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Identifying and avoiding singularity-induced local
traps over control landscapes of spin chain systems

Qiuyang Suna, István Pelczera, Gregory Rivielloa, Re-Bing Wub and Herschel Rabitz∗a

The wide success of quantum optimal control in experiments and simulations is attributed to the
properties of the control landscape, defined by the objective value as a functional of the controls.
Prior analysis has shown that on satisfaction of some underlying assumptions, the landscapes
are free of suboptimal traps that could halt the search for a global optimum with gradient-based
algorithms. However, violation of one particular assumption can give rise to a so-called singular
control, possibly bringing about local traps on the corresponding landscapes in some particular
situations. This paper theoretically and experimentally demonstrates the existence of singular
traps on the landscape in linear spin-1/2 chains with Ising couplings between nearest neighbors
and with certain field components set to zero. The results in a two-spin example show how a
trap influences the search trajectories passing by it, and how to avoid encountering such traps in
practice by choosing sufficiently strong initial control fields. The findings are also discussed in the
context of the generally observed success of quantum control.

1 Introduction
Quantum dynamics phenomena at the atomic and molecular

scales can be controlled via the application of tailored electromag-
netic fields.1 The control objective, e.g., the expectation value of
an observable, can be optimized by shaping the control fields. A
control landscape is defined by the objective value J as a func-
tional of the controls, whose topology dictates the ease of finding
the globally optimal solutions, especially when using gradient-
based search algorithms. What lies at the core of control land-
scape analysis is the local topology around its suboptimal critical
(or stationary) points, which is assessed primarily by a second
derivative test, i.e., the definiteness of the Hessian matrix evalu-
ated at a critical point. In this paper, a suboptimal critical point
with a nonzero and negative semidefinite Hessian is referred to as
a trap for maximization of J, although it is not necessarily a local
maximum when the Hessian has a nonempty null space (or ker-
nel). More rigorously, such critical points are traps of at least sec-
ond order, and behave similarly to local maxima for optimization
algorithms utilizing first- and second-order derivatives only.2–4

Based on the assumptions that (i) the closed quantum system is
controllable,5–7 (ii) the control to final state map is surjective ev-
erywhere over the landscape,2,8,9 and (iii) the control fields are
unconstrained, theoretical analyses reveal that the landscape is
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free of any traps,10–12 i.e., a gradient search will converge to a
globally optimal solution from an arbitrary initial choice in the
space of control fields. The trap-free landscape conclusion is a for-
tunate fiducial outcome of fully satisfying the three assumptions
stated above, which provides a basis to understand the observed
generally successful outcomes of quantum optimal control in both
experiments1 and simulations.13 In particular circumstances the
assumptions may be only partially satisfied, which can lead to
additional landscape features appearing, including traps. In prac-
tice, satisfaction of assumption (iii) to an adequate degree is of
concern and has been the focus of recent studies.14–16 Notwith-
standing the overall growing numbers of positive control exper-
iments, each of the assumptions deserve additional analysis to
assess their ease of practical satisfaction.

This paper focuses on so-called singular controls, which locally
violate the assumption (ii) above and may produce suboptimal
traps on the landscape. This prospect was considered earlier,17

and a few special examples of local traps based on theoretical
model systems have been reported,2,18 which can be ascribed to
singularity. A general basis to assess the role of singular controls
has been established in Ref.8. Carefully performed numerical sim-
ulations suggest that the singular controls are very rare, and most
of them actually do not form traps for gradient searches.8,9 The
singular traps known so far are associated with zero (or constant)
fields,2,18 and have very small attractive volumes, i.e., a search is
likely to be halted in practice only if the initial control is chosen
sufficiently close to the exact singular trap.9,19 This circumstance
also applies to the findings in this paper, but the possible pres-
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ence of such traps and the means for their avoidance is a matter
of considerable interest.

The control of dynamics in coupled spin-1/2 chains is of both
theoretical and practical interest,20 because of its proposed util-
ity in various applications including for efficient transfer of in-
formation in quantum computing devices,21 and in signal en-
hancement by polarization transfer in nuclear magnetic reso-
nance (NMR) spectroscopy.22 Analysis of the underlying control
landscape structures could be valuable in these situations. Re-
cently we developed experimental methodology for studying the
control landscape of spin systems with NMR.23,24 This paper fo-
cuses on the singular traps in control landscapes arising in linear
spin chains and the associated influence of non-local spin cou-
plings. Unlike many previous studies2,8–11,18 in which only a sin-
gle control field was considered, the complete controllability of
a multispin system generally calls for the introduction of multi-
ple control fields when each spin is spectrally distinct from the
others. In this situation, singularity may exist at special controls
where some of the field components have zero value, which in
turn may convert a regular landscape saddle point with an indef-
inite Hessian to a second-order local trap.

