

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

Journal Name

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Carbon Nanodot Decorated Graphitic Carbon Nitride: New Insights on the Enhanced Photocatalytic Water Splitting from abinitio Studies

Guoping Gao^a, Yan Jiao^b, Fengxian Ma^a, Yalong Jiao^a, Eric Waclawik^a, and Aijun Du^{a,*}

Interfacing carbon nanodots (C-dots) with graphitic carbon nitride (g-C₃N₄) produces a metal-free system that has recently demonstrated significant enhancement of photo-catalytic performance for water splitting into hydrogen [*Science*, 2015, **347**, 970-974]. However, the underlying photo-catalytic mechanism is not fully established. Herein, we have carried out density functional theory (DFT) calculations to study the interactions between g-C₃N₄ and trigonal/hexagonal shaped C-dots. We find that hybrid C-dots/g-C₃N₄ can form a type-II van der Waals heterojunction, leading to significant reduction of band gap. The C-dot decorated g-C₃N₄ enhances the separation of photogenerated electron and hole pairs and the composite's visible light response. Interestingly, the band alignment of C-dots and g-C₃N₄ calculated by hybrid functional method indicates that C-dots act as a spectral sensitizer in hybrid C-dots/g-C₃N₄ for water splitting. Our results offer new theoretical insights on this metal-free photocatalyst for water splitting.

Introduction

Producing hydrogen by photocatalytic water splitting is considered as a promising method to solve current energy and environmental issues¹. Fujishima *et al.* first realized photocatalytic water splitting by a single-crystal TiO_2 anode and a Pt cathode.² Following this work, various metal-based semi-conductor materials³, including metal (oxy) sulphide, metal (oxy) nitride catalysts have been demonstrated that have the capability for photocatalytic water splitting. To obtain an ideal photocatalyst, the following criteria should be taken into account⁴⁻⁶: (i) a narrow band gap with excellent visible-light response; (ii) band alignment suitable for overall water splitting, i.e. the valence band maximum (VBM) should be more positive than the standard electrode potential of H_2O/O_2 (1.23 eV vs NHE) or H_2O_2/O_2 (1.78 eV vs NHE), while the conduction band minimum (CBM) should be more negative than

Since the pioneering work by Wang et al. on the visible-light photocatalytic water splitting based graphitic carbon nitride in the presence of a sacrificial donor⁷, g-C₃N₄ has attracted extensive attention from both experiments and theoretical calculations⁸. q-C₃N₄ is a low cost photocatalyst, and shows high stability in both acidic and alkaline conditions. However, the relative large band gap of pristine q-C₃N₄ limits its visible-light absorption⁹. Furthermore, the low charge mobility of this material leads to fast recombination of photo induced electron-hole pairs. 10, 11 In addition, the nature of covalent bonding in g-C₃N₄ leads to low H^+ reduction and H_2O oxidation efficiencies on its surface. 12 A number of strategies which could modify the valence band (VB)/conduction band (CB) positions of q-C₃N₄, are applied to improve the visible-light photocatalytic water splitting performance of g-C₃N₄, including heteroatom doping^{13, 14}, hybridizing q-C₃N₄ with other nanomaterials¹⁵⁻¹⁸ or molecules 19. On the other hand, the C-dots offer certain of advantages in water solution photocatalysis, low toxicity, and

the standard electrode potential H^+/H_2 (0 eV vs NHE); (iii) efficient charge separation and transfer rate; (iv) enough number of activity sites for H^+ reduction and H_2O oxidation; and (v) stability. However, no catalysts obtained so far can satisfy all these criteria.

