This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Thermoelectric transport properties of pristine and Na-doped SnSe$_{1-x}$Te$_x$ polycrystals†

Tian-Ran Wei, Chao-Feng Wu, Xiaozhi Zhang, Qing Tan, Li Sun, Yu Pan and Jing-Feng Li*

SnSe, a “simple” and “old” binary compound composed of earth-abundant elements, has been reported to exhibit a high thermoelectric performance in single crystals, which stimulated recent interests in its polycrystalline counterparts. This work investigated the electrical and thermal transport properties of pristine and Na-doped SnSe$_{1-x}$Te$_x$ polycrystals prepared by mechanical alloying and spark plasma sintering. It is revealed that SnSe$_{1-x}$Te$_x$ solid solutions are formed when x ranges from 0 to 0.2. An energy barrier scattering mechanism is suitable for understanding the electrical conducting behaviour observed in the present SnSe polycrystalline materials, which may be associated with abundant defects at grain boundaries. The thermal conductivity was greatly reduced upon Te substitution due to alloy scattering of phonons as well explained by Debye model. Due to the increased carrier concentration by Na-doping, thermoelectric figure of merit (ZT) was enhanced in the whole temperature range with a maximum value of 0.72 obtained at a relatively low temperature (773 K) for Sn$_{0.99}$Na$_{0.01}$Se$_{0.84}$Te$_{0.16}$.

1. Introduction

Thermoelectric (TE) materials and technologies that are capable of directly converting waste heat into electricity can offer an additional solution to the current concerns on carbon-based fuel consumption and greenhouse gas emissions.1,2 For decades, it has been the common goal for the thermoelectric community to develop promising materials with a high dimensionless figure of merit ZT (defined as $ZT=S^2T/\rho\kappa$, where S, T, ρ and κ are Seebeck coefficient, absolute temperature, electrical resistivity and thermal conductivity, respectively).3,6 It is of no less importance at the same time, however, to explore TE materials free of the toxic Pb based on environmental concerns. Various compounds have been discovered to exhibit promising ZT values comparable to the commercially used PbTe-7 and Bi$_2$Te$_3$-based8 materials, such as skutterudites,9 Half-Heusler compounds10 and Mg$_2$X (X=Si, Ge, Sn).11

Recently, the “simple” and “old” binary compound SnSe containing earth-abundant elements was reported to possess an extraordinarily high ZT~2.6 (at 923 K) along b-axis in its single crystal form,12 benefiting mainly from the intrinsically low thermal conductivity that was ascribed to the large lattice anharmonicity.12,13 Since then attention has also been paid to polycrystalline SnSe of both p-14,15 and n-types16 considering their better machinability and prospect of large-scale applications, but the reported ZT values are much lower than single crystals. It is thus highly desired to enhance thermoelectric performance of the polycrystalline counterparts. This goal, however, should be accomplished based on an in-depth understanding of the electrical and thermal transport properties which are likely to differ from those of single crystals.

Chemical doping is widely employed to tune the carrier concentration and improve ZT of thermoelectrics. In addition, alloying is one of the most effective ways to reduce thermal conductivity of TE materials (such as lead chalcogenides,17,18 Bi$_2$Te$_3$-based alloys19 and diamond-like copper chalcogenides20), and even to optimize electrical transport properties by virtue of band engineering.21,22 In fact, SnSe has been found to form complete solid solutions with SnS, an isostructural binary chalcogenide,23 and exhibit reduced thermal conductivities as well as enhanced ZT values.16,24 Being different from SnS and SnSe, the homologous compound SnTe crystallizes in a NaCl-like, cubic structure featured with high band degeneracies, small band gap, semi-metallic transport behaviour25 and promising TE performance.26 It is thus expected that by substituting Te for Se, interesting variations in transport properties and possible performance enhancement will be found. Nonetheless, relevant reports on this issue are severely inadequate. Chen et al.27 studied experimentally and theoretically the effect of Te doping on SnSe, but the amount of Te was limited to 0 and...
0.0625, and all the samples exhibited a surprisingly n-type conduction behaviour.