The remainder of the paper is organized as follows. Section 2
provides the theoretical background for control landscapes and
singular controls. Section 3 analyzes a particular landscape prob-
lem defined in linear spin chain systems and specifies the condi-
tions for a singular control to become a local trap. Illustrative
examples for a two-spin system are given in Section 4 with ex-
perimental and simulational results, confirming the existence of
the singular traps and showing how to avoid them in practice by
appropriate choices of initial controls. While the analysis in the
paper mainly focuses on spin chains with nearest neighbor cou-
plings, treatment of a three-spin system with next nearest neigh-
bor coupling demonstrates a reduction in singular behavior. Fi-
nally, Section 5 gives general conclusions and also discusses the
overall special circumstances of zero (or constant) field singular
controls, in the backdrop of the general success of quantum con-
trol experiments and the trap-free findings in large numbers of
carefully performed simulations.13,25

2 Control landscape and singular controls
Consider a closed N-level quantum system under control,

whose dynamics is described by the time-dependent Schrödinger
equation (in units where h̄ = 1),

i
d
dt

U(t) =

[
H0 +

M

∑
m=1

um(t)Hm

]
U(t), U(0) = IN , (1)

where H0 is the internal Hamiltonian, H1, · · · ,HM are the linearly
independent interaction Hamiltonian terms, and u1(t), · · · ,uM(t)
are their corresponding control fields, defined on the time interval
t ∈ [0,T ]. In the following we will encapsulate all of the M control
fields into an entire dynamic control u(·) when necessary, and
each um will be called a component of it. The circumstance in eqn
(1) arises in the present work with a set of weakly coupled spins
where each spin is spectrally distinguishable from the others and
thus may be individually addressed. A necessary and sufficient

condition for complete controllability of the system is that the Lie
algebra generated by iH0 and iHm, m = 1, · · · ,M, is u(N) (or su(N)
for a traceless Hamiltonian).5,6 The density matrix ρ, denoting
the system state, evolves with time as ρ(t) = U(t)ρ(0)U†(t), or
equivalently obeys the Liouville-von Neumann equation

d
dt

ρ(t) =−i

[
H0 +

M

∑
m=1

um(t)Hm,ρ(t)

]
. (2)

For a system with a given initial state ρ(0), a widely studied
target of quantum control is to optimize the expectation value of
a Hermitian observable operator O at the final time T .11,12,26 The
objective J specifies the landscape as a functional of the control
u(·) through U(T ), expressed by

J = Tr[ρ(T )O] = Tr[U(T )ρ(0)U†(T )O]. (3)

In order to simplify the analysis of the dynamic landscape (i.e., J
as a functional of the control fields), the kinematic picture of the
landscape is introduced, which is only concerned with the system
state ρ(T ) at the final time T , but not the dynamics leading to
the final state. Thus, in the kinematic picture the landscape J is
simply treated as a function of ρ(T ) defined on the space of matri-
ces unitarily equivalent to ρ(0), or a function of U(T ) defined on
the unitary group U(N).8,12,26 Landscape analysis primarily aims
at identifying the critical points where the first derivative of J is
zero, which can slow down or even halt the gradient-based op-
timization searches. The first derivative of J in the dynamic and
kinematic landscapes are related through the chain rule

δJ
δu(·)

=
〈

∇J[ρ(T )],
δρ(T )
δu(·)

〉
ρ(T )

, (4)

where 〈·, ·〉 represents the Riemannian metric, ∇J[ρ(T )] is the
kinematic gradient of J, and δρ(T )

δu(·) , which can be interpreted as a
Jacobian matrix, is the state variation at T resulted from a vari-
ation δu(·) in the control space.8 When δρ(T )

δu(·) is full rank (i.e.,

the set δρ jk(T )
δu(·) , ∀ j and k, contains the maximal allowed number

of linearly independent functions), we have δJ
δu(·) = 0 if and only

if ∇J[ρ(T )] = 0. A criterion for a particular ρ(T ) to be such a
kinematic critical point (KCP), is that11

[ρ(T ),O] = 0. (5)

Further analysis reveals that the topology of the kinematic land-
scape is determined solely by the initial state ρ(0) and target ob-
servable O, and KCPs occur at specific discrete values of J, which
can be computed from the eigenvalues of ρ(0) and O.11 The lo-
cal landscape topology about a critical point is assessed by the
definiteness of its Hessian. By analyzing the kinematic Hessian
form, i.e., the second derivative of J with respect to ρ(T ), it can
be shown that all the suboptimal KCPs located between the global
maximum and minimum of the landscape, if any, must have both
positive and negative Hessian eigenvalues, and thus be saddle
points.12 Therefore, the kinematic landscape does not contain any
local traps for optimization searches.

The viability of lifting the landscape analysis results in the kine-
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matic picture to the dynamic picture can be guaranteed if the Ja-
cobian δρ(T )

δu(·) is full rank,26 and such controls and critical points
are called regular. In contrast, a dynamic control u(·) is referred
to as singular if the Jacobian is rank deficient,8 in which case
the final state ρ(T ) cannot be freely manipulated differentially
by perturbing the control fields. The rank deficiency of δρ(T )

δu(·) is
called the corank of a singular control, characterizing the degree
of its singularity.8 Singularity can lead to changes of local land-
scape topology from at least two perspectives. First, it can induce
nonkinematic critical points (NKCPs) on the dynamic landscape,
which do not satisfy the condition in eqn (5) and therefore have
no counterparts in the kinematic picture. Although these singular
NKCPs are dominantly saddles,8,9 special examples are known in
which the singular NKCPs have negative definite or semidefinite
Hessians.18 Second, singularity can qualitatively alter the Hes-
sian feature at a KCP, where the second derivative of J in the two
pictures is related by8,26

δ 2J
δu2(·)

=
〈

δρ(T )
δu(·)

,Qρ(T )
δρ(T )
δu(·)

〉
ρ(T )

, (6)

where Qρ(T ) is the kinematic Hessian of J at ρ(T ). The nonzero
eigenvalues of Qρ(T ) are mapped one-to-one to the dynamic pic-

ture if δρ(T )
δu(·) is full rank, but a dynamic critical point may lose

some nonzero Hessian eigenvalues of its kinematic counterpart
when it is singular. In some extreme cases, a kinematic saddle
point can even be converted to a dynamic second-order maxi-
mum if all the positive Hessian eigenvalues vanish due to sin-
gularity.2,19 The situation analyzed in the following section will
also fall into this category. To our knowledge, some of the
singularity-induced traps discovered to date are true local max-
ima with strictly negative definite Hessians,18 while the others
recover the topology of saddles when higher-order derivatives are
further considered,2,18,19 including the case studied in this paper.
The local landscape topology at singular controls is related to the
nature of the controlled quantum system in a complex and subtle
manner.