^{a.} School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Garden Point Campus, QLD 4001, Brisbane, Australia,

^{b.} School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia

^{*} Corresponding Author: Aijun Du, aijun.du@qut.edu.au Electronic Supplementary Information (ESI) available: Band structure for 1x1 g-C3N4 based on hybrid functional. See DOI: 10.1039/x0xx00000x

ARTICLE Journal Name

tuneable emissions from near-infrared to blue wavelengths has motivated many efforts to utilize the as photocatalysts.²⁰ For example, Kang *et al.* have reported on a series of C-dot based photocatalysts with excellent catalytic activity.^{21, 22} Zhang *et al.* proved that the zigzag edges of C-dots is more important than the armchair edges for light adsorption in visible light range.²³

More recently, Liu *et al.* have demonstrated that the fabrication of metal-free g- C_3N_4 combined with C-dots showed impressive performance for photocatalytic solar water splitting 16 . However, the possible mechanism underneath is still not clear. In this paper, we have explored the interaction of C-dots and g- C_3N_4 , and their electronic and optical properties by first-principle calculations. Our results demonstrate that, hybrid C-dots/g- C_3N_4 can form a type-II van der Waals heterojunction with a significant reduction of the band gap, which favours the separation of photogenerated electron and hole pairs, and leads to a red shift in light absorption in the hybrid systems. The C-dots act as spectral sensitizer in hybrid C-dots/g- C_3N_4 for splitting water into hydrogen.

Computational method

DFT calculations were performed by using the Vienna Ab-initio Simulation Package (VASP). 24, 25 The exchange-correlation interactions were described by generalized gradient approximation (GGA)²⁶ with the Perdew-Burke-Ernzerhof (PBE) functional²⁷. Spinpolarization was included in all the calculations and a damped van der Waals correction was incorporated using Grimme's scheme to better describe the non-bonding interactions²⁸ . The cut-off energies for plane waves were set to be 500 eV, and the residual force and energy on each atom during structure relaxation were converged to 0.005 eV/Å and 10⁻⁵ eV, respectively. The vacuum space was more than 20 Å, which was enough to avoid the interaction between periodical images. The lattice constant of g- C_3N_4 was calculated to be 6.95 Å. The Brillouin zone was sampled with the Monkhorst-Pack mesh²⁹ with a K-point of $6 \times 6 \times 1$ grid in reciprocal space during geometry optimization and electronic structure calculations. The K-point was increased to $11 \times 11 \times 1$ to obtain the accurate optical absorption spectra. The hybrid functional (HSE06)³⁰ was employed to obtain the more accurate vacuum potential levels of g-C₃N₄ and C-dots. The potential level vs

NHE was converted from vacuum potential level by the following Eq $(1)^{31}$:

$$E_{potential\ level\ vs\ NHE} = -4.44 - E_{vacuum\ potential\ level}$$
 (1)

The interaction energy between C-dot and g-C $_3$ N $_4$ was calculated by Eq (2):

$$E_{interaction} = E_{nanodot/g-C_3N_4} - E_{nanodot} - E_{g-C_3N_4}$$
 (2)

, where $E_{nanodot/g-C_3N_4}$, $E_{nanodot}$, and $E_{g-C_3N_4}$ represent the total energy of hybrid system, isolated C-dot, and isolated g-C₃N₄, respectively.

Results and analysis

Two groups of C-dots in different shapes and size, namely trigonal C-dots (Figure 1 a-c) and hexagonal C-dots (Figure 1 d-e) with zigzag-edges are first constructed. All the edge-carbon atoms are terminated by one hydrogen atom. Geometry optimization was then performed by using the conjugated gradient method. Figure 1 a-e presents the fully optimized structures for C-dots and g-C₃N₄, respectively. The equilibrium geometry for g-C₃N₄ in a 2x2 unit cell is given in Figure 1f.

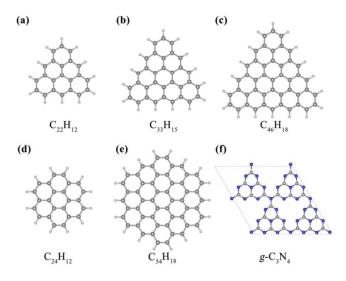


Figure 1 The optimized structures of trigonal C-dots (a-c), hexagonal C-dots (d-e), and g-C₃N₄ (f). Atom colour code: carbon (grey), nitrogen (blue), hydrogen (white). Molecule sizes are not drawn to scale.