The present work was conducted focusing on pristine and Na-doped Sn$_{0.99}$Se$_{0.01}$Te$_x$ alloys with two motivations; one is to reveal the electrical and thermal transport mechanisms in polycrystalline SnSe, and the other is to enhance the thermoelectric performance of the polycrystals by doping and alloying. The carrier transport behaviour was found to obey a barrier scattering mechanism rather than that reported previously. Te-substitution greatly reduced the thermal conductivity and band gap of SnSe, and the thermal transport property was well modelled on the basis of point defect scattering of phonons. By doping with Na, the carrier concentration and electrical conductivity were greatly enhanced, leading to a maximum ZT of 0.72 at a relatively low temperature (773 K).

2. Experimental

Polycrystalline samples were fabricated by spark plasma sintering (SPS) of the powders that were pre-synthesized by mechanical alloying (MA). Sn (99.999%), Se (99.9%) and Te (99.999%) powders and Na pieces (99.5%) were weighed according to the stoichiometry of Sn$_{0.99}$Se$_{0.01}$Te$_x$ and Sn$_{0.99}$Na$_{0.01}$Se$_{0.99}$Te$_x$ (x = 0–0.28), and milled on a planetary ball mill at 450 rpm for 15 h using a stainless steel vessel filled with a mixed atmosphere of 95 vol% Ar and 5 vol% H$_2$ gases. The MA-processed powders were loaded into a graphite die and then sintered by SPS (SPS-211Lx, Fuji Electronic Industrial, Japan) at 793 K for 5 min under a uniaxial pressure of 50 MPa, yielding a cylinder-shaped sample with ~8 mm in height and ~15 mm in diameter. Note that powder handling was done in a glove box filled with Ar.

The phase structures were investigated by using X-ray diffraction (XRD, D/MAX 2500, Rigaku, Japan) with Cu K_α radiation. Scanning electron microscope (SEM) images of the bulk materials were taken in the secondary electron (SE2) and backscattering electron (BSE) detector modes using a field emission scanning electron microscope (FE-SEM, JSM-7001, JEOL, Japan). Microstructure and selected area electron diffraction (SAED) pattern were observed by a transmission electron microscope (TEM, JEM-2100, JEOL, Japan). Electronic probe microscopic analysis (EPMA, JXA-8230, JEOL, Japan) was carried out to map elemental distribution on polished surface of bulk samples. Seebeck coefficient (S) and electrical resistivity (ρ) measurement was conducted on a bar-shaped specimen by using a Seebeck coefficient/electric resistance measuring system (ZEM-2, Ulvac-Riko, Japan). Hall coefficient (R_{H}) was measured under a reversible magnetic field by the Van der Pauw technique using a Hall measurement system (ResiTест 8340DC, Toyo, Japan). Hall carrier density (n_H) was calculated via $n_H = 1/(eR_H)$, and Hall carrier mobility (μ_H) was obtained through $\mu_H = R_{H}/p$. The thermal diffusivity (D) was measured by using a laser flash diffusivity method (TC9000, Ulvac-Riko, Japan). The specific heat capacity (C_p) was taken from ref. 12 for SnSe and estimated based on linear relationships for Te-substituted samples where C_p for SnTe was given in ref. 25. For Na-doped samples, C_p was taken equal to undoped ones considering the small amount of the dopant. Thermal conductivity (κ) was calculated by $\kappa = \rho C_p d$, where d is the density measured by the Archimedes method. Considering the layered structure and anisotropy (see Fig. S1 in ESI†) of SnSe, both the electrical and thermal transport properties were measured in the same direction that is perpendicular to the pressure during SPS. According to Ortiz et al., transport in this direction can be regarded as that in randomly oriented polycrystals as supported by continuous Debye rings. Optical absorption measurements were conducted on powders by using the UV-Vis-NIR spectrum system (Cary 5000, Varian, USA) at room temperature (RT). The indirect gaps were obtained by extrapolating $(\alpha h\nu)^{1/2}$ to 0 as a function of $h\nu$, where α is the absorption coefficient, $h\nu$ is the photon energy.