3 Singular traps in linear spin chain sys-
tems

3.1 Control system model and landscape gradient search.

This paper mainly addresses the model system of a linear chain
consisting of n spins-1/2 with Ising-type coupling, also known
as weak coupling in NMR,20 only between nearest neighbors;
the consequences of additional spin coupling complexity are dis-
cussed in Sections 3.3 and 5. We assume that the Larmor fre-
quencies of the spins are well separated, so that each spin can be
individually addressed by its on-resonance control field. A mul-
tiple rotating frame27 simultaneously operating at the resonance
frequencies of each spin is introduced to express the total Hamil-
tonian of the controlled system as (in units where h̄ = 1)

H(t) =
n−1

∑
j=1

J j, j+1I j
z I j+1

z +
n

∑
j=1

[
u j

x(t) · I j
x +u j

y(t) · I j
y

]
, (7)

where J j, j+1 is the coupling strength between the spins j and
j + 1 in units of frequency. The multispin operator I j

a (a = x,y,z)
denotes the tensor product of the single-spin operator σa for the
jth spin with identity operators for all the others:28,29

I j
a = I2⊗·· ·⊗ I2︸ ︷︷ ︸

j−1

⊗(σa/2)⊗ I2⊗·· ·⊗ I2︸ ︷︷ ︸
n− j

, (8)

where σa (a = x,y,z) is a Pauli matrix and I2 is the 2× 2 iden-
tity matrix. The products of the operators I j

a with different spin
labels j, such as I1

x I2
y , form an orthogonal basis for traceless 2n-

dimensional Hermitian matrices.28 The control portion of the
Hamiltonian includes 2n linearly independent terms associated
with the operators I j

x and I j
y ( j = 1, · · · ,n), each addressed by a

corresponding field u j
x(t) or u j

y(t) in units of frequency. The quan-
tum system is completely controllable with the Hamiltonian form
of eqn (7).5,6

For a specific control landscape problem in this system, we con-
sider an initial density matrix with its traceless portion having the
form ρ(0) = ∑

n
j=1 c jI

j
z (c j > 0), which well approximates the ther-

mal equilibrium state of n spectrally distinguishable spins with gy-
romagnetic ratios proportional to the c j ’s, in conventional NMR
experiments when the system is placed in a large static magnetic
field along the z direction.30 The observable is chosen as O = Ik

x ,
k ∈ {1, · · · ,n}, which targets the in-phase coherence in the x direc-
tion of the kth spin.28 We will refer to the kth spin as the target
spin, and all the others in the chain as spectator spins when nec-
essary. A complete list of KCPs over this landscape will not be
given here; we only point out that there exist critical points at
J = ±2n−2c j, ∀ j = 1, · · · ,n (2n−2 is a coefficient arising from the
number of spins n in the system), most of which a have to be
suboptimal saddle points in the kinematic picture.11,12 The land-
scape settings described here can be realized by heteronuclear
NMR experiments in a straightforward manner; a two-spin exam-
ple will be presented in Section 4.

The landscape analysis of our problem will start with gradient-
based optimization of each single field component at some special
dynamic controls. Invoking eqns (1) and (2), the gradient of the
objective J = Tr[ρ(T )O] with respect to a single field um(t) is given
by11,31

δJ
δum(t)

=−iTr
{
[ρ(t),U(t)U†(T )OU(T )U†(t)]Hm

}
. (9)

For the observable O = Ik
x and for a dynamic control with all the

field components set to zero except uk
y(t), the gradient with re-

spect to each of the (2n−1) zero fields will still be zero, as demon-
strated below. In this special case, the total Hamiltonian reduces
to

H(t) =
n−1

∑
j=1

J j, j+1I j
z I j+1

z +uk
y(t) · Ik

y . (10)

Thus, the terms ρ(t) and U(t)U†(T )OU(T )U†(t) in the gradient

a Only the critical points of the greatest c j might be the top and bottom, but in
some cases the actual top and bottom can still exceed them and do not belong to the
category J =±2n−2c j , as Section 3.3 shows in the three-spin case.
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formula of eqn (9) can only evolve in some Hermitian subspaces.
The time evolution of ρ(t) from ρ(0) = ∑

n
j=1 c jI

j
z , obeying eqn (2)

with H(t) given in eqn (10), is constrained within the subspace
spanned by the following product operators,

ρ(t) ∈ span{I j
z ( j = 1, · · · ,n), Ik

x , Ik
y Ik±1

z , Ik−1
z Ik

x Ik+1
z , Ik−1

z Ik
z Ik+1

z },

which is determined by calculating the commutator of ρ(t) with
H(t), starting from ρ(0), until no more linearly independent terms
can be added in. Since U(t)U†(T )OU(T )U†(t) is the unitary evo-
lution of O = Ik

x governed by the Hamiltonian of eqn (10), we can
also derive the corresponding subspace as

U(t)U†(T )OU(T )U†(t)∈ span{Ik
x , Ik

z , Ik
y Ik±1

z , Ik−1
z Ik

x Ik+1
z , Ik−1

z Ik
z Ik+1

z }.

