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Abstract

The scaling properties of density functionals are key for fundamentally understand-
ing the density functional theory. Accordingly, the dependence of density functionals
with the number of particles is of paramount relevance. The numerical exploration by
Rong et al. addressed the N -scaling for a set of quantum information quantities; they
found linear relationships between each one of them and the electronic population for
atoms, molecules, and atoms in molecules. A main motivation for their computational
work was that the theoretical scaling of these quantities is unknown; however, these
scaling properties can be analitically determined. Here I reveal the derivation of the
N -scaling rules for the quantities studied by Rong et al by following the procedure
introduced in Comp. Theor. Chem., 2015, 1053, 38. In addition, a new atomic scaling
rule explains the linear relation between atomic populations and atomic values of the
same quantum information quantities.
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Density scaling has been a major subject of research in the development of the
density functional theory (DFT)[1] which states that all ground-state properties of

the system can be expressed as unique functionals of the density ρ.[2] In general, a
density functional f [ρ] is homogeneous of degree β with respect to density scaling

if the functional satisfies the following condition,

f [ζρ] = ζβf [ρ] (1)

A special case is the scaling induced by the density per particle σ = ρ/N , which
leads to

f [ρ] = Nβf [σ] (2)

by taking ζ = 1/N in Eq. 1. This N-scaling rule is useful for systematically

studying the role of the total number of particles in density functionals.[3, 4, 5]
In a recent paper, Rong et al.[6, 7] observed a linear scaling with N for different

information functionals: Shannon entropy SS ,[8] Fisher information IF ,[9] and
Ghosh-Berkowitz-Parr (GBP) entropy SGBP .[10] The underlying argument in fa-

vor of their computational survey is the assumption that a dependence of these
quantities with the number of electrons is theoretically unknown. However, as

shown in the present comment, one can theoretically explain the N -dependence
for all of them by assuming that the ground-state density ρ is known; no further

assumptions are necessary—except for the N -scaling proof of GBP entropy which
is circumscribed to the Khon-Sham approximation.[11]

From the Shannon entropy of ρ, SS [ρ] = −
´
ρ ln ρ, the following equation emerges

SS [ρ] = N∆S [σ;N ] (3)

where ∆S = Sσ−SN is the Kullback-Leibler information divergence[12] between
the density per particle distribution σ and the constant distribution p = 1/N—for

which Shannon entropy takes the maximum value of SN ≡ lnN .[13] For any
neutral atom after fluorine (i. e. N > 9), lnN is the dominant term in ∆S

which implies Sσ < SN and consequently SS < 0 —as Table 1 in Rong et al.
shows.[6, 7] Hence, for large N values −NSN is the dominant term in SS . Notice
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that from the atomic data reported by Rong et al. one can find a correlation coef-
ficient of R2 = 0.92 between SS and N which is greater—about 15%—than the

one between Sσ versus N
(
R2 = 0.80

)
they reported.[7] Both of these linear cor-

relations, however, obviate the periodic trends of the data sets. Indeed Sσ versus

N appreciably deviates from linearity within each row of the periodic table, as Sen
et al.[14] show in their Fig. 1 for the neutral atoms from He to Ac (2 ≤ N ≤ 89).

According to Eq. 2, Fisher information IF is homogeneous of degree one under
the density scaling i.e. IF = NIσ. However, Rong et al. reported that Iσ ∝ N ,

which necessarily implies IF ∝ N2. One can derive this N -dependence of IF [ρ]
from the analytic properties of the von Weizsäcker kinetic energy TW because it is

proportional to Fisher information

TW[ρ] =
1

8

ˆ
|∇ρ|2

ρ
=

1

8
IF [ρ] (4)

TW can be written in different equivalent forms; one of them is particularly useful
for revealing its dependence with the number of particles. Given the quantity p̃ =

−∇ρ/2ρ then

TW[ρ] =

ˆ
|p̃|2

2
ρ (5)

i.e. TW is the expectation value of the single-particle kinetic energy given by the

local value |p̃|2 /2.[15, 16] This quantity has an extreme value at the nuclear posi-
tion by Kato’s cusp condition,[17] which can be expressed by

ˆ
|p̃|2

2
δ (r) =

Z2

2
(6)

