspensions [65, 83, 85]. Here the BCT structure is also composed of touching

dipoles along z direction with c = σ, and the size ratio is c/a=0.817. This value is

larger than our result ℓmax = c/a = 0.7664 because of the following reasons. First,

the implemented constant cell volume condition r3
p = ca2 implies that for the BCT

with c = σ the size ratio is ℓ =
(

σ
rp

)
3

2 and depends on the initial lattice constant rp.

For rp = 5σ used for the BCC composite, the size ratio for which a stable BCT with

touching dipoles exists is ℓ = 0.09. This value is much smaller the value ℓ = 0.817 which

corresponds to the BCT deformation of the BCC lattice with rp=1.1547 σ. Second,

whereas the BCT of hard sphere dipolar system and electrorheological colloids is stable

at ℓ=0.817, our BCT with ℓ=0.7664 is unstable as discussed above.

A detailed analysis of the curves shown in Figure 9 reveals several other interesting

observations:

i) for a given distortion ratio of the initial structure ℓ=c/a the BCC structure is always

more stable than the FCC structure.

ii) the random distribution of inclusions is not always the structure with minimal energy

per particle. The polarized BCC phase is more favorable in the region 1.5 < ℓ < 2, and

the SC composite is favorable for ℓ < 0.85.

iii) all regular lattice structures have very small negative values at ℓ=1. The rescaled

energy per particle Uel(ℓ) = 4πǫ0ǫmσN−1
N
∑

ij=1
Vij(ℓ)/e

2 is -3.16×10−3 for the FCC lattice,

-1.52 ×10−2 for the BCC lattices, and -3.05 ×10−2 for the SC lattice.

It is evident that electrostatic energy curves are useful for predicting the response of

the composite to external fields. We introduce the so-called Polarization Driven strain

ΣPD, defined as the derivative of the electrostatic energy over the distortion ratio of the

initial structure,

ΣPD = −dUel(ℓ)

dℓ
(55)

This quantity is plotted in Figure 10, together with the calculated strain of the distorted

structures.

There is a good qualitative agreement between the simulated Σz and polarization-
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Figure 10. (Color in online) Deformation of the BCC (a), FCC (b), and SC (c)

composites as a function of the distortion ratio ℓ = c/a of the initial structure. Line

with symbols- simulation results, full line- the prediction of the Polarization Driven

strain in Eq.(55). Other parameters are: E = 250MV/m, Y =0.1 MPa, ǫp = 100,

ǫ = 2, η = 0.0083. (a)- BCC, (b)-FCC, (c)- SC.

driven ΣPD strains for the regular lattice composites. For the BCC and FCC composites

both strains, Σz and ΣPD, have a window of elongation and both strains cross the

zero-strain line at the same distortion points. These crossing points correspond to

the extremes of the electrostatic potential show in Figure 9, and thus have different

natures. The crossing point on the left of the maximum in Figure 10a and Figure 10b,

are metastable points, and the crossing point at the right side of the maximum Σz is the

stability point. The nature of the crossing points can also be recognized from the slope

of lines tangent to the strain curves at these points. A steeper slope usually indicates
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metastability of the corresponding point.

The strain results reported in Ref. [28] for the distorted BCC composite only

covers the metastable area around ℓmax where a negative-to-positive strain transition

is observed similar to our finding. In that sense our results cover a wider range of

the distortion ratio of the initial structure and predict the existence of the second

crossing point. The position of the maximum of Σz for the BCC composites is around

ℓBCC ≈ 1, and for the FCC composite is around ℓFCC ≈ 0.75. The ratio of these two

positions, ℓFCC/ℓBCC ≈ 1/
√

2 corresponds to the martensitic transition FCC-BCC, when

the shrinking of FCC lattice along its [001] direction
√

2 times transfers it to a BCC

lattice.

The SC composite experiences a contraction for all distortion ratios ℓ of the initial

structure. However, there is a noticeable local maximum at ℓ ≈1.4. We believe that

the non-monotonicity of the strain stems from the two different contributions to the

electrostatic energy: the intra-chain attraction along the ~z axis, and the chain-chain

repulsion in the lateral direction. These contributions have different dependence on the

distortion ratio of the initial structures ℓ: the intra-chain attraction decreases as 1/ℓ3,

whereas the chain-chain repulsion decreases as
√

ℓ at large ℓ.