Journal Name ARTICLE

In the following context, the effects of C-dots in the C-dots/g-C₃N₄ are investigated by calculating their band structures as shown in Figure 2. The trigonal C-dot and hexagonal C-dot used here are $C_{22}H_{12}$ and $C_{24}H_{12}$, respectively. Different adsorption sites for the C-dots on the surface of g-C₃N₄ in a 2x2 unit cell are calculated to construct the most energy-favour hybrid systems. The interlayer distance between g-C₃N₄ and C-dots are around 3.2 Å in both the stable hybrid systems. The closest atoms among periodical C-dots in both systems are edge hydrogens and the distances are above 4.5 Å, which is much larger twice of the Van der Waals Radii of hydrogen (1.2 Å)³². Therefore, the unit of 2x2 g-C₃N₄ is big enough to avoid the interaction of periodical C-dots.

An accurate band structure of 1 x 1 q-C₃N₄ was also obtained by the HSE06 method (see Figure S1 in the supplementary information). Here we should emphasize that standard density functional method is used for the band structure calculations because the hybrid systems are relatively large and the HSE06 calculation is very computational demanding. For the purpose of comparison, the contributions of C-dots in band structures are distinguished by red colouring (see Figure 2 e and f), and the top of the valance states in pristine g-C₃N₄, and C-dots/g-C₃N₄ are shifted to zero. The indirect band gap by HSE06 functional was 3.02 eV, which is comparable to the experiment value. As shown in Figure 2a, the indirect band gap of pristine 2 x2 g-C₃N₄ by the PBE functional is 1.89 eV, which is smaller than the experimental value, due to the self-interaction is neglected in the PBE functional. In C-dots/g-C₃N₄, the occupied energies levels of C-dots lay within the band gap of g-C₃N₄, while the unoccupied C-dots levels lay above the conduction band of g-C₃N₄. Distinguished changes are noticed concerning the shapes of valence states and conduction states of g-C₃N₄ when it hybridized with C-dots. This phenomenon indicates the strong interactions between C-dots and g-C₃N₄, as can be further validated by the interaction energy values. The interaction energy of trigonal Cdot/g-C₃N₄ and hexagonal C-dot/g-C₃N₄ are 1.58 eV and 1.87 eV, respectively. This clearly indicted the enhanced stability in the hybrid C-dot/g-C₃N₄ complex compared to the isolate systems.

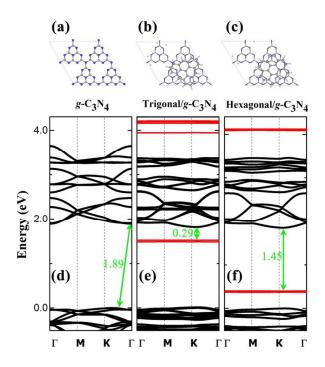


Figure 2 The geometry and band structures of g- C_3N_4 and C-dots/g- C_3N_4 . The energy levels of C-dots are distinguished by red line. In the C-dots/g- C_3N_4 , the g- C_3N_4 is represented by stick model. Atom colour code: carbon (grey), nitrogen (blue), hydrogen (white). To improve legibility, 'C-dot' was omitted from the labels.

The main difference between two C-dot/g-C₃N₄ systems is the positions of occupied C-dots energy levels, due to the different magnetic properties of the two group C-dots: trigonal C-dots with a linear scaling net spin, while the hexagonal C-dots with a zero spin³³. Therefore, the occupied C-dot energy level of trigonal C-dot/g-C₃N₄ is close to conduction states of g-C₃N₄ with a bandgap of 0.29 eV, while that of hexagonal C-dot/g-C₃N₄ is close to valence states of g-C₃N₄ with a bandgap of 1.45 eV. The occupied C-dots energy levels coupled with the energy levels of g-C₃N₄ lead to a narrower bandgap, so a red shift is expected in optical absorption spectra in the hybrid systems.