Among the 2n distinct Hm terms of eqn (9), Hm ∈ {I j
x , I j

y}n
j=1, only

Ik
y is present in the domain of [ρ(t),U(t)U†(T )OU(T )U†(t)], so the

landscape gradients with respect to control field components set
a priori to zero [other than uk

y(t)] all vanish. Thus, we have

Remark 1. When starting from an initial control with uk
y(t) be-

ing the only nonzero field, the other (2n−1) zero components will
permanently stay at zero throughout an optimization process uti-
lizing a simple gradient ascent algorithm [see eqn (19) in Section
4]. Likewise, if uk

x(t) and uk
y(t) are the only nonzero components

in the initial control, the remaining (2n−2) fields will stay at zero
during a gradient ascent, which can be demonstrated in the same
manner.

As such, although we have sufficient control resources, we will
never get the chance to utilize all of them for some special ini-
tial control guesses. The consequence is that the special search
trajectories may converge to suboptimal critical points, instead
of the global optimum. When the control fields addressing the
(n− 1) spectator spins are all zero, the terms I j

z ( j 6= k) in the
initial state ρ(0) will stay invariant throughout the control dura-
tion since they commute with the total Hamiltonian, and have no
contribution to the observable O = Ik

x . In that case, the objective
function J = Tr[ρ(T )O] reduces to

J[U(T )] = ckTr[U(T )Ik
z U†(T )Ik

x ]. (11)

The range of this function is 2n−2[−ck,ck]. The values J =±2n−2ck

correspond to KCPs of the original landscape, but not the global
maximum or minimum in most cases. Therefore,

Remark 2. Gradient ascent from an initial control with field
components on all spectator spins being zero will converge to a
KCP at J = 2n−2ck, which is usually suboptimal.

In Section 3.2 we will determine whether such an end point is a
saddle or a second-order trap in the dynamic picture by analyzing
its Hessian matrix.

3.2 Hessian analysis at the singular critical point.
For the landscape involving M (= 2n in our spin chain system)
independent control fields, the entire Hessian H(t, t ′) is speci-
fied as a real symmetric matrix composed of M×M submatrices
Hmm′(t, t ′), with each of infinite dimension over the time domain
[0,T ]. An off-diagonal submatrix Hmm′ with m 6= m′ is generally
nonsymmetric by itself, but is the transpose of its opposite sub-
matrix Hm′m. In each submatrix, the triangular portion of the
domain 0 ≤ t ′ < t ≤ T is given by11,32

Hmm′(t, t ′) :=
δ 2J

δum(t)δum′(t ′)
=−Tr{[[O(T ),Hm(t)],Hm′(t ′)]ρ(0)}

(12)
for m,m′ = 1, · · · ,M, and the opposite triangular portion can be
determined by symmetry, Hmm′(t ′, t) = Hm′m(t, t ′). The opera-
tors O(T ) and Hm(t) are defined with the system dynamics in
the Heisenberg picture, i.e., O(T ) := U†(T )OU(T ) and Hm(t) :=
U†(t)HmU(t). For our specific problem we conclude:

Remark 3. On the landscape J = Tr[O(T )ρ(0)] with the Hamil-
tonian given in eqn (7) and ρ(0) = ∑

n
j=1 c jI

j
z , O = Ik

x , a dynamic
control must have a negative semidefinite Hessian if it satisfies
two conditions: (i) all the field components except uk

y(t) are zero,
and (ii) O(T ) = Ik

z . Invoking eqns (3) and (5), condition (ii) im-
plies that such a control corresponds to a KCP lying at J = 2n−2ck.

Proof. The analysis below is carried out via a semi-explicit
expression of each Hessian submatrix at a control satisfy-
ing the two conditions. With the Hamiltonian of eqn (10)
involving a nonzero control uk

y(t) only, the time evolution of
the operator Ik

y (t) =U†(t)Ik
yU(t), for example, can be expressed as

Ik
y (t) = a1 · Ik

y +a2 ·2Ik−1
z Ik

x +a3 ·2Ik
x Ik+1

z +a4 ·4Ik−1
z Ik

y Ik+1
z +a5 ·2Ik−1

z Ik
z +a6 ·2Ik

z Ik+1
z , (13)

where a1, · · · ,a6 are all real scalar functions of t. With the condition O(T ) = Ik
z , we calculate the diagonal Hessian submatrix Hmm′ with

Hm = Hm′ = Ik
y by eqn (12):

[O(T ), Ik
y (t)] = i[−a1(t) · Ik

x +a2(t) ·2Ik−1
z Ik

y +a3(t) ·2Ik
y Ik+1

z −a4(t) ·4Ik−1
z Ik

x Ik+1
z ], (14)

δ 2J
δuk

y(t)δuk
y(t ′)

=−2n−2ck[a1(t)a1(t ′)+a2(t)a2(t ′)+a3(t)a3(t ′)+a4(t)a4(t ′)], t, t ′ ∈ [0,T ]. (15)

Hence, the subspace of the field component uk
y(t) gives four neg-

ative Hessian eigenvalues, whose corresponding eigenvectors are
specified by linear combinations of the functions a1(t), a2(t), a3(t)
and a4(t). If we perturb the field uk

y(t) and keep the other (2n−1)

components invariant at zero value at the critical point, the J
value will drop quadratically if and only if the variation δuk

y(t)
has a nonzero projection on the linear space spanned by the four
functions above. Similarly, the field uk

x(t) also has four negative
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Hessian eigenvalues associated with it.