3. Results and discussion

3.1 Solid solution and microstructure

Fig. 1 (a) shows the XRD patterns of Sn$_{0.99}$Se$_{0.01}$Te$_x$ bulk samples. All the main peaks were indexed to the orthorhombic phase with Pnma symmetry (PDF #48-1224) without secondary phases being found within the detection limit. The peaks shift towards lower angle values with increasing amount of Te, indicating enlarged lattice parameters. As shown in Fig. 1 (b), the lattice cell volume exhibits a linear increase with x in the range of 0.0-0.2, being consistent with ref. 28. It is noticed that for the samples with higher amounts of Te (x = 0.24 and 0.28), some peaks tend to diminish, suggesting increased degree of crystal symmetry. Based on the XRD results, it is speculated that Sn$_{0.99}$Se$_{0.01}$Te$_x$ solid solutions are formed when x varied from 0 to 0.2 which is within the solubility.

![Fig. 1](https://www.chemphyschem.org/doi/fig/10.1002/chem.201500625)

Alloying effect was also confirmed by the composition-dependent optical absorption spectra and band gap as shown in Fig. 2. A clear absorption edge around 0.9 eV is seen for SnSe, and the curves demonstrate a red-shift upon Te substitution. As depicted in the inset panel, E_g of pristine SnSe in this work is ~0.85 eV and is well consistent with previously reported values. E_g keeps decreasing to about 0.6 eV and seems to saturate when x reaches 0.16.
SnSe exhibits a dense microstructure composed of lamellar grains with the width of 100-200 nm as shown in Fig. 3 (a) and (d). The grain boundaries, manifested in Fig. 3 (e), are clean and clear, suggesting good crystallinity and high quality of the samples prepared by MA and SPS. The SAED pattern in Fig. 3 (f) was indexed as SnSe of Pnma space group with no spots corresponding to other phases or sublattices. Upon Te alloying, the grains become larger [see Fig. 3 (a)–(c)], possibly due to the lower melting points of solid solutions than pure SnSe.

In addition, more voids are observed in SnSe$_{1-x}$Te$_x$ which are also demonstrated by the polished surface morphology in Fig. 4 (b). In fact, SnSe has a porosity < 4% while the value is noticeably larger for Te-substituted samples (8-11%). It seems that Se volatilization is more notable in SnSe$_{1-x}$Te$_x$ (the weight losses of Se derived from EPMA data are 0.05, 0.07 and 0.11 for SnSe, SnSe$_{0.92}$Te$_{0.08}$ and SnSe$_{0.84}$Te$_{0.16}$, respectively), leaving small and scattered voids in the matrix. As shown by the EPMA mapping profile in Fig. 4, Sn and Se are found to uniformly distribute in both SnSe and SnSe$_{1-x}$Te$_x$ while small inhomogeneity of Te distribution is seen in solid solutions which may be caused by the low diffusivity of this large and heavy element.

Fig. 2 Optical absorption spectra of SnSe$_{1-x}$Te$_x$ (x=0-0.2) powders. The inset shows the calculated indirect band gaps of the compounds.

SnSe$_{1-x}$Te$_x$ exhibit relatively high resistivity (ρ) and Seebeck coefficient (S) as shown in Fig. 5 (a) and (b), respectively. For pristine SnSe, ρ keeps decreasing with temperature while S exhibits somewhat a metallic behaviour. The rollover of S around 650 K indicates the onset of excitation of minority carriers. Transport behaviours of Te-substituted samples seem out of expectation; with a narrower band gap by incorporating Te into the lattice, the electrical resistivity is larger than that of the pristine SnSe, resulting in lower power factors (PFs). However, when doped with 1 mol% Na, the electrical resistivity of SnSe$_{1-x}$Te$_x$ samples greatly decreased from 10-100 $\Omega\cdot$cm to 10-100 m$\Omega\cdot$cm at RT [Fig. 5 (d)]. S is also smaller for doped samples. For all the Na-doped samples, ρ firstly decreases with T, then turns to increase at ~550 K but finally decreases at $T > ~650$ K. Anomaly in electrical transport around 500 K was also found in ref. 15 and was tentatively ascribed to the melting of very small amount of unreacted Sn. In this work, however, no phase transition is indicated in the Differential Scanning Calorimetry (DSC) patterns between 400 and 600 K (see Fig. S2 in ESI†). Such non-monotonic variations in ρ and S with T should be further understood with an insight into carrier concentration and mobility.