ARTICLE Journal Name

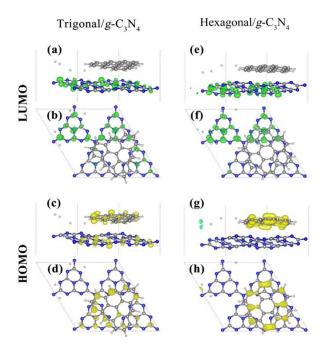


Figure 3 The HOMO and LOMO of C-dots/g-C₃N₄ were shown in both side and top views. Atom colour code: carbon (grey), nitrogen (blue), hydrogen (white). To improve legibility, 'C-dot' was omitted from the labels.

The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of C-dots/q-C₃N₄ are plotted in Figure 3. In trigonal C-dot/g-C₃N₄, the LUMO is mainly distributed around regions of g-C₃N₄ which are not covered by a C-dot. The HOMO is located at interaction area of C-dot and g-C₃N₄, which is predominantly distributed on the C-dot and partly on the triangular ring covered by the C-dot, due to the narrow gap of trigonal Cdot/g-C₃N₄. In the hexagonal C-dot/g-C₃N₄, the LUMO is located on g-C₃N₄, while the HOMO is associated with the C-dots. The main difference between trigonal C-dot/g-C3N4 and hexagonal C-dot/g-C3N4 is the charge distribution on HOMO. The HOMO of trigonal Cdot/g-C3N4 is more delocalized due to a net spin in the trigonal Cdots, i.e. the unpaired electrons in trigonal C-dots. However, there is no net spin in hexagonal C-dots and the electrons in hexagonal Cdot/g-C3N4 system are all paired, and its HOMO is more localized. Nevertheless, the HOMO-LUMO in both systems are segregated, which is expected to favour the separation of photogenerated electron and hole pairs spatially.

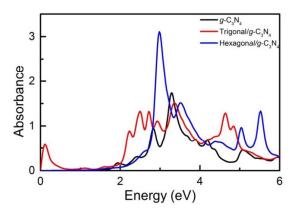


Figure 4 The optical absorption spectra of g-C₃N₄ and C-dots/g-C₃N₄. The trigonal C-dot and hexagonal C-dot used here is C₂₂H₁₂ and C₂₄H₁₂, respectively. To improve legibility, 'C-dot' was omitted from the labels.

Calculations of the optical absorption spectra for pristine g- C_3N_4 and C-dots/g- C_3N_4 are shown in Figure 4. For pristine g- C_3N_4 , the main light absorption peak located at 3.28 eV and a smaller light absorption peak is located at 2.84 eV. As g- C_3N_4 is decorated with trigonal C-dot, there are three new significant absorption peaks which appear, caused by the C-dot at 2.72 eV, 2.49 eV, and 2.23 eV. The absorption peak at 0.12 eV was mainly attributed to the hybridization between C-dots and g- C_3N_4 . In the hexagonal C-dot/g- C_3N_4 system, there is only one dominating absorption peak located at 2.98 eV in the long wavelength range. Therefore, it is highly possible for direct excitation of e $^-$ from HOMO of C-dots to conduction band of g- C_3N_4 , and then the light absorption is extended into the visible light range in the hybridized C-dots/g- C_3N_4 complex.