Regarding the two nearest neighbors of the tar-

get spin k, the time evolution of Ik±1
x/y (t) un-

der eqn (10) can be formulated as well, e.g.,

Ik−1
x (t) = b1 · Ik−1

x +b2 ·2Ik−2
z Ik−1

y +b3 ·2Ik−1
y Ik

z +b4 ·4Ik−2
z Ik−1

x Ik
z +b5 ·2Ik−1

y Ik
x +

+b6 ·4Ik−2
z Ik−1

x Ik
x +b7 ·4Ik−1

y Ik
y Ik+1

z +b8 ·8Ik−2
z Ik−1

x Ik
y Ik+1

z , (16)

where b1, · · · ,b8 are functions of t. Likewise,

δ 2J

δuk−1
x (t)δuk−1

x (t ′)
=−2n−2ck[b5(t)b5(t ′)+b6(t)b6(t ′)+b7(t)b7(t ′)+b8(t)b8(t ′)], t, t ′ ∈ [0,T ]. (17)

We find that the control subspace of the field uk−1
x (t) also con-

tains four Hessian eigenvectors with negative eigenvalues, given
by linear combinations of b5(t), b6(t), b7(t) and b8(t). Similar situ-
ations occur for the field components uk−1

y (t), uk+1
x (t) and uk+1

y (t),
while the fields addressing spins other than k and k±1 have zero
contribution to the entire Hessian. It is also confirmed that the
off-diagonal Hessian submatrices are all zero under conditions (i)
and (ii), i.e., δ 2J/δum(t)δum′(t ′) ≡ 0 if um and um′ are two differ-
ent components. Therefore, the entire Hessian is semidefinite and
has totally at most 24 negative eigenvalues, whose eigenvectors
are associated with the control fields addressing the six operators
Ik
x/y and Ik±1

x/y . Q.E.D.

Unless J = 2n−2ck is the global maximum of the landscape, the
results here demonstrate the existence of a suboptimal trap of at
least second order. If we keep O(T ) = Ik

z and alter the circum-
stances in either of the two ways, (i) making the component uk

x(t)
also nonzero, or (ii) adding a new coupling term Jk−1,k+1Ik−1

z Ik+1
z

into the Hamiltonian, which couples the two nearest neighbors
of the target spin, the simple Hessian structure as in eqns (15)
and (17) will become more complex, and no longer be neces-
sarily negative semidefinite. In those situations the existence of
second-order traps cannot be guaranteed.

If the chain is not sufficiently long at least on one side of the
target spin k, when any of the four spins labeled (k±1) or (k±2)
do not exist, the trap control may have less than 24 negative Hes-
sian eigenvalues. For instance, if the chain contains a spin (k +1)
but not (k−1), the terms of Ik

y (t) in eqn (13) with coefficients a2,
a4 and a5 will disappear, and the subspace of uk

y(t) will give only
two (instead of four) negative eigenvalues whose eigenvectors
are linear combinations of a1(t) and a3(t). The numbers of neg-
ative Hessian eigenvalues, D−, for different spin chain structures
are counted with the method above and summarized in Table 1.
Since only the five spins from (k− 2) to (k + 2) participate in the
Hessian calculation, the presence of more spins in the chain will
have no influence on the Hessian structure of our control problem
targeting spin k.

The emergence of the second-order trap on the landscape, as
expected, is closely related to singularity, or the rank deficiency

Table 1 Dependence of the number of negative Hessian eigenvalues at
the local second-order trap, D−, on the number of spins in the chain on
both sides of the spin k targetd by the observable O = Ik

x . The target spin
is represented by • and the other spectator spins by ◦. Furthermore, · · ·
means that adding any more spins on that side does not change the
Hessian index D−.

Spin chain structure D−
• 2
•-◦ 6

•-◦-◦· · · 8
◦-•-◦ 16

◦-•-◦-◦· · · 20
· · ·◦-◦-•-◦-◦· · · 24

of δρ(T )
δu(·) , which can be calculated by8

δρ(T )
δum(t)

=−iU(T )[Hm(t),ρ(0)]U†(T ), Hm ∈ {I j
x , I j

y}n
j=1. (18)

Numerical simulations in two- and three-spin systems show that
any dynamic control with only one of the 2n field components
turned on should be singular (see Sections 3.3 and 4 for de-
tails). Although singular controls of this type can bring about
new topological features, i.e., suboptimal second-order traps, to
the dynamic landscape when overlapping with the kinematic sad-
dle points, their significance in practice calls for special consid-
eration, as starting with zero field components is not physically
reasonable in a coupled spin system. The latter issue is examined
in Section 4 and in ref.9 for other like situations, as the domain
of “attraction” around a trap is of primary importance.

3.3 The influence of more complex coupling in a three-spin
case.

The simple nearest neighbor coupling structure of the linear chain
model considered here is crucial for the existence of the singular
traps, as shown by the following example in the three-spin case.
Consider a control landscape with ρ(0) = I1

z + 0.8I2
z + 0.6I3

z and
O = I2

x , defined in a linear chain model where spin 2 is coupled
with its two (uncoupled) neighbors, spins 1 and 3. The condition
(ii) in Remark 3, O(T ) = I2

z , identifies a KCP lying at J = 1.6 com-
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pared to the global maximum J = 2.4,11 whose kinematic Hessian
form should have 6 positive and 26 negative eigenvalues.12 On
further satisfaction of condition (i), the corresponding singular
dynamic critical point will have a semidefinite Hessian with 16
negative eigenvalues, and thus form a second-order trap. How-
ever, with the appearance of an additional next nearest neighbor
coupling (i.e., triangular coupling) term J1,3I1

z I3
z in the Hamilto-

nian, a control satisfying the two conditions will still be critical
but have an indefinite Hessian with 4 positive and 20 negative
eigenvalues, being a saddle on the dynamic landscape instead of a
second-order maximum. We see that the more complex coupling
gives a lower degree of singularity, or Jacobian corank (cf. Sec-
tion 2) at the same special dynamic control, which consequently
influences the local landscape topology. In this example the Hes-
sians are numerically computed with eqn (12), with the coupling
constants J1,2, J2,3 and J1,3 set to be unequal. Section 5 contains
further discussion on the role of coupling structure upon land-
scape topology.