6. Guidelines for Experimental realization of theoretical predictions for the

composite actuation

We anticipate that the realization of ordered inclusion distributions is not an easy

task in experimental studies. For achieving ordered lattice structures or uniform

particle distributions in experiments, the concept of polymer-grafted nanoparticles can

be implemented [5]. The nanoparticles can be also charged to facilitate their aggregation

into ordered morphologies at elevated temperatures before freezing their positions at

room temperature.

The chosen dielectric permittivity and elasticity parameters for the host matrix

are close to the corresponding parameters of the Very High Bond acrylic elastomer

(3M VHB), which has ǫm=4.7, Y =0.5 MPa, and of the styrene-(ethylene- co-butylene)-

styrene triblock copolymer (SEBS), which has ǫm=2, Y =1 MPa. Smaller Y in

simulations provides larger actuation strains and thus a better resolution between

different types of composite actuations. Whereas the molecular weight and the internal

structure of the polymer are not directly accounted for in our simulation model, the

following two assumptions are made on them: (i) the polymer molecule has no molecular

dipoles, and (ii) the molecules form a mesh network with homogeneous structure in all

directions. The first assumption guarantees that the applied fields does not infer any

structural changes to the polymer molecules and thus no internal electrostriction effect

takes place. The second assumption is necessary for using the same spring-constant χ

for all connecting springs in our spring-bead model.

According to our simulation results, a better choice for the host matrix is an

elastomer with low Young’s modulus Y . The choice for ǫm and for the dielectric
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contrast parameter ǫp/ǫm depends on the actuation purpose of the composite. If the

composite is intended to have enhanced Maxwell-type contractions, then both ǫm and

ǫp/ǫm should be large, and the particles have to be randomly distributed, or to follow

the SC spatial distribution. In the opposite case, if the composite is designed for having

large elongations along the field, then ǫm should be small for the getting low Maxwell

stress values, whereas the contrast parameter ǫp/ǫm should be large. Additionally, for

this case the spatial distribution of particles should strictly follow either the BCC or

the FCC structures. For the further optimization of the composite parameters, current

research should be expanded to elaborate the role of the particle size R and its volume

fraction η.

7. Concluding Remarks

We have shown that the electrostriction effect, which is a significant contribution to the

actuation of low aspect-ratio composites, strongly depends on the spatial distribution

of inclusions. Whereas the composites with homogeneously (randomly) distributed

inclusions always contract along the applied field, the actuation of regular lattice

composites depends on their lattice structure: the SC composite always shrinks, but

the BCC and FCC composites show a net elongation response along the applied field

oriented parallel to the [001] direction of the lattice.

The elongation of the BCC and FCC composites was additionally examined against

the defects in the lattice structure of the spatial distribution of inclusions. We show

that at large defects, measured by randomness parameter, the elongation of the BCC

and FCC diminishes and switches to a net contraction. Similar effects are observed

for initially distorted lattices with the distortion ratio parameter ℓ 6=1. Here we detect

the existence of an elongation window, inside which the BCC and FCC composites

experience an elongation, and beyond which the composites contract. It should be

noted that the elongation window reported by Zubarev et al [30, 31] and Morozov et al

[32] are different from our findings. Both groups explicitly considered the dependence

of the macroscopic electrostatic effect on the shape aspect ratio, whereas we detect

the elongation window considering only the electrostriction effect as a function of the

distortion ratio of the initial structure.

We finally comment on the possible extension of the research reported here. First,

the monodisperse dipolar system considered here can be extended to a more realistic

polydisperse dipolar system. In this case, a specific treatment of the bonding springs

between the particles should be taken for two following reasons: i) larger/smaller

particles have larger/smaller surfaces and thus the elastic forces from the polymer matrix

should be properly graded to account for this problem. ii) the ground states of the

polydisperse system under an applied field will depend on the polydispersity parameter.