The band alignment of isolated C-dots and g-C₃N₄ were calculated by the HSE06 method as shown in Figure 5. The CBM potential of isolated g-C₃N₄ is -0.88 eV vs NHE, which is more negative than the standard electrode potential H $^+$ /H₂, while the VBM potential is 2.14 eV vs NHE, which is more positive than the standard electrode potentials of both H₂O/O₂ and H₂O₂/O₂. Clearly, the band-edge positions fit the water reduction and oxidation potentials of g-C₃N₄. However, the band gap of 3.02 eV is too wide for visible-light absorption. Meanwhile, the HOMOs of C-dots are more negative than the oxidation level of water splitting. Herein, the C-dots cannot

Journal Name ARTICLE

split the water independently. However, the HOMO level of C-dots are in the middle of bandgap of $g\text{-}\mathrm{C}_3\mathrm{N}_4$, while the C-dot LUMO is above the CBM of $g\text{-}\mathrm{C}_3\mathrm{N}_4$. This type II band alignment of $g\text{-}\mathrm{C}_3\mathrm{N}_4$ and C-dots could enhance the visible-light response by hybridizing them together, which is consistent with the results of Figure 2. As the sizes of trigonal and hexagonal C-dots increase, the HOMO moves up while the LUMO moves down in the band alignment, leading to a narrower band gap. In addition, the relative positions of band alignment of $g\text{-}\mathrm{C}_3\mathrm{N}_4$ and C-dots maintain a type II band alignment. This indicates that a slight enlargement of the C-dots' size could enhance the visible-light response of C-dots/ $g\text{-}\mathrm{C}_3\mathrm{N}_4$.

Combining the band alignment of g- C_3N_4 and C-dots with above analysis, C-dots act as spectral sensitizers in the hybrid C-dots/g- C_3N_4 complex. Additionally, the electrons from the C-dots' HOMO of can be directly photoexcited into the conduction band of the g- C_3N_4 by visible light, which separates the electron and hole into each of the different materials. These remarkable properties are expected to enhance the oxidation/reduction of water into hydrogen.

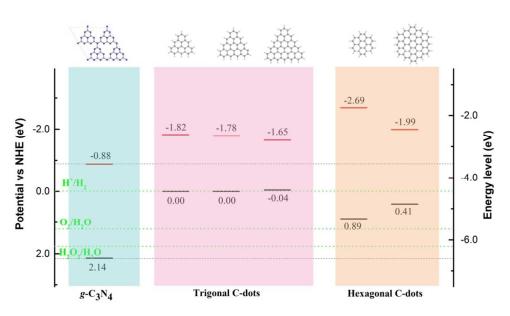


Figure 5 The Calculated VBM (HOMO) and CBM (LUMO) potential versus normal hydrogen electrode of isolated g-C₃N₄ and C-dots by HSE06 method. Atom colour code: carbon (grey), nitrogen (blue), hydrogen (white).

Conclusion

In summary, we have demonstrated that hybridization of g- C_3N_4 with C-dots could form type-II van der Waals heterojunction which enhances the photocatalytic solar water splitting performance of pristine g- C_3N_4 . Hybrid C-dots/g- C_3N_4 leads to a narrower bandgap, and a red shift in light absorption spectra. Furthermore, the segregation of the HOMO-LUMO levels favours the separation of photogenerated electron-hole pairs. In addition, the type II band

alignment of C-dots and g-C₃N₄ indicates that C-dots might act as spectral sensitizer in the hybrid C-dots/g-C₃N₄ for water splitting.

Acknowledgements

We acknowledge generous grants of high-performance computer time from computing facility at Queensland University of Technology and Australian National Facility. A.D. greatly appreciates the Australian Research Council QEII Fellowship (DP110101239) and financial support of the Australian Research Council under Discovery Project (DP130102420).