4 Illustrations
In this section we demonstrate the existence of singular subop-

timal traps in a two-spin systems as illustrations. We present ex-
perimental results and numerical simulations for a heteronuclear
two-spin sample (13CHCl3), revealing how the choice of initial
controls influences the likelihood of trapping in practice.

The gradient algorithm used for ascending the landscape and
searching for the critical points is described below. In optimal
control experiments and simulations of a quantum system with
dynamics having the form of eqn (1), the objective function J
can be optimized by updating the control field(s) iteratively along
the gradient flow, until a critical point is encountered.9,19,31 We
introduce a scalar parameter s ≥ 0 to describe the evolution of
a control field um(s, t) in the landscape ascent process, which is
guided by the differential equation

∂um(s, t)
∂ s

= αm(s)
δJ

δum(s, t)
, (19)

where αm > 0 is the optimization rate associated with um. We dis-
cretize the nominally smooth field um(t) to a piecewise constant
function of L time intervals with identical length ∆t = T/L, and
denote the field value within the lth interval (l = 1, · · · ,L) by um[l],
where s is implicit. The differential equation (19) can be approx-
imately solved by the forward Euler method with a constant step
size, i.e.,

um[k +1, l] = um[k, l]+ αm
∂J

∂um[l]

∣∣∣∣
k
. (20)

where k = 0,1, · · · is the iteration index. In the laboratory, the
partial derivatives ∂J

∂um[l] can be measured by the central finite dif-

ference method23 if the signal-to-noise ratio is sufficiently high,
while in simulation they are approximated by the analytic gra-
dient, given in eqn (9), at the instants t = l∆t, i.e., ∂J

∂um[l] ≈
∆t · δJ

δum(l∆t) . Depending on application, higher-order (local) inte-

gration methods may also be utilized,19 although such techniques
may be problematic to implement in the laboratory.

Here we will study the role of the singular local trap on a par-

ticular landscape in the simplest system of two coupled spins,
illustrated experimentally and complemented with simulations.
We consider neat 13C-labeled chloroform (13CHCl3) as the sam-
ple,24 and denote the two nuclei 1H and 13C as spin 1 and 2,
respectively. The coupling strength between the two spins is
J1,2/2π = 215Hz, measured from the frequency difference of the
two lines of the doublet 13C signal in the NMR spectrum. Two
radiofrequency pulses as the control resources irradiate the sam-
ple simultaneously, with each pulse on resonance with 1H or 13C,
respectively, having a fixed length of T = 5ms along with time-
dependent envelope amplitudes A1, A2 and phases φ1, φ2. A dou-
bly frame rotating at resonance with the Larmor frequencies of
the two spins is constructed such that the nominal controls in eqn
(7) are realized by u1

x(t) := A1(t)cosφ1(t), u1
y(t) := A1(t)sinφ1(t),

and similarly for u2
x and u2

y .23,24 The final time T is chosen such
that J1,2T > 2π for the sake of system controllability,29,33 and T is
broken into L = 5 time intervals, giving a total of 20 control vari-
ables. In the rotating frame, the full Hamiltonian of the controlled
system is formulated as31

H(t) = J1,2I1
z I2

z +u1
x(t) · I1

x +u1
y(t) · I1

y +u2
x(t) · I2

x +u2
y(t) · I2

y . (21)

The traceless portion of the thermal equilibrium state at the
experimental temperature (295 K) can be well approximated by
the form ρeq ≈ c1I1

z + c2I2
z , which is taken as the initial density

matrix ρ(0) of the landscape problem. For the sample molecule
we have c1 : c2 ≈ 4 : 1, determined by the intrinsic gyromagnetic
ratios of 1H and 13C.27 The observable O = I2

x is characterized
by the integrated area of the doublet peak ascribed to the 13C
nucleus (the splitting is caused by its coupling with 1H) in the
13C-detected NMR spectrum. With these choices of ρ(0) and O,
the landscape J = Tr[ρ(T )O] will possess KCPs at J = ±c1, ±c2,
and 0, with ±c1 being the global maximum and minimum.11

From the landscape features at the special dynamic controls
analyzed in Section 3, we can predict the general behavior of
gradient optimization starting from various special initial guesses
as explained below, which will be illustrated both experimentally
and with simulations. (i) If we perform landscape gradient as-
cent from initial controls for which u1

x ,u
1
y ,u

2
x ≡ 0, the search trajec-

tory will converge to a suboptimal critical point located at J = c2,
which is proved to be a second-order trap on the dynamic land-
scape. If the initial control only has u1

x ,u
1
y ≡ 0, the search will also

converge to J = c2, but the critical point should have the topol-
ogy of a saddle in this case. With such special initial controls,
the zero field components in the initial control will permanently
stay at zero during optimization with the gradient algorithm, and
the global maximum of the landscape at J = c1 cannot be ap-
proached. (ii) When the initial control is chosen to be close to
the special zero field conditions in (i) leading to a trap or a sad-
dle, the search is expected to slow down around J = c2, and then
speed up after escaping the neighborhood of the critical point.
Under practical conditions when experimental or numerical er-
ror is present, the determination of an extremely small gradient
could be inaccurate, and the search trajectory may wander ran-
domly in a small region around the critical point. Other stochastic
search methods (e.g., a genetic algorithm) may always be used,
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but they generally will not reveal subtle landscape features. (iii)
When the initial control is far from the special conditions, e.g.,
each of the four components has a significant initial magnitude,
the search trajectory will likely converge to the global maximum
straightforwardly without halting at any suboptimal near-critical
region. The suppositions in (ii) and (iii) are based on considering
that the domain of attraction for the zero field induced singular
trap is small on the scale of optimal field strengths, which will be
affirmed below.