As shown in Fig. 6 (a), the Hall carrier concentration n_H is relatively high (7×10^{17} cm$^{-3}$) for undoped SnSe prepared by MA and SPS in this work, and shows a relatively weak temperature dependence from RT up to ~623 K. At higher temperatures, n_H increases rapidly with T, indicating intrinsic excitations which were also reflected in temperature-dependent Seebeck coefficient [Fig. 5 (b)].
The fact that n_{H} is higher in this work than that in ref. 12 and 14 ($\approx 10^{17}$ cm$^{-3}$) is probably related to specific crystal defects, possibly Sn vacancies, which act as shallow acceptors and were probably generated during ball milling31 and maintained in the SPS process. In fact, in some other TE materials, such as BiCuSeO32 Sb$_2$Te$_3$ (ref. 33) and Bi$_2$Te$_3$-based compounds$^{34-36}$ ball milling was found to introduce appreciable defects and reasonably change the carrier concentration. When doped with Na, n_{H} increases to $\approx 10^{19}$ cm$^{-3}$ at RT and shows even weaker temperature dependence. Bipolar effect is also seen in the doped sample around 650 K, but the rise is not as sharp as that in the undoped one due to the suppression by higher majority carrier concentration.

For both undoped and doped samples, as shown in Fig. 6 (b), μ_{H} increases from RT to ≈ 550 K. It is noted here that: (1) μ_{H} cannot be described by a simple power law with temperature corresponding to a certain scattering mechanism; (2) with a higher n_{H}, Na-doped sample shows a higher mobility than the undoped one. The behaviours of mobility here are different from most of the well-known TE materials where acoustic phonon scattering dominates. This phenomenon was ascribed to an energy barrier scattering process and will be discussed later.

Now the temperature dependence of resistivity in Fig. 5 (a) and (d) can be well understood. At low temperatures μ_{H} increases rapidly with temperature while n_{H} keeps roughly unchanged, bringing about obvious reduction in ρ. When T rises to ≈ 550 K, n_{H} still shows a weak T-dependence, but μ_{H} starts to decrease, so ρ turns to increase with T. At $T > 650$ K, intrinsic excitation takes place, causing an increase in n_{H} while μ_{H} decreases just slightly, thus leading to the final reduction in ρ.

Here we refocus on the carrier mobility shown in Fig. 6 (b). For most of the well-known thermoelectric materials, carriers are mainly scattered by long-wave acoustic phonons, showing the temperature dependence of $\mu \propto T^{-3/2}$ (ref. 30 and 37). In addition, ionized impurity scattering is also expected in some semiconductors with the
relationship of $\mu \propto T^{3/2}$ (ref. 30). Nonetheless the T-dependence of μ_H in this work could not be explained by a certain scattering mechanism. Particularly, at low temperatures μ_H rises even faster than what is predicted by ionized impurity scattering that has the largest power among the common scattering mechanisms for thermoelectrics. A rapid increase of mobility is often a suggestion of a hopping process or an energy barrier scattering, and a similar behaviour was also observed in the isostructural SnS prepared by the same method. Here we referred to a grain boundary barrier scattering mechanism to describe the mobility. This model was proposed to explain the charge transport in polycrystalline silicon films and later was well applied to some TE materials.