ARTICLE Journal Name

Notes and references

- M. Ni, M. K. H. Leung, D. Y. C. Leung and K. Sumathy, *Renew. Sust. Energ. Rev.*, 2007, 11, 401-425.
- 2. A. Fujishima and K. Honda, *Nature*, 1972, **238**, 37-38.
- 3. A. Kudo and Y. Miseki, *Chem. Soc. Rev.*, 2009, **38**, 253-278.
- 4. S. Cao and J. Yu, *J. Phys. Chem. Lett.*, 2014, **5**, 2101-2107.
- S. Yin, J. Han, T. Zhou and R. Xu, Catal. Sci. Technol., 2015, DOI: 10.1039/C5CY00938C.
- 6. K. Maeda, J. Photochem. Photobiol. C: Photochem. Rev., 2011, 12, 237-268.
- 7. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen and M. Antonietti, *Nat. mater.*, 2009, **8**, 76-80.
- 8. Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec and S. Z. Qiao, *Nat. Commun.*, 2014, **5**, 3783.
- 9. H.-Z. Wu, L.-M. Liu and S.-J. Zhao, *Phys. Chem. Chem. Phys.*, 2014, **16**, 3299-3304.
- 10. Y. Zhang, T. Mori, L. Niu and J. Ye, *Energy. Environ. Sci.*, 2011, **4**, 4517-4521.
- X. Ma, Y. Lv, J. Xu, Y. Liu, R. Zhang and Y. Zhu, J. Phys. Chem. C, 2012, 116, 23485-23493.
- 12. K. Striegler, Modified Graphitic Carbon Nitrides for Photocatalytic Hydrogen Evolution from Water: Copolymers, Sensitizers and Nanoparticles, Springer, 2015.
- G. Liu, P. Niu, C. Sun, S. C. Smith, Z. Chen,
 G. Q. Lu and H.-M. Cheng, J. Am. Chem.
 Soc., 2010, 132, 11642-11648.
- 14. Y. Zhang, T. Mori, J. Ye and M. Antonietti, *J. Am. Chem. Soc.*, 2010, **132**, 6294-6295.
- A. Du, S. Sanvito, Z. Li, D. Wang, Y. Jiao, T. Liao, Q. Sun, Y. H. Ng, Z. Zhu and R. Amal, J. Am. Chem. Soc., 2012, 134, 4393-4397.
- 16. J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S.-T. Lee, J. Zhong and Z. Kang, *Science*, 2015, **347**, 970-974.

- 17. H. Li, L. Zhou, L. Wang, Y. Liu, J. Lei and J. Zhang, *Phys. Chem. Chem. Phys.*, 2015, **17**, 17406-17412.
- 18. J. Zhang, F. Ren, M. Deng and Y. Wang, *Phys. Chem. Chem. Phys.*, 2015, **17**, 10218-10226.
- 19. Z. Tachan, I. Hod and A. Zaban, *Adv. Energy Mater.*, 2014, **4**, 1301249.
- 20. H. Li, Z. Kang, Y. Liu and S.-T. Lee, *J. Mater. Chem.*, 2012, **22**, 24230-24253.
- 21. H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C. H. A. Tsang, X. Yang and S.-T. Lee, *Angew. Chem. Int. Ed.*, 2010, **49**, 4430-4434.
- H. Zhang, H. Huang, H. Ming, H. Li, L. Zhang,Y. Liu and Z. Kang, *J. Mater. Chem.*, 2012,22, 10501-10506.
- 23. R. Zhang, S. Qi, J. Jia, B. Torre, H. Zeng, H. Wu and X. Xu, *J. Alloy. Comp.*, 2015, **623**, 186-191.
- 24. G. Kresse and J. Furthmüller, *Comp. Mater. Sci.*, 1996, **6**, 15-50.
- 25. G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169.
- 26. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865.
- 27. J. P. Perdew, M. Ernzerhof and K. Burke, *J. Chem. Phys.*, 1996, **105**, 9982-9985.
- 28. S. Grimme, *J. Comput. Chem.*, 2006, **27**, 1787-1799.
- 29. H. J. Monkhorst and J. D. Pack, *Phys. Rev. B*, 1976, **13**, 5188.
- 30. J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber and J. G. Ángyán, *J. Chem. Phys.*, 2006, **124**, 154709.
- 31. C. G. Zoski, *Handbook of electrochemistry*, Elsevier, 2006.
- 32. S. S. Batsanov, *Inorg. Mater.*, 2001, **37**, 871-885.
- 33. W. L. Wang, S. Meng and E. Kaxiras, *Nano Lett.*, 2008, **8**, 241-245.