The distinct behavior described above is illustrated with three
search trajectories starting from different initial controls in the
laboratory utilizing the gradient algorithm (see Fig. 1). We use
the mean absolute value of um, rescaled in units of T−1 = 1/(5ms)
by referring to the experimentally determined amplitude of a π/2
pulse for 13C, to characterize the magnitude of each control field
component, i.e., |um|= ∑

L
l=1 |um[l]|/L. The trajectories #1, #2 and

#3 in Fig. 1 are initialized as follows: constant fields are picked
as the initial control, i.e., um[1] = · · · = um[L] = u0,m, m = 1, · · · ,4;
from trajectories #1, #2 to #3, each u0,m increases accordingly
with the ratio 0.25 : 0.58 : 1. Although exact zero fields was not
chosen, trajectory #1 started at relatively small values. Despite
the J values at the initial guesses all being close to zero in Fig.
1(a), the three trajectories evolve toward different destinations
under the deterministic gradient algorithm. Trajectory #1 with
the lowest initial field magnitude was manually terminated when
its monotonicity broke, i.e., the J value of the last iteration was
slightly lower than that of its previous iteration, indicating that
the system precision and noise levels were reached. Fig. 1(b) for
trajectory #1 shows that in the optimization process, the mag-
nitudes of u1

x , u1
y and u2

x stayed at relatively low levels compared
with u2

y . Thus, the movement of trajectory #1 in the control space
was stopped somewhere in the neighborhood of the predicted lo-
cal trap, for which the three components other than u2

y should be
exactly zero. In trajectory #2 as shown in Fig. 1(c), escaping the
near-critical region in iterations 10-15 was accompanied by a dra-
matic increase of the magnitudes of u1

x , u1
y and u2

x , which can be
viewed as a deviation from the trap condition. Trajectory #3, de-
picted in Fig. 1(d), with highest initial control magnitudes more
efficiently passed through the level of J where the trap exists, and
converged to the global maximum within fewer iterations than
trajectory #2. The J value where trajectory #1 is terminated and
#2 slows down is approximately one-fourth of the global max-
imal value, in agreement with the relative positions of the two
KCPs at J = c1 and c2 on the landscape.

Employing numerical simulation, we also assess the likelihood
of an optimization search being “trapped” under convergence cri-
teria based on the norm of landscape gradient, with the con-
straints on control resources (i.e., a set number L of control
variables) taken into consideration. In parallel with the ex-
perimental two-spin system, we set the J-coupling strength to
J1,2/2π = 215Hz and the final time to T = 5ms (digitized into ei-
ther L = 5 or 10 equal time intervals). The initial state is chosen
as ρ(0) = I1

z + 0.25I2
z , and the observable is O = I2

x . The forward
Euler method with a constant step size as in eqn (20) is utilized
for ascending the landscape, in which the gradient with respect
to the piecewise constant fields is approximated from the analyt-
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Fig. 1 (Color online) Three experimental gradient ascent trajectories on
the control landscape of the two-spin sample of 13CHCl3, starting from
constant initial fields with different magnitudes. (a) The optimization of
the objective value J. Trajectory #1 is terminated when J drops in the
last iteration, while the other two approach the global maximum. (b)-(d),
respectively for trajectories #1, #2 and #3, showing the evolution of the
mean field strength |um| of each component, u1

x ,u1
y ,u2

x and u2
y , in the

optimization processes (given in the unit of T−1).

ical expression in (9). The initial controls are generated by ran-
dom numbers uniformly distributed around zero for each of the
4L control variables, and the mean absolute value |um| of each of
the four components, u1

x , u1
y , u2

x and u2
y , is normalized to the same

value u0 (i.e., all the L control variables of each field um are pro-
portionally rescaled such that |um|= u0). An optimization process
is terminated when the gradient norm e becomes lower than a
convergence threshold, chosen over the window 10−5 ∼ 10−3 in
Fig. 2. The norm e of the landscape gradient is defined as

e =

{
1
L ∑

m

L

∑
l=1

[
δJ

δum(l∆t)

]2
}1/2

. (22)