MA-synthesized powders tend to have high chemical reactivity due to the refined grains and accumulated energy brought by high-energy ball milling. As a result, chemisorption of oxygen or generation of crystal defects is expected, which is likely to result in increased energy barriers that impede the motion of carriers from one grain to another. Assuming a uniformly distributed concentration of ionized carrier traps and barrier, and a grain-boundary thickness that is much less than the crystallite size L, the effective mobility is given by

$$\mu = \frac{1}{2m^* k_B T} \exp \left(\frac{E_B}{k_B T} \right)$$

(1)

where m^* is the effective mass of carriers, E_B is the energy barrier height. As shown in Fig. 7, a clearly linear relationship is seen between $\ln (\mu^{1/2})$ and $(k_B T)^{1/1}$ yielding $E_B = 169$ and 129 meV for pristine and Na-doped SnSe, respectively. The doped sample was found to have a higher mobility and a lower barrier height than the undoped one. This is because for the doped sample with a larger carrier density, the chemical potential is deeper in the valence band; in other words, hole carriers have a higher average energy to get rid of the trap of defects at grain boundaries, thus showing a lower barrier height and a higher mobility.

3.3 Thermal transport and thermoelectric properties

Thermal conductivities as a function of temperature for SnSe$_{1-x}$Te$_x$ are shown in Fig. 8 (a). Generally κ decreases with temperature and Te content, suggesting enhanced Umklapp and alloy scattering of phonons, respectively. For the $x=0.24$ sample, κ rises obviously at high temperatures, which is a clear indication of bipolar effect. By comparing Fig. 8 (a) and (b) it is seen that Na-doped samples exhibit slightly higher κ than undoped ones with the same amount of Te, which is due to the increased electronic thermal conductivity.

In order to further understand the role of Te alloying in thermal transport of SnSe, we modelled the data within Debye approximation. For analyzing the thermal transport properties of all the samples with different densities, thermal conductivity of SnSe$_{1-x}$Te$_x$ without Na-doping was corrected to 100% dense samples to exclude the effect of porosity via:

$$\frac{\kappa_{\text{real}}}{\kappa_{\text{dense}}} = 1 - \frac{4}{3} \phi$$

(2)
where κ_{mold} is the measured value of our samples, κ_{dense} corresponds to that of fully dense ones, and ϕ is the porosity.46 For the undoped SnSe$_x$Te$_{(1-x)}$ alloys, the electrical conductivity is rather low [Fig. 5(a)], so here the lattice thermal conductivity was treated numerically equal to the total one.

In the framework of Debye model, the lattice thermal conductivity can be treated as the cumulative contribution of phonons varying in frequency from 0 to the upper limit via24,48

$$\kappa_L = \frac{k_B^2}{2\pi^2v^3} \left\langle \frac{k_B^2}{\hbar} T^3 \right\rangle_0 \int_0^\infty \tau(x)e^x(x-1)^3dx,$$

(3)

where v is the average sound speed, Θ_L is the average acoustic Debye temperature, $x = h\Theta_L/k_B T$ is the reduced phonon energy, and $\tau(x)$ is the total relaxation time. Since it has been mentioned above that transport in the direction perpendicular to pressure is expected to be consistent with randomly oriented polycrystalline samples,28 we calculated v from the values for each axis in ref. 12 via $v^3 = (v_1^3 + v_2^3 + v_3^3)/3$. It is interesting to note that this value (1674 m/s) is well consistent with the measured one (~1560 m/s) in ref. 28. Θ_L was calculated from the Debye temperature Θ_L (a commonly used value derived from heat capacity or elastic properties) via $\Theta_L = \Theta_\text{n}^{1/3}$ (ref. 49) where $n = 8$ for SnSe is the atomic number per primitive unit cell and $\Theta_L = 215$ K was taken from ref. 50-52.

The total relaxation time is determined by various scattering processes:

$$\tau^{-1} = \tau_{U}^{-1} + \tau_{\text{GB}}^{-1} + \tau_{\text{PD}}^{-1}.\tag{4}$$

Here the footnotes U, GB and PD denote Umklapp, grain boundary and point defect scattering, respectively. In this work, the Normal (N) process53 of phonon scattering was not taken into account for its limited role when there exist appreciable amount of defects.48 Each scattering process is dependent on temperature and/or phonons’ frequency (energy). For Umklapp process, the scattering frequency is given by54

$$\tau_{U}^{-1}(x) = \frac{g_R}{hMV^2\Theta_L^2} x^2 T^3 e^{-\Theta_L^{1/3}T}$$

(5)

where M is the average mass per atom, and γ is the Grüneisen parameter characterizing the lattice and bond anharmonicity. For grain boundary scattering, the relaxation time of phonons is limited by the grain size L via:

$$\tau_{\text{GB}}^{-1}(x) = v/L$$

(6)