Therefore the integrand in Eq. 5 has an absolute maximum at the nucleus because
Z2ρ (0) /2 > |p̃|2 ρ (r) /2 for |r| > 0. At large distances from the nucleus the

limiting value of |p̃|2 /2 is the ionisation potential IZ[18]

|p̃|2

2
||r|→∞ → IZ (7)

Hence the integrand in Eq. 5 for the outermost electron shells rapidly vanishes due
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to the exponential decay of the electron density;[16, 19] as a result, the integral for
the electrons in the first electron shell dominates over the remaining terms by nearly

an order of magnitude.[20, 19] Accordingly, Z2/2 is the leading term determining
the Weizsäcker kinetic energy (Eq. 5) i.e. TW[ρ] ∝ Z2. Z is a limiting value

for the electron velocity near the nucleus that is useful for determining kinematic
relativistic corrections.[21] The number of electrons in a neutral atom is equal to

the atomic number, N = Z, and therefore

TW[ρ] ∝ N2 (8)

The correlation between TW[ρ] and N2 is R2 = 0.9998, according to the data
reported by Rong et al. This dependence of TW with N cannot be intuitively

anticipated because it depends on the particular behaviour of the von Weizsäcker
kinetic energy TW for fermions.[22] Because TW = NIσ/8 then Eq. 8 finally

leads to

Iσ[σ] ∝ N (9)

Hence the Fisher information associated with the density per particle Iσ[σ] scales
linearly with the number of electrons N—in agreement with Rong et al.. An early

numerical exploration by Nagy and Sen already reported an almost linear trend
between Iσ and N trough the numerical fit Iσ = 5.8325N1.0801 from the data set

by Romera using Koga–Roothaan Hartree–Fock atomic wave functions.[23, 24]
Therefore, one can explore the theory behind the Weizsäcker kinetic energy for an

analytical derivation of the linear and the quadratic scaling of Iσ and IF with N ,
respectively.

With reference to the relation between SGBP and its equivalent for the density
per particle Sσ

GBP , Rong et al. conjectured that SGBP ≈ NSσ
GBP “since the

density-scaling and N-scaling properties for the kinetic energy density t(r, ρ) are

unknown, it is unclear whether there exists any explicit relationship between the

two quantities”.[6] Such a statement may be motivated by the fact that an exact
expression for the orbital-free kinetic energy density functional is unknown. Yet

the explicit theoretical relationship between Sσ
GBP and SGBP is readily possible
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within the limits of the non-interacting kinetic energy approximation. Certainly,
it provides the scaling properties of the constituent quantities of SGBP that yields

to the total scaling rules—by following the same strategy used for determining the
scaling properties of the topology of the electron density.[5] From the definition of

the GBP entropy

SGBP [ρ] =
3

2
k

ˆ
ρ

{
c+ ln

t (r, ρ)

tTF (r, ρ)

}
(10)

and taking the Kohn-Sham orbitals ϕi for an N-electron system,[11] the expression

of the electron density is ρ =
∑N

i |ϕi|2 ≡
∑N

i ρi that leads to a proof of the
scaling rule for SGBP [ρ] restricted to the non-interacting kinetic energy—whose

positive-definite expression is ts (r, ρ) = ½
∑N

i |∇ρ
1/2
i (r)|². By replacing ρ by

Nσ we have σ =
∑N

i ρi/N ≡
∑N

i σi and consequently ρi = Nσi. Therefore,

ts (r, σ) =
N

2

N∑
i

|∇σ
1/2
i (r)|² (11)

which shows the linear scaling of the non-interacting kinetic energy density in

terms of σ with the number of particles N or ts (r, ρ) = ts (r, Nσ) = Nts (r, σ);
while this proof is valid for the Kohn-Sham approximation, it can be extended to

the general case by considering the results by Liu et al. who state that the kinetic-
energy component of the correlation energy density also scales linearly with the

number of electrons or tc (r, ρ) = Ntc (r, σ).[25] Therefore, by considering both
the KS approximation ts and the kinetic-energy component of the correlation tc,

one can deduce that the kinetic energy density is homogeneous of degree one under
the density scaling:

t (r, ρ) = t (r, Nσ) = Nt (r, σ) (12)