Second, the macroscopic polarization theory used in this paper corresponds to the

far field solution of the Poisson’s equation of polarization. At high volume fractions of

the inclusions this approximation should be replaced by the near field solutions which
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contain higher order multipoles of the dipolar field.

Third, the strain elastic energy in section 2.4 is calculated using the Gaussian chain

statistics and Hookian springs applicable to low strain amplitudes |ΣZ | ≤30–40%. This

statistics should be replaced by the Langevin chain statistics briefly discussed at the end

of section 2.4. Under the Langevin statistics, which corresponds to the FENE nonlinear

springs between the inclusions, we expect that the actuation of the composite will be

smaller than the reported here simulation results in the high strain regions.

Fourth, in the current study the vertical change ∆Lz of the simulation box was

coupled with the symmetrical changes in the lateral box dimensions ∆Lx = ∆Ly. As

a result of this we observed the BCC to BCT and FCC to FCT transitions under

applied fields. The other possible transitions are the BCC to BCO (body centered

orthorhombic) and FCC to FCO (face centered orthorhombic) transitions for which the

three box dimensions should be changed separately [82]. In order to test the occurrence

of stable BCO or FCO transitions we will accompany each shape-changing simulation

step by the additional variation of the Lx/Ly ratio.

Fifth, in the current simulation model the pressure components were calculated for

all nodes, and averaged over all inclusions. As a result, the change of the simulation

box shape was implemented for all nodes at the same ratio. For the case of polydisperse

inclusions this approach needs to be modified by allowing local shape changes inside the

simulation box.

Sixth, the actuation of the composite can be further enhanced by replacing the

high-dielectric inclusions with either charged multilayers [86], or layered ferromagnetic

elastomers [72] for the magnetic actuation purposes. Our recent works [72, 86] showed

that by varying the internal parameters of these materials, such as the number of layers,

the dielectric and elastic constants and the thicknesses of the layers, the actuation

of these layered materials can be effectively controlled. For example, for a charged

multilayer elastomer we detected a window of elongation with Σz ≈ 150% for the

interface charge density 0.01 C/m2. Putting these layered elastomers into the host

matrix can tremendously reinforce the composite actuation. Such double-actuation

concept has a potential to develop into a new field of the electroactive composite

research.
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Appendix

A. Stability Region for Composite Actuation

Composites with polarizable inclusions are supposed to sustain their original elastic

properties during the repeated actuation cycles under the applied fields. In other words,

elastic forces of the host polymer should restore the initial state of the composite when

the load is removed. This is only possible if the amplitude of the applied field does

not exceed a critical field Ec above which the dipolar attraction triggers a clamping

of dipoles into a touching configuration. When such clamping happens, with no host

matrix material between the touching dipoles, there will be no restoring force to separate

the dipoles at lower fields. As a result, the composite will loose its actuation capability

forever. In this appendix we analyze the properties of the clamping instability.

For the head-to-tail oriented dipoles we introduce a dimensionless stability

parameter

ψ(r) =

∣

∣

∣

∣

∣

Eelastic(r)

Vij(r)

∣

∣

∣

∣

∣

(A1)

which measures the balance between the dipole-dipole attraction potential Vij(r) given

by Eq.(21), and the elastic energy of the host matrix deformation,

Eelastic(r) =
1

2
χ(rp − r)2 =

2πY

3
(rp − r)2rp (A2)

where χ is given by Eq.(42). Putting θ = 0 in Eq.(21) for the stability parameter ψ we

get

ψ
(

r

σ

)

= A
(

rp

σ
− r

σ

)2 (

r

σ

)3

(A3)

where the distance independent coefficient A is

A =

(

ǫp + 2ǫm

ǫp − ǫm

)2
2

3

ǫm

ǫ0

Y

E2

rp

σ
(A4)

Several representative curves for ψ(r) are plotted in Figure A1. At small A = 0.015,

see the thin dot-dashed (blue in color version) line, ψ(r) < 1 for all separation distances