The proportion of optimization searches being practically trapped
at various values of u0 and e is determined by 100 runs and given
in Fig. 2, with two different time resolutions of L = 5 and 10.
Generally, the search is more likely to escape the trapping region
when greater magnitude initial controls are chosen, and a more
precise convergence threshold is employed. No fundamental dif-
ference is observed for the two time resolution values of L = 5 and
10 with the other parameters fixed, implying that the discretiza-
tion constraints do not affect the landscape structure significantly
even for L = 5. For this particular problem, the accumulation of
larger numerical error in the case of L = 5 actually eases the de-
viation from the trapping region, according to the statistical data
presented here. In Fig. 3 we selected 20 initial controls for each
distinct u0, optimized them until J > 0.99, and then recorded the
mean field strengths uopt = |um| of each component at the global
optimum, which turned out to be much larger than the easily
trapped initial field strengths in Fig. 2. Therefore, if the field
strengths of the initial control are sufficiently large, i.e., compa-
rable to those of global optimal control fields for the landscape,
the trapping region will be very unlikely to halt the search. This
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phenomenon was also observed elsewhere9,19 and is expected to
widely apply, consistent with large numbers of reported success-
ful simulations.13,25
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Fig. 2 (Color online) Simulation results from a model of the
experimental two-spin system, showing the proportion of searches in
100 runs that are terminated prematurely at around J = 0.25 for various
initial field strengths u0 and convergence thresholds for the gradient
norm e. (a) and (b) correspond to time resolution of L = 5 and 10,
respectively.
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Fig. 3 (Color online) The mean field strengths of globally optimal
controls (J > 0.99) of the two-spin landscape problem, obtained by
optimizing from initial controls with different strengths u0 in simulation.

Furthermore, we also numerically explored the higher-order
landscape topology about the trap associated with trajectory #1
to check whether it is actually a local maximum. We randomly
picked large numbers of perturbation directions δu(·) within the
Hessian null space at a trap (including all four field components),
and calculated the change of J when the control utrap was var-
ied along these directions. For sufficiently small variation, J
is dominated by its lowest-order nonzero derivative along δu.
It is found that in a small neighborhood around utrap we have
J(utrap + xδu) ≈ J(utrap)+ k4x4, where x is the distance from utrap

in the control space. The coefficient k4 can be positive or nega-
tive depending on the direction δu, with two representative cases
plotted in Fig. 4. The numerical evidence implies that within the
Hessian null space at the trap, the third derivative of J is zero
while the fourth is indefinite. Thus, the trap identified in the two-
spin example is actually only a trap to second order, but not a true
local maximum.

−1 −0.5 0 0.5 1

0

Distance along δu (arb. unit)

J
-

J
0

Fig. 4 (Color online) The second-order trap in the two-spin problem is
shown not to be a local maximum. As we perturb a trap control utrap
along different directions δu in the Hessian null space, J may either
increase or decrease from the value J0 of the trap as a quartic function
of the distance from utrap, as the representative red and blue curves
respectively show.

5 Discussion and Conclusions
This paper mainly considers the control landscape for Ising lin-

ear spin chain systems, and derives the sufficient condition for
a type of suboptimal traps of at least second order over the land-
scape caused by singularity. The results extend the understanding
of the role of singular controls in landscape analysis. For quantum
systems controlled by multiple fields, turning off some field com-
ponents can produce singular controls of various degrees. The
problem analyzed in this paper provides an example in which the
singular traps exist as a continuously varying manifold over the
nonzero field components involved, and the distinct members of
which can be identified by performing simple gradient optimiza-
tion from some particularly chosen initial controls. To illustrate
the theoretical conclusions, we performed NMR experiments with
a heteronuclear two-spin molecule, and observed the influence of
the predicted singular trap on practical gradient searches. Ad-
ditional numerical simulations showed how the choice of initial
controls influences the likelihood of being trapped in practice,
and that the trap is actually not a local optimum when higher-
order derivatives are taken into consideration. For the three-spin
case we compared two different physical models of linear and tri-
angular internuclear couplings, suggesting that the singular traps
may disappear when more complex couplings are present in a
set of spins. In optimal control experiments with spin systems
the presence of landscape singularity could be a factor of signif-
icance. However, the influence of zero field traps appear easy
to be avoided by starting with simple physically motivated initial
choices for controls, based on the expectation that each coupled
spin may have some role in the optimal dynamics.

The advances in this work are best understood in the overall
context of control landscape principles. As stated in the Intro-
duction, these principles rest on the satisfaction of three assump-
tions. The first assumption (i) on controllability and the second
assumption (ii) on surjectivity concern inherent properties of the
quantum system under control. The third assumption (iii) on
complete access to all possible controls can never be fully sat-
isfied, but the practical issue is having adequate control resources
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to meet the dynamic objective; while significant violation of this
practical criterion will eventually lead to traps,14 reasonable con-
siderations from spectroscopy appear to often provide guidance to
identify suitable resources. Although the controllability assump-
tion (i) is likely to be satisfied, violations can lead to traps on
the landscape.7 The surjectivity assumption (ii) is perhaps the
least understood, and the present work along with prior stud-
ies2,17,18 have identified singular control induced traps existing
only as zero (or constant) fields, which are unusual experimen-
tally where propagating fields naturally arise as controls. Simple
physically based trial fields can easily avoid constant field traps,
as shown here and in other works.9 A recent study introduced a
special algorithm to specifically seek singular controls, and none
of the discovered singular controls (all were non-constant) corre-
sponded to traps.8 Additionally extensive careful simulations for
state preparation,13 optimization of general observables,9 and
the creation of targeted unitary transformations25 also did not en-
counter any fields corresponding to traps on the landscape while
on the way to reaching high fidelity control performance. In-
terestingly, all of the known cases with singular control induced
traps are simple systems with sparse coupling (e.g., Ising spin
systems in the present paper). The greater body of simulation
studies,13,25 which do not encounter traps of any type, generally
have Hamiltonians with more complex coupling structure. The
landscape findings in the present work upon going from a three-
spin linear chain to the triangular coupling arrangement can also
be viewed as increasing coupling complexity. These collective
results suggest that trap-inducing singular controls are a rarity,
especially in systems of extensive coupling complexity. Most im-
portantly, further study is needed to fully understand the circum-
stances when any of the three landscape assumptions break down
and produce control outcomes that encroach on the nominal fa-
vorable landscape topology.
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