The point defects dominant scattering is associated with the parameter Γ via55

$$\tau_{\text{PD}}^{-1}(x) = \frac{g_R}{4\pi \hbar V^2} \Gamma x^2 T^4$$

(7)

Here $\Gamma = \Gamma_{\text{max}} + \Gamma_{\text{strain}}$ quantifies the fluctuations in mass and strain caused by impurity atoms. For the case of only two atoms on one sublattice, the two terms can be expressed as:56

$$\Gamma_{\text{mass}} = n_{\text{sublatt}} \left(\frac{M_{\text{sublatt}}}{M_{\text{compd}}} \right)^2 f_1 f_2 \left[\frac{M_{1} - M_{2}}{M_{\text{sublatt}}} \right]^2 / n_{\text{compd}}$$

(8)

$$\Gamma_{\text{strain}} = n_{\text{sublatt}} \left(\frac{R_{\text{sublatt}}}{R_{\text{compd}}} \right)^2 f_3 f_4 \left[R_{1} - R_{2} \right] / n_{\text{compd}}$$

(9)

where n_{sublatt}, M_{sublatt} and R_{sublatt} are the occupancy, average atomic mass and average atomic radius of the sublattice; f_1, M, and R_i ($i=1, 2$) are the occupational fraction, atomic mass and radius (taken from ref. 57) of atoms 1 and 2, respectively; n_{compd} and M_{compd} are the total occupancy and average atomic mass of all the sublattices of the compound. Here for SnSe$_x$Te$_{(1-x)}$, $n_{\text{sublatt}}=1$ and $n_{\text{compd}}=2$. ϵ is a phenomenological adjustable parameter that is related to elastic properties.20,58

For pristine SnSe, we neglected point defect scattering, and then the only undetermined parameter is γ. By fitting the experimental data for SnSe from 300 to 773 K, we found $\gamma = 2.65$ yielded the best simulation and this value is very close to that (2.98) in ref. 50. For SnSe$_x$Te$_{(1-x)}$, the values of Θ_L, ν, γ and L were set equal to those of SnSe based on the following considerations: (1) Te content (x) is relatively low in this work, so large deviations in these parameters are not expected upon Te substitution; (2) different models or treatments can yield various fitting values. Although a linear average is a good approximation for complete solid solutions such as lead chalcogenides,17 it is not quite reasonable for SnSe$_x$Te$_{(1-x)}$ considering the difference in crystal structure of the binary compounds and the limited solubility of Te in SnSe. Then $\gamma = 135$ was determined by fitting thermal conductivity versus Te content at 300 K, which seems to go beyond the common range of 10-100,56 but is still a reasonable value when compared with lead chalcogenide alloys (100-150),17 Cu$_2$SbSe$_2$ (136, 190),20,58 and ZrNiSn-based56 solid solutions. The parameters used for modelling are listed in Table 1.

<table>
<thead>
<tr>
<th>Parameter (unit)a</th>
<th>Value</th>
<th>Notes and references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debye temperature, Θ_L (K)</td>
<td>107.5</td>
<td>ref. 50-52</td>
</tr>
<tr>
<td>Sound speed, ν (m/s)</td>
<td>1674</td>
<td>ref. 12</td>
</tr>
<tr>
<td>Grüneisen parameter, γ</td>
<td>2.65</td>
<td>Fitted</td>
</tr>
<tr>
<td>Grain size, L (μm)</td>
<td>2b</td>
<td>--</td>
</tr>
<tr>
<td>Adjustable parameter, ϵ</td>
<td>135</td>
<td>Fitted</td>
</tr>
</tbody>
</table>

$^a\theta_L$, ν and γ here refer to average parameters for acoustic branches.

b It is difficult to obtain accurate grain size for layered compounds. Nonetheless we found that by changing L from 500 nm to 2 μm, the resultant thermal conductivity varies within only 5% at 300 K.