σ < r < rp. For this case the composite is completely vulnerable to the dipole clamping,

i.e. when the field is switched on, the dipoles along the field will decrease their separation

until a touching configuration r = σ is achieved. When the prefactor is A = 0.15, see

the thick solid line (black in color version) in Figure A1, ψ(r) > 1 for all separation

distances, meaning that the composite is completely robust against any clamping. In

this case the dipoles along the field direction will decrease their separation from rp to rc,

where rc is the crossing point position shown as a filled black circle in Figure A1. For

intermediate values of A, we have a single-point stability state for A=0.028, a partially

stable state for A=0.06, and a fully stable state for A = 0.11. For all these cases the

composite actuation is defined by the distance between the point rp = 4 and the position

of the right hand crossing point shown as filled circles in Figure A1. The barrier between
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the latter and the left-hand crossing points, shown as open circles, keeps the composite

safe from possible dipolar clampings. When the left crossing coincides with r = σ,

which corresponds to the line A = 0.11 in Figure A1, the system becomes completely

safe against any clampings. Thus the condition ψ(r = σ) = 1, can be used to define the

critical electric field,

Ec ≈
(

ǫp + 2ǫm

ǫp − ǫm

)

(r∗p − 1)
√

Y ǫmr∗p × 0.19
MV

m
(A5)

below which the actuation will be reversible. Here r∗p = rp/σ, and Y is given in N/m2

units. The typical values for Ec are discussed in the section of simulation results.

1 2 3 4
0

1

2

3

4

5

6

r/σ

ψ
(r

)

 

 

A=0.15
A=0.11
A=0.06
A=0.028
A=0.015

Figure A1. (Color in online) The stability function ψ(r) from Eq.(A3) against the

separation distance between the dipoles for the nearest neighbor distance rp = 4 and

different prefactors A given by Eq.(A4). From bottom to top: A=0.015, 0.028, 0.06,

0.11, and 0.15. Critical field Ec in Eq.(A5) is defined for the line A=0.11.

B. Simulation stages for the composite actuation

The equivalence of the pressure components in Eq.(46) was implemented using the

following consecutive simulation stages.

Stage 1) the system is equilibrated under the applied field ~E during the simulation time

t = ∆τ .

Stage 2) the statistics for the pressure components are gathered during the simulation

time ∆τ < t < ∆τ + ∆t, and at t = ∆t + ∆τ the average pressure P̄i = 1
∆t

∑

Pi(t) for
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i = x, y, z is calculated.

Stage 3) The difference between the pressure components P̄z and P̄xy is calculated,

∆P = P̄z − P̄xy.

Stage 4) at the simulation time ∆τ + ∆t + h the cell size Lz is changed to L
′

z = Lz + δ,

where the value of the size increment δ is chosen to be a tiny fraction s of L0
z, s ≪ 1, and

the sign of δ is defined according to the relation δ = sLz sign(∆P ). The lateral cell sizes

Lx and Ly are changed according to the constant volume condition, L
′

x = Lx/
√

1 + δ

and L
′

y = Ly/
√

1 + δ.

Stage 5) the system is equilibrated again until the pressure components are stabilized

during the simulation time ∆τ + ∆t + h < t < 2∆τ + ∆t + h.

Stage 6) once a new stable state is reached, then during the 2∆τ + ∆t + h < t <

2∆τ + 2∆t + h simulation time new statistics for P̄i are collected and the averages P̄i

are calculated.

Stage 7) the steps 3-6 are repeated over and over again until the resulting system size

Lz stabilizes following the zero difference between the pressure components ∆P̄ .

The stages 1–7 are schematically drawn in Figure B1 and explained in the figure

caption. The schematic picture illustrates the case of a composite contraction from its

initial cubic (a square in 2D drawing) shape to a rectangular prism (a rectangle in 2D

drawing) shape.

Figure B1. (Color in online) Schematic representation explaining the simulation

stages for getting stabilized composite under the applied field E. The stages are

explained in the text. The squares/rectangles correspond to the un-deformed/deformed

composites. The long-dashed arrows (stages 1 and 5) correspond to the system

equilibration stages. The full arrows correspond to the stage of gathering necessary

statistics for the pressure components.Finally, the short-dashed arrows are for the stage

of composite deformation. Above each arrow the number of the corresponding stage

is given. Below the arrows the time span of the stage is indicated.
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