Alternatively, this general result can be deduced from previous theoretical works
by e.g., Nagy and March,[26] or from the recent work from Della Sala et al.,[27]

according to which the kinetic energy density can be formally written as a function
times the electron density, or t (r, ρ) = ρf (r). In this way, its respective density

per particle expression linearly depends on the number of particles i.e. t (r, Nσ) =

Nσf (r). Additional arguments and formal requirements for the density scaling

6
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of the kinetic energy density can be found in Liu and Parr,[1] or in the work by
Borgoo and Tozer.[4] On the other hand, the Thomas-Fermi kinetic energy density

(tTF (r, ρ) = cKρ5/3) scales with the (5/3)th power of N :[11]

tTF (r, ρ) = tTF (r, Nσ) = N5/3tTF (r, σ) (13)

Then, after replacing Eqs. 12 and 13 into Eq. 10, we find the exact scaling rule for

SGBP [ρ]

SGBP [ρ] = N∆S′ [σ;N ] (14)

with the entropy difference ∆S′ = Sσ
GBP − kSN . Equation 14 states that SGBP

and Sσ
GBP obey a similar N -dependence to that one of Sσ (Eq. 3). In this case,

however, the dominant term is positive because Sσ
GBP grows faster than k lnN by

more than one order of magnitude—making SGBP > 0 for every atom. This result

fully explains the correlation R2 = 0.99 between SGBP and N reported by Rong
et al..

Finally, Rong et al. also found strong linear relationships of the theoretical infor-
mation quantities for atoms as a function of their respective electron populations

via Bader’s zero-flux,[28] Becke’s fuzzy atom,[29] and Hirshfeld’s stockholder
partitions.[30] Along similar lines, I recently disclosed the utility of atomic values

for revealing inevident scaling properties in kinetic energy density functionals.[31]
Furthermore, the density per particle definition σ = ρ/N imposes a scaling in-

variance on topological density functionals.[5] By following a similar approach
one can derive a general scaling rule—applicable to any partition scheme—which

governs the atomic values. Indeed, perfect N linear scaling has some interesting
consequences on the atomic scaling properties. Specifically, by assuming that a

given functional A is homogeneous of degree one with respect to the number of
particles, i.e. that obeys A [ρ] = A [Nσ] = NA [σ], the following equation holds

A [ρ] = N
M∑
i

A [σ]i = A [σ]
M∑
i

Ni (15)

where A [σ]i =
´
Ωi

A (σ, r) is the atomic value of the observable A corresponding

7
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to the atomic region Ωi, A [σ] =
∑M

i A [σ]i, with N =
∑M

i Ni =
∑M

i

´
Ωi

ρ, and
M the total number of atoms. Therefore

A [σ]i =
A [σ]

N
Ni (16)

For a stationary state of a molecular system for which A [σ] and N are constants,

Eq. 16 reveals that every atomic value A [σ]i scales linearly with its respective
electronic population Ni. Accordingly, a plot of A [σ]i vs Ni should be linear with

a proportionality factor close to the property per particle A [σ] /N . For the special
case A = ρ, Eq. 16 correctly yields the atomic shape function value given by

σi = Ni/N previously defined. Notice that discrepancies with respect to Eq. 16
may be attributed either to an imperfect linear scaling with the number of electrons

N , or to numerical errors, or both simultaneously. Rong et al. correctly obtained
the trend given by Eq. 16 for two information properties—Fisher information and

the GBP entropy—and for three partitioning schemes. Equation 16 suggests that
by knowing any atomic value A [σ]i and its respective electronic population Ni one

can determine the total value of the functional A [σ] —given the perfect linear scal-
ing of A with N , even if N is unknown because it can be determined from Kato’s

theorem as demonstrated in Ref. [5]. These observations seem to be consistent
with the extension of the theorem of Hohenberg and Kohn to sub domains, accord-

ing to which the ground state particle density of an arbitrary subdomain uniquely
determines the ground state properties of the total system.[32]

In summary, in this comment I put forward the claim that one can derive analyt-
ically all the scaling rules numerically obtained by Rong et al. and hence their

findings can be generalised. The theoretical approach shown here yields to a bet-
ter understanding of the role of the number of particles N as a privileged scaling

parameter for density functionals evaluated for atoms and atoms in molecules.
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