Corrected thermal conductivities and modelling results as functions of temperature and Te content are shown in Fig. 9 (a) and (b), respectively. It is seen that the modelling results can well fit the experimental ones, especially at $T < 600$ K where bipolar effect is not obvious. As shown in Fig. 9 (b), 30-40% reduction in thermal conductivity at RT was captured by calculation when x increases from 0 to 0.2. The inset further demonstrates that strain field fluctuation plays a dominant role in point defect scattering of phonons, which is caused by the ionic size difference between Se and Te.
Fig. 9 Corrected thermal conductivities as functions of (a) temperature and (b) Te content together with the value from ref. 28. The inset panel of (b) shows the mass, strain and total fluctuation parameters. Solid lines are calculated based on Eqn. (3)-(9). Error bars were added indicating 5% uncertainty in measurements.

Fig. 10 shows the temperature dependence of ZT for pristine SnSe, SnSe$_{0.8}$Te$_{0.2}$ and Na-doped Sn$_{0.99}$Na$_{0.01}$Se$_{0.84}$Te$_{0.16}$. It is seen that Te-substitution contributed little enhancement to ZT despite a large reduction in thermal conductivity. By doping with Na, ZT was enhanced in the whole temperature range, yielding a maximum value of 0.72 at the composition Sn$_{0.99}$Na$_{0.01}$Se$_{0.84}$Te$_{0.16}$ at a relatively low temperature of 773 K. The improvement in thermoelectric performance benefited mainly from the enhanced electrical conductivity by doping with Na. It is also seen that ZT values in this work are comparable to or higher than those of polycrystalline samples in previous studies14,15 in the range of 300-773 K.

Great efforts are still needed to further enhance ZT (both the maximum and average values) of polycrystalline SnSe to make it a competitive candidate for possible use in power generation. As currently envisaged, it is crucial to find a dopant to effectively optimize the carrier concentration without deteriorating samples’ stability upon heating and cooling cycles; furthermore, band engineering strategies are required to yield a large thermal power while maintaining a high electrical conductivity by virtue of band convergence and/or multi-valley effect; in addition, there is still much room for the reduction of thermal conductivity in polycrystalline SnSe via multiscale manipulation of phonon scattering.

Fig. 10 ZT as a function of temperature for pristine and Na-doped SnSe$_{1-x}$Te$_x$ together with the data for polycrystalline p-type SnSe in ref. 14 and 15. Error bars were added representing 20% uncertainty.

4. Conclusions

In summary, thermoelectric properties of pristine and Na-doped SnSe$_{1-x}$Te$_x$ polycrystalline alloys were studied. SnSe$_{1-x}$Te$_x$ solid solutions were formed in the range of $x=0$-0.2. An energy barrier scattering mechanism was proposed in charge transport of polycrystalline SnSe in association with crystal defects at grain boundaries. The thermal conductivity at room temperature was decreased from 1.4 W/mK for SnSe to 0.8 W/mK for SnSe$_{0.8}$Te$_{0.2}$, which was mainly ascribed to strain field fluctuations due to Te substitution as well captured by Debye model. By doping with Na, the carrier concentration was increased from $\sim 7 \times 10^{17}$ to $\sim 1 \times 10^{19}$ cm$^{-3}$, leading to the maximum $ZT = 0.72$ for Sn$_{0.99}$Na$_{0.01}$Se$_{0.84}$Te$_{0.16}$ at 773 K. The findings and analyses in this work will help understand thermoelectric transport properties of SnSe and similar chalcogenides as well as their solid solutions.

Acknowledgements

This work is supported by National Natural Science Foundation (Nos. 51172121, 11474176) and the 973 Program (Grant No. 2013CB632503) of China.

Notes and references

2. G. J. Snyder and E. S. Toberer, Nat. Mater., 2008, 7, 105-114.
4. J.-F. Li, W.-S. Liu, L.-D. Zhao and M. Zhou, NPG Asia Mater., 2010,